
ICARE Software Components for Rapidly Developing 
Multimodal Interfaces  

Jullien Bouchet 
CLIPS-IMAG 

38000, Grenoble, France 

Jullien.Bouchet@imag.fr 

Laurence Nigay 
CLIPS-IMAG 

38000, Grenoble, France 

Laurence.Nigay@imag.fr 

Thierry Ganille 
THALES-Avionics  

33187 Le Haillan, France 

Thierry.Ganille@thales-
avionics.com 

 
ABSTRACT 
Although several real multimodal systems have been built, their 
development still remains a difficult task. In this paper we address 
this problem of development of multimodal interfaces by 
describing a component-based approach, called ICARE, for 
rapidly developing multimodal interfaces. ICARE stands for 
Interaction-CARE (Complementarity Assignment Redundancy 
Equivalence). Our component-based approach relies on two types 
of software components. Firstly ICARE elementary components 
include Device components and Interaction Language 
components that enable us to develop pure modalities. The second 
type of components, called Composition components, define 
combined usages of modalities. Reusing and assembling ICARE 
components enable rapid development of multimodal interfaces. 
We have developed several multimodal systems using ICARE and 
we illustrate the discussion using one of them: the FACET 
simulator of the Rafale French military plane cockpit. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User Interfaces-
Input devices and strategies, Interaction styles, Prototyping; 
D.2.2 [Software Engineering]: Design Tools and Techniques – 
User Interfaces. 

General Terms 
Algorithms; Human Factors. 
Keywords 
Multimodal Interactive Systems; Software Components. 
1. INTRODUCTION 
The area of multimodal interaction has expanded rapidly and 
since the seminal “Put that there” demonstrator [4] that combines 
speech and gesture: significant achievements have been made in 
terms of both modalities and real multimodal systems. Indeed, in 
addition to more and more robust and innovative modalities such 
as the phicons [11], conceptual and empirical work on the usage 
of multiple modalities is now available for guiding the design of 
efficient and usable multimodal interfaces. As a result, real 
multimodal systems are now being built in various application 
domains including medicine [16] and education. 

The flexibility and robustness of multimodal systems give results 
of an increased complexity that current software development 
tools do not address appropriately. Although several multimodal 
systems have been built, their development still remains a 
difficult task. The existing frameworks dedicated to multimodal 
interaction are currently few and limited in scope. Either they 
address a specific technical problem including the fusion 
mechanism [9] [14], the composition of several devices [6] and 
mutual disambiguation [17][9], or they are dedicated to specific 
modalities such as gesture recognition [19], speech recognition 
[10] or the combined usage of speech and gesture [13]. 

In this paper we address this problem of software development of 
multimodal interfaces by describing a component-based approach, 
called ICARE (Interaction CARE -Complementarity Assignment, 
Redundancy and Equivalence-), which allows the easy and rapid 
development of multimodal interfaces. ICARE framework is 
based on a conceptual component model that describes the 
manipulated software components and we are currently 
developing a tool, a graphical platform for specifying a 
multimodal interface by direct manipulation. From this 
specification (ICARE schema), the code of the multimodal 
interaction is automatically generated. While the ICARE 
framework provides the services of a multimodal toolkit, the 
ICARE platform must be compared to a UIMS built on top of the 
toolkit.  

Our discussion will concentrate on input (i.e., from the user to the 
system) although our model holds for output as well. Nevertheless 
we did not test our approach for output so far. For input we have 
developed several multimodal interfaces using our ICARE 
framework [5]: a Multimodal IDentification system (MID) and a 
mobile system MEMO. MEMO allows users to annotate physical 
locations with digital notes which have a physical location and are 
then read/removed by other mobile users: two versions are 
currently running, one using a PDA and another one using a 
Head-Mounted Display. In this paper we present as an example a 
larger system, FACET, a simulator of Rafale (a French military 
plane). 

