
ICARE Software Components for Rapidly Developing
Multimodal Interfaces

Jullien Bouchet
CLIPS-IMAG

38000, Grenoble, France

Jullien.Bouchet@imag.fr

Laurence Nigay
CLIPS-IMAG

38000, Grenoble, France

Laurence.Nigay@imag.fr

Thierry Ganille
THALES-Avionics

33187 Le Haillan, France

Thierry.Ganille@thales-
avionics.com

ABSTRACT
Although several real multimodal systems have been built, their
development still remains a difficult task. In this paper we address
this problem of development of multimodal interfaces by
describing a component-based approach, called ICARE, for
rapidly developing multimodal interfaces. ICARE stands for
Interaction-CARE (Complementarity Assignment Redundancy
Equivalence). Our component-based approach relies on two types
of software components. Firstly ICARE elementary components
include Device components and Interaction Language
components that enable us to develop pure modalities. The second
type of components, called Composition components, define
combined usages of modalities. Reusing and assembling ICARE
components enable rapid development of multimodal interfaces.
We have developed several multimodal systems using ICARE and
we illustrate the discussion using one of them: the FACET
simulator of the Rafale French military plane cockpit.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Interfaces-
Input devices and strategies, Interaction styles, Prototyping;
D.2.2 [Software Engineering]: Design Tools and Techniques –
User Interfaces.

General Terms
Algorithms; Human Factors.
Keywords
Multimodal Interactive Systems; Software Components.
1. INTRODUCTION
The area of multimodal interaction has expanded rapidly and
since the seminal “Put that there” demonstrator [4] that combines
speech and gesture: significant achievements have been made in
terms of both modalities and real multimodal systems. Indeed, in
addition to more and more robust and innovative modalities such
as the phicons [11], conceptual and empirical work on the usage
of multiple modalities is now available for guiding the design of
efficient and usable multimodal interfaces. As a result, real
multimodal systems are now being built in various application
domains including medicine [16] and education.

The flexibility and robustness of multimodal systems give results
of an increased complexity that current software development
tools do not address appropriately. Although several multimodal
systems have been built, their development still remains a
difficult task. The existing frameworks dedicated to multimodal
interaction are currently few and limited in scope. Either they
address a specific technical problem including the fusion
mechanism [9] [14], the composition of several devices [6] and
mutual disambiguation [17][9], or they are dedicated to specific
modalities such as gesture recognition [19], speech recognition
[10] or the combined usage of speech and gesture [13].

In this paper we address this problem of software development of
multimodal interfaces by describing a component-based approach,
called ICARE (Interaction CARE -Complementarity Assignment,
Redundancy and Equivalence-), which allows the easy and rapid
development of multimodal interfaces. ICARE framework is
based on a conceptual component model that describes the
manipulated software components and we are currently
developing a tool, a graphical platform for specifying a
multimodal interface by direct manipulation. From this
specification (ICARE schema), the code of the multimodal
interaction is automatically generated. While the ICARE
framework provides the services of a multimodal toolkit, the
ICARE platform must be compared to a UIMS built on top of the
toolkit.

Our discussion will concentrate on input (i.e., from the user to the
system) although our model holds for output as well. Nevertheless
we did not test our approach for output so far. For input we have
developed several multimodal interfaces using our ICARE
framework [5]: a Multimodal IDentification system (MID) and a
mobile system MEMO. MEMO allows users to annotate physical
locations with digital notes which have a physical location and are
then read/removed by other mobile users: two versions are
currently running, one using a PDA and another one using a
Head-Mounted Display. In this paper we present as an example a
larger system, FACET, a simulator of Rafale (a French military
plane).

The structure of the paper is as follows: first, we present our
conceptual model that includes elementary and modality
dependent components as well as generic components (reusable
components) for combining modalities (fusion mechanism).
Going one step further in the implementation process, we describe
how the ICARE components are implemented in our framework.
We conclude with an example that illustrates how the ICARE
components function together. As mentioned above, this example

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICMI’04, October 13–15, 2004, State College, Pennsylvania, USA.
Copyright 2004 ACM 1-58113-890-3/04/0010...$5.00.

is based on FACET, a simulator of a French military plane whose
main features are presented in the next section.

