A Tool for Designing Sonifications of
Background Monitored Information Sources

Sylvain Daudé
385 rue de la Bibliothéque
38041 Grenoble Cedex 9 - France
(+33) 476 51 44 40

sylvain.daude@imag.fr

ABSTRACT

In this article we present a software tool that allows neophyte
sound designers to specify sounds that signal background
monitored information sources. This tool is based on our
decomposition of the sonification process (transformation of
information into sounds) into steps, which are characterized by
design parameters, modifiable by the user in our tool. Furthermore
a plug-in mechanism permits the expert user to complement the
existing design parameters by allowing the user to implement
her/his own plug-ins or to download them from the Internet. From
the specification of a sound source, an executable internal
representation is automatically generated, which can then be
played. Therefore our tool can either be used for designing or for
running sound sources. We finally present an application
specified and run using our tool, called the phearcons, which
allows the user to place sound sources in space by means of
physical objects representing the sound sources.

KEYWORDS
Design tool, sound signalling, information streams, sonification
process, phearcon, physical object, space.

1. INTRODUCTION

Recently, the tremendous increase in computing power has come
with the development of sound devices and with the apparition of
new interaction paradigms in the Human-Computer Interaction
field. However, in most existing commercial human-computer
interfaces (HCI), the use of sound is generally restricted to
associating binary events, such as alarms, to sound files, whereas
more complex information is generally displayed using visual or
vocal modalities. These HCI therefore neglect the enormous
potential of information sound signalling (or sonification, i.e.
transformation of information into sound) [1], as well as the ear’s
highly developed skills for information analysis. On the other
hand, research applications involving information sound
signalling [2, 3] suffer generally from rigidity, as the displayed
information structure and the sonification parameters are generally
fixed during the design process.

In this article we present a software tool that allows neophyte
sound designers to specify sounds that signal background
monitored information sources. This tool is based on our
decomposition of the sonification process into steps, which allow
the user to structure her/his design and to decompose the
difficulties encountered into manageable sub-problems. Each step

Laurence Nigay

385 rue de la Bibliothéque
38041 Grenoble Cedex 9 - France
(+33) 4 76 51 44 40

laurence.nigay@imag.fr

corresponds to an abstraction level and is described according to
high level design parameters, understandable by neophyte sound
designers and digital signal processing novices. Finally, a plug-in
mechanism permits the expert user to complement the existing
design parameters by allowing the user to implement her/his own
plug-ins or to download them from the Internet.

This tool also integrates a mechanism that automatically generates
an executable internal representation, or code, of the specified
sound sources, which can then be played. The generated code is
organised according to modules that correspond to the steps of the
sonification process. Therefore our tool can be used for both
designing and for running sound sources.

After presenting the sonification process and its implications in
our design tool, we show that this process also permits sound
applications developers to structure their sound sources internal
representation. We finally present an application specified and run
using our tool, called the phearcons, which allows the user to
place sound sources in space by means of physical objects which
represent the sound sources.

2. SONIFICATION PROCESS AND SOUND SOURCE

SPECIFICATION

Defining a sound according to an information source requires
knowing how to transform information into sound (the
sonification process). In order to identify the sonification process
steps and parameters, we have adapted the visualisation process as
defined by Ed Chi [4] to sonification. Figure 1 shows the parallel
between the two processes. The identified sonification process
steps and parameters are common to every sound source' and
explicit in our software tool.

The sonification of a data set can be broken down into five
abstraction levels and four successive transformations, F1 to F4,
between the levels.

F1 aims at extracting useful information from the original data.
This step is common to both the visualization and the sonification
processes and depends on both data semantics and users' tasks.
For example, the AROMA system [5] distorts the sound signal
coming from distant users talk (data semantics) while keeping
enough information for speaker identification (a users' task). In
our software tool, the initial data are referenced by their location —

! the sonification process was also used for classifying existing sound
interfaces and for structuring the state of the art [10]

e.g. a socket, an URL or an audio recording device- and their type
—e.g. audio or numerical-, whereas F1 is then represented by a
serial sequence of filters.