The structure of the paper is as follows: first, we present our 
conceptual model that includes elementary and modality 
dependent components as well as generic components (reusable 
components) for combining modalities (fusion mechanism). 
Going one step further in the implementation process, we describe 
how the ICARE components are implemented in our framework. 
We conclude with an example that illustrates how the ICARE 
components function together. As mentioned above, this example 
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is based on FACET, a simulator of a French military plane whose 
main features are presented in the next section. 

2. ILLUSTRATIVE EXAMPLE: A 
MILITARY PLANE SIMULATOR 
The FACET system, presented in Figure 1, is a real-time complete 
flight simulator of the Rafale, a French military plane, for 
studying future interaction techniques that will be embodied in the 
Rafale cockpit. Examples of tasks include:  

• Pilot the plane. The pilot must follow a predefined 
trajectory while adapting it according to various 
parameters including meteorological/geographical 
conditions as well as plane characteristics. 

• Navigate. The pilot must create or modify the flight plan 
for example by calculating new check points. 

• Manage the plane. The pilot must constantly check 
hydraulic and electric systems. 

• Manage the armory system. The pilot must be able to 
change armory depending on the mission.  

• Manage the mission. For example the pilot must be able 
to protect herself/himself against attacks. 

• Communicate with air traffic controllers and with other 
pilots of the patrol. 

 
Figure 1: The multimodal cockpit of Rafale (a French military 
plane): FACET a flight simulator. 
For performing such tasks, several input modalities are included 
in FACET, making FACET a good candidate for studying rich 
multimodal interaction in various contexts. The interface includes 
the following input modalities: 

• The HOTAS (Hands On Throttle And Stick) are made 
of two command joysticks (one for each hand) to pilot 
the plane and to issue commands such as marking a 
point on the ground.  

• The helmet visor which allows the pilot to select a target 
in the real world that depends on the orientation and 
location of both the pilot and the plane. 

• Speech inputs for issuing commands such as marking a 
point on the ground.  

• A tactile surface in between the legs of the pilot for 
specifying commands by direct manipulation. 

As a unique feature and in addition to the multiple input 
modalities managed by FACET, several interaction contexts are 
clearly identified. Thus, the pilot can select modalities and forms 
of multimodality according to the phases of the military mission, 
the level of stress, the physical parameters (for example when the 
pilot is exposed to strong accelerations) and so on. As a 
conclusion FACET defines a very rich case study for 
multimodality. In this paper we will illustrate our ICARE 
framework by considering three tasks in FACET. 

3. ICARE CONCEPTUAL MODEL 
The ICARE conceptual model includes:  

1. Elementary components: Such components are building 
blocks useful for defining a modality. Two types of 
ICARE elementary components are defined: Device 
components and Interaction Language components. We 
reuse our definition of a modality [14] as the coupling 
of a physical device d with an interaction language L: 
<d, L>. In [15], we demonstrate the adequacy of the 
notions of physical device and interaction language for 
classifying and deriving usability properties for 
multimodal interaction while in [14][15] we adopt a 
complementary perspective and examine the relevance 
of these notions for software design. 

2. Composition components: Such components describe 
combined usages of modalities and therefore enable us 
to define new composed modalities. The ICARE 
composition components are defined based on the four 
CARE properties [15]: the Complementarity, 
Assignment, Redundancy, and Equivalence that may 
occur between the modalities available in a multimodal 
user interface. As opposed to ICARE elementary 
components, Composition components are generic in 
the sense that they are not dependent on a particular 
modality. 

In the following sections, we first describe the two types of 
ICARE elementary components (i.e., Device and Interaction 
Language components). We then focus on relationships between 
modalities by describing the ICARE composition components. 