2. ILLUSTRATIVE EXAMPLE: A
MILITARY PLANE SIMULATOR
The FACET system, presented in Figure 1, is a real-time complete
flight simulator of the Rafale, a French military plane, for
studying future interaction techniques that will be embodied in the
Rafale cockpit. Examples of tasks include:

• Pilot the plane. The pilot must follow a predefined
trajectory while adapting it according to various
parameters including meteorological/geographical
conditions as well as plane characteristics.

• Navigate. The pilot must create or modify the flight plan
for example by calculating new check points.

• Manage the plane. The pilot must constantly check
hydraulic and electric systems.

• Manage the armory system. The pilot must be able to
change armory depending on the mission.

• Manage the mission. For example the pilot must be able
to protect herself/himself against attacks.

• Communicate with air traffic controllers and with other
pilots of the patrol.

Figure 1: The multimodal cockpit of Rafale (a French military
plane): FACET a flight simulator.
For performing such tasks, several input modalities are included
in FACET, making FACET a good candidate for studying rich
multimodal interaction in various contexts. The interface includes
the following input modalities:

• The HOTAS (Hands On Throttle And Stick) are made
of two command joysticks (one for each hand) to pilot
the plane and to issue commands such as marking a
point on the ground.

• The helmet visor which allows the pilot to select a target
in the real world that depends on the orientation and
location of both the pilot and the plane.

• Speech inputs for issuing commands such as marking a
point on the ground.

• A tactile surface in between the legs of the pilot for
specifying commands by direct manipulation.

As a unique feature and in addition to the multiple input
modalities managed by FACET, several interaction contexts are
clearly identified. Thus, the pilot can select modalities and forms
of multimodality according to the phases of the military mission,
the level of stress, the physical parameters (for example when the
pilot is exposed to strong accelerations) and so on. As a
conclusion FACET defines a very rich case study for
multimodality. In this paper we will illustrate our ICARE
framework by considering three tasks in FACET.

3. ICARE CONCEPTUAL MODEL
The ICARE conceptual model includes:

1. Elementary components: Such components are building
blocks useful for defining a modality. Two types of
ICARE elementary components are defined: Device
components and Interaction Language components. We
reuse our definition of a modality [14] as the coupling
of a physical device d with an interaction language L:
<d, L>. In [15], we demonstrate the adequacy of the
notions of physical device and interaction language for
classifying and deriving usability properties for
multimodal interaction while in [14][15] we adopt a
complementary perspective and examine the relevance
of these notions for software design.

2. Composition components: Such components describe
combined usages of modalities and therefore enable us
to define new composed modalities. The ICARE
composition components are defined based on the four
CARE properties [15]: the Complementarity,
Assignment, Redundancy, and Equivalence that may
occur between the modalities available in a multimodal
user interface. As opposed to ICARE elementary
components, Composition components are generic in
the sense that they are not dependent on a particular
modality.

In the following sections, we first describe the two types of
ICARE elementary components (i.e., Device and Interaction
Language components). We then focus on relationships between
modalities by describing the ICARE composition components.

3.1 Device Components
An ICARE Device component represents a supplementary layer
of the physical device driver. For example, the mouse Device
component abstracts the data provided by the mouse driver such
as button pressed/released and movement. Likewise a microphone
Device component abstracts the captured signal into a recognized
utterance while another microphone Device component abstracts
the captured signal into a level of noise. In FACET, as shown in
Figure 10, examples include an HOTAS Device component and a
Pilot’s Orientation&Location tracker Device component. Indeed
for capturing the pilot’s orientation and location, we define only
one Device component as we would do for a mouse with two
buttons and a movement captor.
All ICARE Device components also enrich the raw data from the
device driver by adding information that includes the working
state of the device, a time-stamp as well as a confidence factor of

the produced data, and a description of the device in terms of
human manipulation (passive/active modalities [5], human actions
involved and physical location of these actions).
An ICARE Device component is then linked to a listener
component, an ICARE Interaction Language component in order
to form a pure modality.