Visualization process Sonification process ~ —> Example
Data ‘ Data
Data trankormation F1 : Data trinsformation Image

Analytical abstraction
Data View

Analytical abstraction
Data View

F2: Schedutng transformation

Pixels column

7am Sam

Sonifications schedule

Visualization tfansformation — F3 ;Son[ﬁcakon transformation
v

Sonifications
chaining

Sonification Abstraction
Sound Space

Visualization Abstraction
Visual Abstract Space

Grey level = volume,
ordinate = pitch

Visual realizatizil transformation F4 : Auditmidisplay transformation

View: Sonic rendering

View on Space \/

Figure 1. Parallel between Chi’s visualisation process
and our sonification process

F2 defines a set of instants when the data provided by F1 will be,
or have been, sonified. For instance it handles the repetition of
sounds over time, the conditions for this repetition to stop and a
history of the last played sonifications. In our software tool four
parameters are kept: (i) the instant when the information will be
displayed for the first time, which can be either relative to the time
when the data are received or to time values included in the data,
(ii) the frequency of the sounds repetition over time, (iii) the
condition for the repetitions to stop, which can be either automatic
(e.g. after 10 repetitions) or manual (i.e. when the user triggers a
particular event) and (iv) the history duration, that is the duration
during which the last played sonifications are memorised. Indeed,
early experiments showed that users appreciated being able to
replay the last sounds of a sound source [12].

F3 defines, from the abstract data set, an abstract sound localized
in a Euclidean space. An abstract sound consists of a time interval
and a set of acoustic cues (e.g. intensity, volume, timbre,
frequency, position in space) that vary during this interval. In our
tool, F3 is defined by two parameters: a synthesis algorithm that
characterizes the transformation itself, such as a “wind” or
“bubbles” algorithm, and an absolute sound volume which defines
the gain in intensity to apply to the data generated by the synthesis
algorithm. The absolute volume parameter aims at allowing the
user to quickly equilibrate the different volumes of the monitored
sound sources. The default set of synthesis algorithms proposed to
the user was obtained by adapting an everyday sounds
classification based on cognitive criteria [6]. Indeed, this
adaptation guarantees to the user a set of familiar and easily
distinguishable sounds. The algorithms used were mainly
extracted from [7] and [8].

F3 involves two successive transformations: (1) the representation
of each single element by an abstract sound, then (2) the
coordination of the corresponding sounds in space and time. Our
tool maps these two transformations with two kinds of synthesis
parameters, namely (1) sound parameters, e.g. for a wind sound,

the ratio between the wind strength and the data element value,
and (2) coordination parameters, such as the silence duration or
the spatial angle between two successive wind sounds. Though
the coordination parameters may be common to several
algorithms, both sound and coordination parameters generally
vary from one algorithm to another.

Finally, the F4 transforms the abstract sound into a physical sound
according to four steps: after having chosen a view point on the
abstract sound space, device parameters are computed then
transformed into a sound signal which is finally displayed on a
physical device. In the tool, F4 uses two parameters: (i) the sound
devices channels where the sound is sent; this is be chosen from
all the available channels; this feature allows the user to listen to
sources through different devices, for instance confidential sounds
heard through headphones and music through loudspeakers;
inversely, a four-channel sound can be created by selecting two
stereo outputs on two different devices; (ii) the kind of physical
device on which the sound is to be played, e.g. headphones or
loudspeakers. The physical device can furthermore be defined
more accurately; for example for headphones, the user can choose
a HRTF filter from among a predefined set [9].

As mentioned in the introduction, our tool furthermore allows
neophyte users to define complete sound sources. It also
integrates three other usage levels for more expert users. The tool
thus integrates four specification levels corresponding
respectively to neophyte, casual, intermediate and expert users.

- The neophyte user can choose a complete sound source: the
parameters for every sonification process step are then fixed. The
user is thus provided with turnkey solutions for creating sound
sources associated with predefined information sources. In the
current implementation, the filters and sounds associated by
default to the predefined information sources are chosen on a
case-by-case basis; for instance an e-mail delivery is filtered to
extract its size and sender category (colleague, family, friend); this
category is then associated to a characteristic sound, a typing
machine sound (of which the duration increases with the e-mails
size) for a colleague, a recorded laugh for a family member and a
bottle opening sound for a friend.