3.1 Device Components 
An ICARE Device component represents a supplementary layer 
of the physical device driver. For example, the mouse Device 
component abstracts the data provided by the mouse driver such 
as button pressed/released and movement. Likewise a microphone 
Device component abstracts the captured signal into a recognized 
utterance while another microphone Device component abstracts 
the captured signal into a level of noise. In FACET, as shown in 
Figure 10, examples include an HOTAS Device component and a 
Pilot’s Orientation&Location tracker Device component. Indeed 
for capturing the pilot’s orientation and location, we define only 
one Device component as we would do for a mouse with two 
buttons and a movement captor. 
All ICARE Device components also enrich the raw data from the 
device driver by adding information that includes the working 
state of the device, a time-stamp as well as a confidence factor of 



the produced data, and a description of the device in terms of 
human manipulation (passive/active modalities [5], human actions 
involved and physical location of these actions). 
An ICARE Device component is then linked to a listener 
component, an ICARE Interaction Language component in order 
to form a pure modality. 

3.2 Interaction Language Components 
An ICARE Interaction Language component corresponds to the 
logical level of an interaction modality. For example an 
Interaction Language component abstracts the data from a mouse 
Device component into commands such as the selection of a menu 
option. In FACET, each Device component is linked with an 
Interaction Language component. Examples include the HOTAS 
Commands component which abstracts the data from the HOTAS 
Device component into a command and the Pilot’s 
Orientation&Location Language component which transforms the 
raw data from the Pilot’s Orientation&Location tracker Device 
component into a pilot’s position.  
These three examples of Interaction Language components 
underline the fact that such components need to rely on an 
external description of the well formed expressions to be 
obtained. Indeed in order to abstract data from the mouse into 
commands, a description of the graphical interface is required. 
Likewise the HOTAS Interaction Language component maps 
commands to specific HOTAS buttons. Finally the Pilot’s 
Orientation&Location Language component requires a 
description of the two coordinates systems (one for the orientation 
and one for the location).  
While an ICARE Device component relies on the underlying 
physical device that produces its inputs, an ICARE Interaction 
Language component relies on the Device components that can 
produce its required inputs. 
As for Device components, ICARE Interaction Language 
components also enrich the data by adding generic information 
that include the Bernsen’s language characterization [3] 
(linguistic/ analogue/ arbitrary/ dynamic characteristics), a time-
stamp as well as a confidence factor of the produced data. 

 
Figure 2: An example of a pure modality in FACET. 

Device and Interaction Language components constitute the 
building blocks for defining modalities. As shown in Figure 2, 
the Device component “Plane Orientation&Location tracker” is 
linked to the Interaction Language component “Plane 
Orientation&Location” to form a pure modality. Composition of 
devices, languages and modality are also possible thanks to 
ICARE Composition components. 

3.3 Composition Components 
Although each modality can be used independently within a 
multimodal system, the availability of several modalities in a 
system naturally leads to the issue of their combined usage. The 

combined usage of multiple modalities opens a vastly augmented 
world of possibilities in multimodal user interface design that we 
study in light of the four CARE properties [15]. While 
Equivalence and Assignment express the availability and 
respective absence of choice between multiple modalities for 
performing a given task, Complementarity and Redundancy 
describe relationships between devices, languages or more 
generally between modalities for performing a given task.  
Because the CARE properties have been shown to be useful 
concepts for the design and evaluation of multimodal interaction 
[15], we decided to reuse those concepts to make them explicit 
during the software development. We therefore define three 
Composition components in our ICARE conceptual model: the 
Complementarity one, the Redundancy one, and the 
Redundancy/Equivalence one. Assignment and Equivalence are 
not modeled as components in our ICARE model. Indeed, as 
shown in Figure 3, an assignment is represented by a single link 
between two components. An ICARE component A linked to a 
single component B implies that A is assigned to B. As for 
Assignment, Equivalence is not modeled as a component. As 
shown in Figure 4, when several components (2 to n components) 
are linked to the same component, they are equivalent. In our 
previous multimodal systems developed using ICARE 
components [5], we explicitly used an Equivalence component 
that had no functional role (no treatment except defining a new 
time-stamp to the data) but constituted an aid while manually 
assembling components. Using our platform under construction 
that will allow the user to graphically assemble ICARE 
components, such Equivalence component has no more utility. 
The ICARE conceptual model therefore contains only three 
Composition components that we describe in the following 
sections.  