3.2 Interaction Language Components
An ICARE Interaction Language component corresponds to the
logical level of an interaction modality. For example an
Interaction Language component abstracts the data from a mouse
Device component into commands such as the selection of a menu
option. In FACET, each Device component is linked with an
Interaction Language component. Examples include the HOTAS
Commands component which abstracts the data from the HOTAS
Device component into a command and the Pilot’s
Orientation&Location Language component which transforms the
raw data from the Pilot’s Orientation&Location tracker Device
component into a pilot’s position.
These three examples of Interaction Language components
underline the fact that such components need to rely on an
external description of the well formed expressions to be
obtained. Indeed in order to abstract data from the mouse into
commands, a description of the graphical interface is required.
Likewise the HOTAS Interaction Language component maps
commands to specific HOTAS buttons. Finally the Pilot’s
Orientation&Location Language component requires a
description of the two coordinates systems (one for the orientation
and one for the location).
While an ICARE Device component relies on the underlying
physical device that produces its inputs, an ICARE Interaction
Language component relies on the Device components that can
produce its required inputs.
As for Device components, ICARE Interaction Language
components also enrich the data by adding generic information
that include the Bernsen’s language characterization [3]
(linguistic/ analogue/ arbitrary/ dynamic characteristics), a time-
stamp as well as a confidence factor of the produced data.

Figure 2: An example of a pure modality in FACET.

Device and Interaction Language components constitute the
building blocks for defining modalities. As shown in Figure 2,
the Device component “Plane Orientation&Location tracker” is
linked to the Interaction Language component “Plane
Orientation&Location” to form a pure modality. Composition of
devices, languages and modality are also possible thanks to
ICARE Composition components.

3.3 Composition Components
Although each modality can be used independently within a
multimodal system, the availability of several modalities in a
system naturally leads to the issue of their combined usage. The

combined usage of multiple modalities opens a vastly augmented
world of possibilities in multimodal user interface design that we
study in light of the four CARE properties [15]. While
Equivalence and Assignment express the availability and
respective absence of choice between multiple modalities for
performing a given task, Complementarity and Redundancy
describe relationships between devices, languages or more
generally between modalities for performing a given task.
Because the CARE properties have been shown to be useful
concepts for the design and evaluation of multimodal interaction
[15], we decided to reuse those concepts to make them explicit
during the software development. We therefore define three
Composition components in our ICARE conceptual model: the
Complementarity one, the Redundancy one, and the
Redundancy/Equivalence one. Assignment and Equivalence are
not modeled as components in our ICARE model. Indeed, as
shown in Figure 3, an assignment is represented by a single link
between two components. An ICARE component A linked to a
single component B implies that A is assigned to B. As for
Assignment, Equivalence is not modeled as a component. As
shown in Figure 4, when several components (2 to n components)
are linked to the same component, they are equivalent. In our
previous multimodal systems developed using ICARE
components [5], we explicitly used an Equivalence component
that had no functional role (no treatment except defining a new
time-stamp to the data) but constituted an aid while manually
assembling components. Using our platform under construction
that will allow the user to graphically assemble ICARE
components, such Equivalence component has no more utility.
The ICARE conceptual model therefore contains only three
Composition components that we describe in the following
sections.

Figure 3: An ICARE component A assigned to another
component B.

Figure 4: Two ICARE equivalent components (A and B) for a
given component C.
These Composition components describe the fusion mechanism of
data provided by 2 to n ICARE components. As in our generic
fusion mechanism described in [14] as well as the Polymodal
Input Module [8], the criteria for triggering fusion are twofold:
the complementarity/redundancy of data, and time. As future
work, the context and history of interaction needs to be taken into
account. For the management of time, a temporal window Temp-
win is associated with each piece of data handled by a
Composition component. Temp-win defines the temporal
proximity of two pieces of data (+/- ∆t) and is used to trigger
fusion. Two pieces of data d1 and d2 are combined if their time-
stamps, t1 respectively t2, are temporally close:

Close (t1, t2) is satisfied if: t2 ∈ [t1-∆t, t1+∆t]

Plane orientation &
location tracker

Plane orientation &
location

Device component

Interaction language
component

A

C

B

A B

∆t has been tuned experimentally. One can improve the setting of
this parameter by letting the system compute the appropriate
values depending on performance of the platform as well as on
the behavior of the user.
As opposed to our previous fusion mechanism [14], we assume
that the Composition components receive the data in the order of
the user’s actions. We eliminate the problem of undoing
erroneous fusions. Incorrect fusion may occur due to the different
time scales required to process data specified through distinct
languages and devices. As a result, the sequence of received data
by a Composition component is not necessarily identical to that of
the user's actions sequence. In the case of the Rafale cockpit, our
hypothesis is not restrictive since all the modalities including
speech have been developed specifically for the Rafale and
guarantee equivalent time for processing the data. For a more
general approach, a second version of our Composition
components can be developed based on our previous fusion
solution that is able to undo incorrect fusions.