 
Figure 3: An ICARE component A assigned to another 
component B. 

 
Figure 4: Two ICARE equivalent components (A and B) for a 
given component C. 
These Composition components describe the fusion mechanism of 
data provided by 2 to n ICARE components. As in our generic 
fusion mechanism described in [14] as well as the Polymodal 
Input Module [8], the criteria for triggering fusion are twofold: 
the complementarity/redundancy of data, and time. As future 
work, the context and history of interaction needs to be taken into 
account. For the management of time, a temporal window Temp-
win is associated with each piece of data handled by a 
Composition component. Temp-win defines the temporal 
proximity of two pieces of data (+/- ∆t) and is used to trigger 
fusion. Two pieces of data d1 and d2 are combined if their time-
stamps, t1 respectively t2, are temporally close: 

Close (t1, t2) is satisfied if: t2 ∈ [t1-∆t, t1+∆t] 

Plane orientation & 
location tracker 

Plane orientation & 
location 

Device component 

Interaction language 
component 
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∆t has been tuned experimentally. One can improve the setting of 
this parameter by letting the system compute the appropriate 
values depending on performance of the platform as well as on 
the behavior of the user. 
As opposed to our previous fusion mechanism [14], we assume 
that the Composition components receive the data in the order of 
the user’s actions. We eliminate the problem of undoing 
erroneous fusions. Incorrect fusion may occur due to the different 
time scales required to process data specified through distinct 
languages and devices. As a result, the sequence of received data 
by a Composition component is not necessarily identical to that of 
the user's actions sequence. In the case of the Rafale cockpit, our 
hypothesis is not restrictive since all the modalities including 
speech have been developed specifically for the Rafale and 
guarantee equivalent time for processing the data. For a more 
general approach, a second version of our Composition 
components can be developed based on our previous fusion 
solution that is able to undo incorrect fusions.  

3.3.1 Complementarity Component 
The Complementarity component combines complementary data 
that are close in time. For example, in FACET, the orientation and 
the location of the pilot are combined (in complementary way) 
with the orientation and the location of the plane to compute 
which target the pilot specifies using with the visor helmet. As 
shown in Figure 5, data produced by two modalities are combined 
by a Complementary component. The Composition component 
relies on a common structure of the manipulated objects that 
enables the fusion of the received pieces of data. The structure is 
described in a declarative way outside the component. By so 
doing, the Composition component is domain independent: 
structures that rely on the domain are not “code-wired”. They are 
used as parameters for the component. For the case of the 
example of Figure 5, the common object is made of two parts, one 
for containing the plane Orientation&Location and one for 
containing the pilot’s Orientation&Location. We define a 
mapping between the structural parts of the object and the input 
ports of the component. For each object maintained by the 
component, we compute its temporal window Temp-win: Temp-
win=[Tmin-∆t, Tmax+∆t], Tmin being the time-stamp of the 
oldest piece of data contained in the object while Tmax the time-
stamp of the newest piece of data. Temporal windows are used to 
trigger fusion of objects. 
The mechanism of the Complementarity component is driven by a 
set of rules: 

R1. For a newly received piece of data, the 
Complementarity component first creates a new object 
that contains the new piece of data at the right place in 
the object structure by checking the input port through 
which the piece of data was received. 

R2. If other incomplete objects exist and can be combined 
with the newly created object according to their 
contained pieces of data and temporal windows, fusion 
is performed while the initial new object is maintained. 
The newly received piece of data is therefore duplicated 
as many times as necessary.  

R3. When only one object is complete, the Complementarity 
component propagates it to the following connected 
ICARE component. When several objects are complete, 

the component propagates the object with the shortest 
temporal window (i.e., the object that contains pieces of 
data that are the closest in time). 

R4. When a complete object is sent to the following ICARE 
component, all the contained pieces of data of the object 
that are duplicated in the remaining objects are 
suppressed. Empty objects are then removed, and Rule 
2 can be applied again on the remaining objects.  