3.3.1 Complementarity Component
The Complementarity component combines complementary data
that are close in time. For example, in FACET, the orientation and
the location of the pilot are combined (in complementary way)
with the orientation and the location of the plane to compute
which target the pilot specifies using with the visor helmet. As
shown in Figure 5, data produced by two modalities are combined
by a Complementary component. The Composition component
relies on a common structure of the manipulated objects that
enables the fusion of the received pieces of data. The structure is
described in a declarative way outside the component. By so
doing, the Composition component is domain independent:
structures that rely on the domain are not “code-wired”. They are
used as parameters for the component. For the case of the
example of Figure 5, the common object is made of two parts, one
for containing the plane Orientation&Location and one for
containing the pilot’s Orientation&Location. We define a
mapping between the structural parts of the object and the input
ports of the component. For each object maintained by the
component, we compute its temporal window Temp-win: Temp-
win=[Tmin-∆t, Tmax+∆t], Tmin being the time-stamp of the
oldest piece of data contained in the object while Tmax the time-
stamp of the newest piece of data. Temporal windows are used to
trigger fusion of objects.
The mechanism of the Complementarity component is driven by a
set of rules:

R1. For a newly received piece of data, the
Complementarity component first creates a new object
that contains the new piece of data at the right place in
the object structure by checking the input port through
which the piece of data was received.

R2. If other incomplete objects exist and can be combined
with the newly created object according to their
contained pieces of data and temporal windows, fusion
is performed while the initial new object is maintained.
The newly received piece of data is therefore duplicated
as many times as necessary.

R3. When only one object is complete, the Complementarity
component propagates it to the following connected
ICARE component. When several objects are complete,

the component propagates the object with the shortest
temporal window (i.e., the object that contains pieces of
data that are the closest in time).

R4. When a complete object is sent to the following ICARE
component, all the contained pieces of data of the object
that are duplicated in the remaining objects are
suppressed. Empty objects are then removed, and Rule
2 can be applied again on the remaining objects.

R5. An incomplete object can be removed from the set of
candidates for fusion when its life span expectancy
expires. The life span of an object equals Tmax+∆t,
Tmax being the time-stamp of the newest piece of data
contained in the object. Removing an incomplete object
does not mean that the corresponding user’s actions are
ignored: The actions are processed in another ICARE
component chain.

Figure 5: An example of complementarity in FACET: the task
consists of identifying the point selected by the pilot using the
helmet visor.
Another parameter of the Complementarity component enables us
to specify a temporal order for filling an object. For example let
us consider the “Put that there” example of R. Bolt [4]. We can
specify that first the command must be received and then a first
click for specifying “that” and finally a second click for
specifying “there”. Such temporal order reduces the flexibility
offered to the user; nevertheless it can correspond to an empirical
result from observed behaviours [18].
Finally our Complementarity component does not explicitly
manage reference resolution. To do so, further work must be
done. We plan to enrich the mechanism of the Complementarity
component with the notion of confidence factor. The notion of
confidence factor provides a simple mechanism for modeling
uncertainty and can be usefully exploited for solving ambiguities
in deictic expressions. Considering the previous example “Put that
there”, a click can either correspond to “that” or “there”. In this
case, the corresponding piece of data will be duplicated in the
object O1 structure and each piece of data will be associated with
a very low confidence factor. If a newly received piece of data
stored in a new object O2 has a higher confidence factor, then the
two objects O1 and O2 can nevertheless be combined although
their contained pieces of data are not complementary since one
piece of data has a very low confidence factor.

3.3.2 Redundancy Component
Redundancy [15] corresponds to the case where two modalities
convey redundant pieces of information that are close in time. In
such a case, one of the two user’s actions must be ignored. For

Pilot’s
orientation &

location tracker

Plane
orientation &

location
tracker

Pilot’s
orientation &

location

Plane
orientation &

location

Complementarity

Device components

Composition
component

Interaction language
components

example in FACET, we could use two redundant modalities,
voice commands and commands specified by pressing HOTAS
buttons for changing the phase (from a navigation phase to a
fighting phase). In such a case shown in Figure 6, the current
phase will be changed only if the pilot issues the speech command
while pressing the right HOTAS button.
The mechanism of the Redundancy component is close to the one
of a Complementarity component except that the values of the
pieces of the data at the same place in the structure of two objects
must be compared to determine a case of redundancy and
therefore triggers a fusion of the two objects. The resulting object
will then contain redundant pieces of data. The five rules of the
Complementary component govern the mechanism of the
Redundancy component, except that a complete object is not
propagated as it is. Indeed the object contains redundant pieces of
data (n redundant pieces of data if n modalities are connected to
the Redundancy component) and only one piece of data is sent to
the following connected ICARE component. The selection is
based on the data confident factors: the piece of data with the
highest confidence factor is sent to the following ICARE
component.

Figure 6: An example of redundancy in FACET: the task
consists of changing the current phase (from a navigation
phase to a fighting phase).
Moreover and as for the Complementarity component, a
parameter of the Redundancy component makes it possible to
specify a temporal order in the usage of the modalities that
convey redundant information.

3.3.3 Redundancy/Equivalence Component
The Redundancy/Equivalence component is a mix of the two
CARE properties: Redundancy and Equivalence. It corresponds to
the Redundancy component where redundancy could be optional.
For example as shown in Figure 7, the pilot can mark a point on
ground, that will then be displayed in the Head-Mounted display,
either by speech or by pressing an HOTAS button or by pressing
the HOTAS button while issuing the voice command in parallel
(redundant case). For all three possible cases, only one point will
be marked.
As explained in Figure 8, such a component is not mandatory in
the ICARE conceptual model. It is introduced for simplifying the
ICARE specification since such flexible usages are quite common
in multimodal user interfaces.
The mechanism of the Redundancy/Equivalence component is
more complex than the Redundancy component since the
corresponding supported interaction is richer. The
Redundancy/Equivalence component includes two different

strategies: the “eager” and the “lazy” strategies. We provide an
efficient mechanism with the “eager” strategy and a safety one
with the “lazy” strategy.
Adopting an “eager” strategy, the component does not wait for
further pieces of data and therefore continuously propagates data
to the following connected ICARE component. Each time a piece
of data is sent to another ICARE component, the component
nevertheless keeps track of the data and starts a timer (∆t) in order
to be able to detect redundant pieces of data that may be received
later. This approach has the advantage of providing the user with
immediate feedback. The drawback is that the piece of data that is
propagated is the first one received by the component and may
not have the highest confident factor. As opposed to the “eager”
strategy, the “lazy” strategy is waiting ∆t before propagating the
piece of data. The advantage of this strategy is to guarantee to
always propagate the piece of data with the highest confidence
factor as done by the Redundancy component.
As for the Complementarity and Redundancy components, a
parameter of the Redundancy/Equivalence component makes it
possible to specify a temporal order in the usage of the modalities
that convey redundant information.

Figure 7: An example of Redundancy/Equivalence in FACET:
the task consists of triggering the action “mark a point on
ground”.

Figure 8: Redundancy/Equivalence of three modalities M1,
M2 and M3.
To conclude, the three types of Composition components
described above are generic as they are modality as well as
domain independent. In addition as many ICARE components as
necessary can be connected to a Composition component. Such
reusable generic codes enable a rapid development of multimodal
interfaces. In addition it is very easy to modify the supported form
of multimodality by changing a Composition component by
another one. For example if after experimental tests with pilots,
we decide that the Redundancy for the task of changing phases is

Microphone

HOTAS

Speech
commands

HOTAS
commands

Redundancy/Equivalence

Device components

Composition
component

Interaction language
components

M1 M2 M3

RE

T

M1 M2 M3

R R R R

T

Mx: Modality
RE: Redundancy/Equivalence component
R: Redundancy component

T: Task

Microphone

HOTAS

Speech
commands

HOTAS
commands

Redundancy

Device components

Composition
component

Interaction language
components

too constraining for the pilot (Figure 6), we can easily change it
by a Redundancy/Equivalence component (Figure 7) that offers
more flexibility for the pilot.
Having presented the ICARE conceptual model made of Device
and Interaction Language components as well as generic
Composition components, we now focus on more technical details
by presenting our ICARE implementation model.

4. An ICARE Implementation Model
4.1 Software Component Technology
Such as the other multimodal systems developed with ICARE [5],
we have chosen the JavaBeans technology [12] to develop ICARE
software components because it is multi-platform, thanks to Java,
and it provides many mechanisms for graphical manipulation that
we are reusing for our ICARE platform. Properties of ICARE
components, such as the interaction location of a Device
component, are class attributes which can be accessed/modified
(get/set).