R5. An incomplete object can be removed from the set of 
candidates for fusion when its life span expectancy 
expires. The life span of an object equals Tmax+∆t, 
Tmax being the time-stamp of the newest piece of data 
contained in the object. Removing an incomplete object 
does not mean that the corresponding user’s actions are 
ignored: The actions are processed in another ICARE 
component chain.  

 
Figure 5: An example of complementarity in FACET: the task 
consists of identifying the point selected by the pilot using the 
helmet visor. 
Another parameter of the Complementarity component enables us 
to specify a temporal order for filling an object. For example let 
us consider the “Put that there” example of R. Bolt [4]. We can 
specify that first the command must be received and then a first 
click for specifying “that” and finally a second click for 
specifying “there”. Such temporal order reduces the flexibility 
offered to the user; nevertheless it can correspond to an empirical 
result from observed behaviours [18]. 
Finally our Complementarity component does not explicitly 
manage reference resolution. To do so, further work must be 
done. We plan to enrich the mechanism of the Complementarity 
component with the notion of confidence factor. The notion of 
confidence factor provides a simple mechanism for modeling 
uncertainty and can be usefully exploited for solving ambiguities 
in deictic expressions. Considering the previous example “Put that 
there”, a click can either correspond to “that” or “there”. In this 
case, the corresponding piece of data will be duplicated in the 
object O1 structure and each piece of data will be associated with 
a very low confidence factor. If a newly received piece of data 
stored in a new object O2 has a higher confidence factor, then the 
two objects O1 and O2 can nevertheless be combined although 
their contained pieces of data are not complementary since one 
piece of data  has a very low confidence factor.  

3.3.2 Redundancy Component 
Redundancy [15] corresponds to the case where two modalities 
convey redundant pieces of information that are close in time. In 
such a case, one of the two user’s actions must be ignored. For 
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example in FACET, we could use two redundant modalities, 
voice commands and commands specified by pressing HOTAS 
buttons for changing the phase (from a navigation phase to a 
fighting phase). In such a case shown in Figure 6, the current 
phase will be changed only if the pilot issues the speech command 
while pressing the right HOTAS button.  
The mechanism of the Redundancy component is close to the one 
of a Complementarity component except that the values of the 
pieces of the data at the same place in the structure of two objects 
must be compared to determine a case of redundancy and 
therefore triggers a fusion of the two objects. The resulting object 
will then contain redundant pieces of data. The five rules of the 
Complementary component govern the mechanism of the 
Redundancy component, except that a complete object is not 
propagated as it is. Indeed the object contains redundant pieces of 
data (n redundant pieces of data if n modalities are connected to 
the Redundancy component) and only one piece of data is sent to 
the following connected ICARE component. The selection is 
based on the data confident factors: the piece of data with the 
highest confidence factor is sent to the following ICARE 
component. 

 
Figure 6: An example of redundancy in FACET: the task 
consists of changing the current phase (from a navigation 
phase to a fighting phase).  
Moreover and as for the Complementarity component, a 
parameter of the Redundancy component makes it possible to 
specify a temporal order in the usage of the modalities that 
convey redundant information.  

3.3.3 Redundancy/Equivalence Component 
The Redundancy/Equivalence component is a mix of the two 
CARE properties: Redundancy and Equivalence. It corresponds to 
the Redundancy component where redundancy could be optional. 
For example as shown in Figure 7, the pilot can mark a point on 
ground, that will then be displayed in the Head-Mounted display, 
either by speech or by pressing an HOTAS button or by pressing 
the HOTAS button while issuing the voice command in parallel 
(redundant case). For all three possible cases, only one point will 
be marked. 
As explained in Figure 8, such a component is not mandatory in 
the ICARE conceptual model. It is introduced for simplifying the 
ICARE specification since such flexible usages are quite common 
in multimodal user interfaces.  
The mechanism of the Redundancy/Equivalence component is 
more complex than the Redundancy component since the 
corresponding supported interaction is richer. The 
Redundancy/Equivalence component includes two different 

strategies: the “eager” and the “lazy” strategies. We provide an 
efficient mechanism with the “eager” strategy and a safety one 
with the “lazy” strategy.  
Adopting an “eager” strategy, the component does not wait for 
further pieces of data and therefore continuously propagates data 
to the following connected ICARE component. Each time a piece 
of data is sent to another ICARE component, the component 
nevertheless keeps track of the data and starts a timer (∆t) in order 
to be able to detect redundant pieces of data that may be received 
later. This approach has the advantage of providing the user with 
immediate feedback. The drawback is that the piece of data that is 
propagated is the first one received by the component and may 
not have the highest confident factor. As opposed to the “eager” 
strategy, the “lazy” strategy is waiting ∆t before propagating the 
piece of data. The advantage of this strategy is to guarantee to 
always propagate the piece of data with the highest confidence 
factor as done by the Redundancy component. 
As for the Complementarity and Redundancy components, a 
parameter of the Redundancy/Equivalence component makes it 
possible to specify a temporal order in the usage of the modalities 
that convey redundant information.  

 
Figure 7: An example of Redundancy/Equivalence in FACET: 
the task consists of triggering the action “mark a point on 
ground”. 

 
Figure 8: Redundancy/Equivalence of three modalities M1, 
M2 and M3. 
To conclude, the three types of Composition components 
described above are generic as they are modality as well as 
domain independent. In addition as many ICARE components as 
necessary can be connected to a Composition component. Such 
reusable generic codes enable a rapid development of multimodal 
interfaces. In addition it is very easy to modify the supported form 
of multimodality by changing a Composition component by 
another one. For example if after experimental tests with pilots, 
we decide that the Redundancy for the task of changing phases is 
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too constraining for the pilot (Figure 6), we can easily change it 
by a Redundancy/Equivalence component (Figure 7) that offers 
more flexibility for the pilot. 
Having presented the ICARE conceptual model made of Device 
and Interaction Language components as well as generic 
Composition components, we now focus on more technical details 
by presenting our ICARE implementation model. 

4. An ICARE Implementation Model 
4.1 Software Component Technology 
Such as the other multimodal systems developed with ICARE [5], 
we have chosen the JavaBeans technology [12] to develop ICARE 
software components because it is multi-platform, thanks to Java, 
and it provides many mechanisms for graphical manipulation that 
we are reusing for our ICARE platform. Properties of ICARE 
components, such as the interaction location of a Device 
component, are class attributes which can be accessed/modified 
(get/set).  

4.2 Communication between ICARE 
Components 
A link between two ICARE software components denotes 
communication between them. For communication our 
implementation of the conceptual ICARE model is based on the 
Java event model. Events are messages that one ICARE software 
component sends to another one. A software component which 
generates and sends an event is called the “source component”. 
Generated events transport the data to be processed, the 
identification of the source component, the time-stamp of its 
creation and its confidence factor. Each ICARE software 
component implements a FIFO (First In First Out) queue of 
events. A thread is created for processing data of the first event in 
the queue and to generate a new event. Events are managed in an 
asynchronous way and thus the source software component is not 
blocked by the processing of other software components. To 
assemble two ICARE components, it is necessary that one 
component subscribes to events generated by the other 
component. 

4.3 Communication between ICARE 
Components and the Other Parts of the 
System 
To fully understand the scope of our ICARE framework we show 
in Figure 9 where ICARE software components are situated along 
the ARCH software architectural model [2]. 

 
Figure 9: (a) The ARCH software architectural model.  
(b) ICARE components within an ARCH software 
architecture. 

As shown in Figure 9, an ICARE component chain defines a pipe-
line from user’s actions to commands or elementary tasks 
understandable by the Dialog Controller. So the last ICARE 
component of a chain must communicate the elementary task to 
the Dialog Controller. Such link can be performed by direct call 
of methods or by using TCP/IP, UDP, JavaRMI and so on. In the 
following section, we explain how we developed the multimodal 
interaction using ICARE for three interactive tasks of FACET, 
highlighting how we implemented the link between an ICARE 
component and the FACET Dialog Controller. 