4.2 Communication between ICARE
Components
A link between two ICARE software components denotes
communication between them. For communication our
implementation of the conceptual ICARE model is based on the
Java event model. Events are messages that one ICARE software
component sends to another one. A software component which
generates and sends an event is called the “source component”.
Generated events transport the data to be processed, the
identification of the source component, the time-stamp of its
creation and its confidence factor. Each ICARE software
component implements a FIFO (First In First Out) queue of
events. A thread is created for processing data of the first event in
the queue and to generate a new event. Events are managed in an
asynchronous way and thus the source software component is not
blocked by the processing of other software components. To
assemble two ICARE components, it is necessary that one
component subscribes to events generated by the other
component.

4.3 Communication between ICARE
Components and the Other Parts of the
System
To fully understand the scope of our ICARE framework we show
in Figure 9 where ICARE software components are situated along
the ARCH software architectural model [2].

Figure 9: (a) The ARCH software architectural model.
(b) ICARE components within an ARCH software
architecture.

As shown in Figure 9, an ICARE component chain defines a pipe-
line from user’s actions to commands or elementary tasks
understandable by the Dialog Controller. So the last ICARE
component of a chain must communicate the elementary task to
the Dialog Controller. Such link can be performed by direct call
of methods or by using TCP/IP, UDP, JavaRMI and so on. In the
following section, we explain how we developed the multimodal
interaction using ICARE for three interactive tasks of FACET,
highlighting how we implemented the link between an ICARE
component and the FACET Dialog Controller.

5. FACET ICARE COMPONENTS
We present the ICARE implemented software component
assembly for three tasks of FACET. The first task (T1 in Figures
10 and 11) is to determine the orientation and the location of the
plane, information useful for the FACET Functional Core. The
second task (T2) consists of marking a point on ground while the
third one (T3) corresponds to unmarking a point.

Figure 10: ICARE implemented component assembly for
three tasks of FACET: T1=Orientation&Location of the
plane, T2=Marking a point on ground and T3=Unmarking a
point.
Figure 10 shows the assembly of components for the three tasks.
Four modalities are implemented:

- M1= <Plane Orientation&Location tracker, Plane
Orientation&Location>

- M2 = <Pilot’s Orientation&Location tracker, Pilot’s
Orientation&Location>

- M3= < HOTAS, HOTAS Commands>
- M4 = <Microphone, Speech Commands>

M1 and M2 are used in a complementary way for detecting the
target selected by the pilot using the helmet visor:
Complementarity-1 component. In addition M1 is assigned to the
task T1.
For performing a marking command, the pilot has the choice
between two modalities, M3 and M4 that are functionally
equivalent but can also be used in a redundant way thanks to the
Redundancy/Equivalence component. As a consequence if the
pilot is pressing the HOTAS button while speaking, one point will
be marked and if the pilot presses the HOTAS button and later

Dialog
Controller

Functional Core

Functional Core
Adapter

Presentation

Interaction

ICARE
Components

Dialog
Controller

Functional Core

Functional Core
Adapter

(a) (b)

Pilot’s
orientation &

location tracker

HOTAS

Complementarity-2

T2

Plane
orientation &

location
tracker

Pilot’s
orientation &

location

Plane
orientation &

location

Complementarity-1 Redundancy/Equivalence

Speech
Commands

HOTAS
Commands

Microphone

T1 T3

issues the voice command <Mark>, two commands will be
transferred to the Dialog Controller. Nevertheless two points will
not be marked because only one point can be marked at any time.
So the first marked point will be suppressed before displaying the
new marked point that corresponds to where the pilot was looking
at, while issuing the voice command. Due to the real-time
constraint on the system, we used an eager strategy for the
Redundancy/Equivalence component. Finally in order to obtain a
complete marking command, the command <Mark> must be
combined (Complementarity-2 component) with the target point
defined by the pilot using the helmet visor.
For unmarking a point, the pilot needs to specify the command
<Unmark> using M3 or M4 or (M3 and M4) used in a redundant
way.
As 2 to n ICARE components can be linked to the
Complementarity component, another possible assembly for the
same FACET tasks is presented in Figure 11. Within this new
assembly, we combine the two Complementarity components and
we obtain one single Complementarity component with three
connected ICARE components.

Figure 11: Another possible ICARE component assembly for
three tasks of FACET: T1=Orientation&Location of the
plane, T2=Marking a point on ground and T3=Unmarking a
point.
For developing FACET, our ICARE approach enables us to reuse
existing modalities such as speech (developed by THALES-
Avionics) and will facilitate code modifications and evolution.
For example allowing a new modality for marking a point will
easily be managed by adding a new component connected to the
Redundancy/Equivalence component. In addition forcing the
redundant usage of voice commands and commands specified by
pressing HOTAS buttons for marking a point can be achieved by
solely changing the Redundancy/Equivalence component by the
Redundancy component.
The whole architecture of FACET is along the ARCH model.
Communication from the two ICARE components
Complementarity-2 and Plane Orientation&Location has been
implemented using Java RMI. We envision using TCP/IP for the
tasks T2 and T3 and UDP for the task T1. UDP will provide a
more efficient communication adapted for frequently sending the
orientation and location of the plane, while TCP/IP a more safety
communication for the commands issued by the pilot.

This first version of the FACET simulator allows us to validate
the ICARE approach for a real-time system. We measured the
processing time of each implemented ICARE component in
FACET with the following frequencies:

- 100 Hz for the plane Orientation&Location tracker
- 60 Hz for the pilot’s Orientation&Location tracker
- 0.66 Hz for the commands with HOTAS buttons (2

times over 3 were the marking command and 1 time
over 3 was the unmarking command)

- 0.125 Hz for the commands using speech input modality
(2 times over 3 were the marking command and 1 time
over 3 was the unmarking command).

For 10000 performed tests we obtained the following results for
each modality:

- M1, Plane Orientation&Location modality: 0.18 ms
- M2, Pilot’s Orientation&Location modality: 0.17 ms
- M3, HOTAS commands: 0.16ms
- M4, Speech commands: 0.26 ms

For 300 performed tests, our evaluation of performance of the
implemented Complementarity and Redundancy/Equivalence
components was satisfactory with regards to the real-time
constraints on FACET. For the Redundancy/Equivalence
component we fixed ∆t equal to 100 ms while for the
Complementarity component of Figures 10 and 11, we fixed ∆t
equal to 10 ms.

6. CONCLUSION & FUTURE WORK
On the one hand, our ICARE conceptual model has been
validated by manually assembling the components for the
development of several multimodal systems. ICARE is based on a
component-based approach and therefore offers the well-known
advantages of component-based development, that are to reduce
the production costs, and to verify the software engineering
properties of reusability, maintainability and evolution [1]. With
the real-time FACET system presented in this paper, we also
validate ICARE for a real-time system.
On the other hand, we are aware that input and output interaction
modalities are strongly linked. For example the usage of a
particular input modality may have an impact onto the choice of
the output modalities. In a near future, we will apply our ICARE
approach for output multimodal interaction and study the links
between the input and output ICARE components. Moreover the
context may have an impact onto the modalities. For now on in
FACET, the context is an external module that can for example
stop a modality. For instance speech input cannot be used in a
very noisy environment. A more complex approach than the basic
on/off one would be to modify the confidence factors attached to
the data.
As on-going work, we are finishing the development of our
graphical ICARE platform that enables the designer to graphically
manipulate and assemble ICARE software components in order to
specify the multimodal interaction dedicated to a given task of the
interactive system under development. From this specification
(ICARE schema), the code of the multimodal interaction is
automatically generated. The user of the ICARE platform selects
the modalities (Device and Language components) and specifies

Pilot’s
orientation &

location tracker

HOTAS

Complementarity

T2

Plane
orientation &

location
tracker

Pilot’s
orientation &

location

Redundancy/Equivalence

Speech
Commands

HOTAS
Commands

Microphone

T1 T3

Plane
orientation &

location

the combination of modalities by selecting a Composition
component, all by graphically assembling software components
without knowing the details of the code of the components. Figure
12 presents a sketch of the user interface of the ICARE platform:
it contains a palette of components (area A on Figure 12), an
editing zone for assembling the selected components (area B on
Figure 12) and a customization panel (area C on Figure 12) for
setting the parameters of the components. We plan to
automatically check ergonomic properties while the designer is
specifying the multimodal interaction. For example action
continuity [7] can be automatically checked based on ICARE
Device component properties and the global consistency in the
usage of modalities can also be checked. A panel (area D on
Figure 12) shows the alert messages related to ergonomic
properties while the designer is specifying the multimodal
interaction.