5. FACET ICARE COMPONENTS 
We present the ICARE implemented software component 
assembly for three tasks of FACET. The first task (T1 in Figures 
10 and 11) is to determine the orientation and the location of the 
plane, information useful for the FACET Functional Core. The 
second task (T2) consists of marking a point on ground while the 
third one (T3) corresponds to unmarking a point. 

 
Figure 10: ICARE implemented component assembly for 
three tasks of FACET: T1=Orientation&Location of the 
plane, T2=Marking a point on ground and T3=Unmarking a 
point. 
Figure 10 shows the assembly of components for the three tasks. 
Four modalities are implemented: 

- M1= <Plane Orientation&Location tracker, Plane 
Orientation&Location> 

- M2 = <Pilot’s Orientation&Location tracker, Pilot’s 
Orientation&Location> 

- M3= < HOTAS, HOTAS Commands> 
- M4 = <Microphone, Speech Commands> 

M1 and M2 are used in a complementary way for detecting the 
target selected by the pilot using the helmet visor: 
Complementarity-1 component. In addition M1 is assigned to the 
task T1.  
For performing a marking command, the pilot has the choice 
between two modalities, M3 and M4 that are functionally 
equivalent but can also be used in a redundant way thanks to the 
Redundancy/Equivalence component. As a consequence if the 
pilot is pressing the HOTAS button while speaking, one point will 
be marked and if the pilot presses the HOTAS button and later 
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issues the voice command <Mark>, two commands will be 
transferred to the Dialog Controller. Nevertheless two points will 
not be marked because only one point can be marked at any time. 
So the first marked point will be suppressed before displaying the 
new marked point that corresponds to where the pilot was looking 
at, while issuing the voice command. Due to the real-time 
constraint on the system, we used an eager strategy for the 
Redundancy/Equivalence component. Finally in order to obtain a 
complete marking command, the command <Mark> must be 
combined (Complementarity-2 component) with the target point 
defined by the pilot using the helmet visor.  
For unmarking a point, the pilot needs to specify the command 
<Unmark> using M3 or M4 or (M3 and M4) used in a redundant 
way.  
As 2 to n ICARE components can be linked to the 
Complementarity component, another possible assembly for the 
same FACET tasks is presented in Figure 11. Within this new 
assembly, we combine the two Complementarity components and 
we obtain one single Complementarity component with three 
connected ICARE components. 

 
Figure 11: Another possible ICARE component assembly for 
three tasks of FACET: T1=Orientation&Location of the 
plane, T2=Marking a point on ground and T3=Unmarking a 
point. 
For developing FACET, our ICARE approach enables us to reuse 
existing modalities such as speech (developed by THALES-
Avionics) and will facilitate code modifications and evolution. 
For example allowing a new modality for marking a point will 
easily be managed by adding a new component connected to the 
Redundancy/Equivalence component. In addition forcing the 
redundant usage of voice commands and commands specified by 
pressing HOTAS buttons for marking a point can be achieved by 
solely changing the Redundancy/Equivalence component by the 
Redundancy component. 
The whole architecture of FACET is along the ARCH model. 
Communication from the two ICARE components 
Complementarity-2 and Plane Orientation&Location has been 
implemented using Java RMI. We envision using TCP/IP for the 
tasks T2 and T3 and UDP for the task T1. UDP will provide a 
more efficient communication adapted for frequently sending the 
orientation and location of the plane, while TCP/IP a more safety 
communication for the commands issued by the pilot. 

This first version of the FACET simulator allows us to validate 
the ICARE approach for a real-time system. We measured the 
processing time of each implemented ICARE component in 
FACET with the following frequencies:  

- 100 Hz for the plane Orientation&Location tracker 
- 60 Hz for the pilot’s Orientation&Location tracker 
- 0.66 Hz for the commands with HOTAS buttons (2 

times over 3 were the marking command and 1 time 
over 3 was the unmarking command) 

- 0.125 Hz for the commands using speech input modality 
(2 times over 3 were the marking command and 1 time 
over 3 was the unmarking command). 