Figure 12: Sketch of the graphical ICARE platform.

For the ICARE platform, we identify two types of target users.
- First the developer is responsible for enriching the set of
components by adding new Device and Language components.
The developer could also decide to provide encapsulated
components, for example a complete modality component (that
includes a Device and a Language components). For adding an
already developed modality to the platform, the developer simply
needs to encapsulate the corresponding code into an ICARE
component. It is our approach in the FACET system since all the
modalities have been developed by THALES specifically for
military plane cockpits.
- Second the designer is defining multimodal interfaces by
directly manipulating components using the mouse. It does not
need to understand the details of the component code. As opposed
to existing JavaBeans editors including BeanBuilder, Jbuilder and
ViusalAge, our ICARE platform makes explicit the notions of
device as well as language and the CARE properties whose
adequacy for studying the usability has been demonstrated [15].
At the completion of the ICARE platform, an experimental
evaluation involving designers must be carried out.

7. ACKNOWLEDGMENTS
Many thanks to G. Serghiou for reviewing the paper. This work is
partly funded by DGA (French Army Research Dept.) under
contract #00.70.624.00.470.75.96 and by the SIMILAR European
FP6 network of excellence dedicated to multimodality
(http://www.similar.cc).

8. REFERENCES
[1] Bass, L. et al. market Assessment of Component-Based

Software Engineering. SEI Technical Report (2000).
[2] Bass, L. et al. A Metamodel for Runtime Architecture of an

Interactive System. The UIMS Workshop Tool Developers,
SIGCHI Bulletin, 24 (1) (1992), 32-37.

[3] Bernsen, N. Modality Theory in support of multimodal
interface design. Proceedings of Intelligent Multi-Media
Multi-Modal Systems (1994), 37-44.

[4] Bolt, R. A. “Put-that-there”: Voice and gesture at the
graphics interface. Proceedings of SIGGRAPH’80, 14, 3
(1980), 262–270.

[5] Bouchet, J., Nigay, L. ICARE: A Component-Based
Approach for the Design and Development of Multimodal
Interfaces, Extended Abstracts CHI’04 (2004), 1325-1328

[6] Dragevic, P., Fekete, J.-D. ICON: Input Device Selection
and Interaction Configuration, Demonstration, UIST 2002
Companion (2002), 47-48.

[7] Dubois, E., Nigay, L., Troccaz, J. Assessing Continuity and
Compatibility in Augmented Reality Systems. UAIS Journal,
4 (2002), 263-273.

[8] Elting, C. et al. Architecture and implementation of
multimodal plug and play. Proceedings of ICMI’03 (2003),
93-100.

[9] Flippo, F., Krebs, A., Marsic, I. A Framework for Rapid
Development of Multimodal Interfaces. Proceedings of
ICMI’03 (2003), 109-116.

[10] Glass et al. A Framework for Developing Conversational
User Interfaces, Proceedings of CADUI’2004 (2004), 354-
365.

[11] Ishii, H., Ullmer, B. Tangible Bits: Towards Seamless
Interfaces between People, Bits and Atoms. Proceedings of
CHI'97 (1997), 234-241.

[12] JavaBeans 1.01 specification, Sun Microsystems (1997),
http://java.sun.com/products/javabeans/docs/

[13] Krahnstoever et al. A real-time framework for natural
multimodal interaction with large screen displays.
Proceedings of ICMI’02 (2002).

[14] Nigay, L., Coutaz, J. A Generic Platform for Addressing the
Multimodal Challenge. Proceedings of CHI’95 (1995), 98-
105.

[15] Nigay, L., Coutaz, J. The CARE Properties and Their Impact
on Software Design. Intelligence and Multimodality in
Multimedia Interfaces, (1997).

[16] Oviatt, S. et al. Designing the user interface for multimodal
speech and gesture applications: State-of-the-art systems and
research directions. HCI, 15, 4 (2000), 263-322.

[17] Oviatt, S. Taming recognition errors with a multimodal
interface. Communications of the ACM, 43, 9 (2000), 45-51.

[18] Oviatt, S. Ten Myths of Multimodal Interaction.
Communications of ACM, 42, 11 (1999), 74-81.

[19] Westeyn, T. et al. Georgia Tech Gesture Toolkit: Supporting
Experiments in Gesture Recognition. Proceedings of
ICMI’03 (2003), 85–92.

1

B

A

C D