For 10000 performed tests we obtained the following results for 
each modality: 

- M1, Plane Orientation&Location modality: 0.18 ms 
- M2, Pilot’s Orientation&Location modality: 0.17 ms 
- M3, HOTAS commands: 0.16ms 
- M4, Speech commands: 0.26 ms 

For 300 performed tests, our evaluation of performance of the 
implemented Complementarity and Redundancy/Equivalence 
components was satisfactory with regards to the real-time 
constraints on FACET. For the Redundancy/Equivalence 
component we fixed ∆t equal to 100 ms while for the 
Complementarity component of Figures 10 and 11, we fixed ∆t 
equal to 10 ms.  

6. CONCLUSION & FUTURE WORK 
On the one hand, our ICARE conceptual model has been 
validated by manually assembling the components for the 
development of several multimodal systems. ICARE is based on a 
component-based approach and therefore offers the well-known 
advantages of component-based development, that are to reduce 
the production costs, and to verify the software engineering 
properties of reusability, maintainability and evolution [1]. With 
the real-time FACET system presented in this paper, we also 
validate ICARE for a real-time system. 
On the other hand, we are aware that input and output interaction 
modalities are strongly linked. For example the usage of a 
particular input modality may have an impact onto the choice of 
the output modalities. In a near future, we will apply our ICARE 
approach for output multimodal interaction and study the links 
between the input and output ICARE components. Moreover the 
context may have an impact onto the modalities. For now on in 
FACET, the context is an external module that can for example 
stop a modality. For instance speech input cannot be used in a 
very noisy environment. A more complex approach than the basic 
on/off one would be to modify the confidence factors attached to 
the data.  
As on-going work, we are finishing the development of our 
graphical ICARE platform that enables the designer to graphically 
manipulate and assemble ICARE software components in order to 
specify the multimodal interaction dedicated to a given task of the 
interactive system under development. From this specification 
(ICARE schema), the code of the multimodal interaction is 
automatically generated. The user of the ICARE platform selects 
the modalities (Device and Language components) and specifies 
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the combination of modalities by selecting a Composition 
component, all by graphically assembling software components 
without knowing the details of the code of the components. Figure 
12 presents a sketch of the user interface of the ICARE platform: 
it contains a palette of components (area A on Figure 12), an 
editing zone for assembling the selected components (area B on 
Figure 12) and a customization panel (area C on Figure 12) for 
setting the parameters of the components. We plan to 
automatically check ergonomic properties while the designer is 
specifying the multimodal interaction. For example action 
continuity [7] can be automatically checked based on ICARE 
Device component properties and the global consistency in the 
usage of modalities can also be checked. A panel (area D on 
Figure 12) shows the alert messages related to ergonomic 
properties while the designer is specifying the multimodal 
interaction. 

 
Figure 12: Sketch of the graphical ICARE platform. 

For the ICARE platform, we identify two types of target users. 
- First the developer is responsible for enriching the set of 
components by adding new Device and Language components. 
The developer could also decide to provide encapsulated 
components, for example a complete modality component (that 
includes a Device and a Language components). For adding an 
already developed modality to the platform, the developer simply 
needs to encapsulate the corresponding code into an ICARE 
component. It is our approach in the FACET system since all the 
modalities have been developed by THALES specifically for 
military plane cockpits. 
- Second the designer is defining multimodal interfaces by 
directly manipulating components using the mouse. It does not 
need to understand the details of the component code. As opposed 
to existing JavaBeans editors including BeanBuilder, Jbuilder and 
ViusalAge, our ICARE platform makes explicit the notions of 
device as well as language and the CARE properties whose 
adequacy for studying the usability has been demonstrated [15]. 
At the completion of the ICARE platform, an experimental 
evaluation involving designers must be carried out. 
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