- At a more accurate level, the casual user can choose separately a
data source and a sonification process from among predefined
choices. The obtained sound source is thus relevant to the user’s
mental model and not to the designer’s one. More generally,
predefined choices provide values for groupings of parameters,
such as the whole set of scheduling (F2) or synthesis (F3)
parameters. It should be noticed that some choices could have
been restricted relatively to the user’s previous choices and to
predefined heuristic rules, for example by proposing only sounds
of which the semantics is related to the displayed information.
This elegant solution was however excluded in our tool in order to
enhance flexibility and extensibility.

- The intermediate user can modify the parameters for each
predefined element, for example by setting the value of a
threshold filter or the viscosity of a bubble sound. Figure 2a
presents an example of such a setting.

- Finally, the expert user can add new features ("plug-ins"); for
example, s/he can define a new bubbling sound, parameterized by
liquid viscosity and bubbles frequency. In other words, the expert

7 Sound source specification interface

S

Parameters
Information [weather | [bar | [[rrodal _v| Sound duration (is) 3000 |
B [ouwdionber _v| Absolute intensity 50 Intersounds silence (ms, -1=simult) [100 v
 — T —
Output device [wav_general | oftype [wav_general _v| Triggering offset (s) 30 10 20 30 40 50
100
(a2 - B LICSEN T
e following fields in order to define type senderType Amplitude oot
Z ©234.329
Execution class sendertype
00,127
0o
File containing the execution class sendertype fcl File 100000
®(17.33160)
Parameters |-addressBook
Frequency (log.scale) ™% YA L
Parameter default values default bt ;
100.0: @ (0.69,111.64)
Graphical interface classes for each parameter -
Files containing the display classes File 40 17235
p— an
(EHGGEe ’—Smng -l Caracteristic time (s) o IDD.,ZEEI T
1o 07213
Outputtype string ~| o @305
Create | Modify | Reset Grin Caizl

Figure 2. Our specification tool while being used: (a) the background window shows the setting of sound synthesis algorithm
parameters, increasingly accurate from left to right; (b) the foreground window shows the setting of a filter plug-in.

user can add specific parameters, such as the « viscosity »
parameter, to the generic parameters of the sonification process.
In concrete terms, importing a plug-in means specifying the
algorithm method name, the list of parameters handled by the
algorithm, the data types it uses and generates, and optionally the
name of methods that display interfaces for specifying each
parameter (figure 2b).

3. SONIFICATION PROCESS AND SOUND SOURCE

EXECUTION

The specification of a sound source using our tool, as presented in
the previous paragraph, produces a software object or generated
code which represents the sound source and which can be played
or executed. As shown in figure 3, the software object
representing a sound source is made up of five general modules
that model the sound source and of which the structure is
independent of the sound source. The first module is dedicated to
the reception of the initial data, whereas the four other modules
respectively perform the four transformations of the sonification
process. Indeed, this structure eases both sound source
configuration and code modularity.

As shown in figure 3, the general modules are then connected to
specialised modules which deal with some particular task and
communicate through the general modules. The specialised
modules are created according to the corresponding sound source
configuration and can be classified into five categories: (i) the
"acquisition" modules handle the original data acquisition; (ii) the
"filter" modules filter the original data; (iii) the scheduling
modules, when receiving the filtered data, order the following
modules to transform the filtered data into a sound sample, then,
when appropriate, to play the sample. Dissociating the sound
sample preparation, which happens only once, from its playing,
which can be repeated in time, allows a substantial saving in terms
of computing time; (iv) the "synthesis" modules generate, from
the filtered data, abstract sounds according to synthesis
algorithms. These abstract sounds are independent from the sound
device used. They generally consist of sound signals tagged with
spatial data, but can also consist of abstract data, such as midi
sequences; (V) finally, the "sound device" modules handle the
loading of abstract sounds into samples, then their playing.

Each specialised module can be shared by several sound sources,
allowing a coherent allocation of system resources. For example, a
data receiver can feed several sound sources with data read on the
network: this makes the network traffic lower than if each sound
source had its own receiver.

Sound source 1

‘ data Fl F2 —» B |—> F4 |
I I] 1
acquisition scheduling synthesis sound device
(socket) (standard) (wind) (headphones)

A
Acquisition Schedules Synthesis Devices
handler handler handler handler
acquisition scheduling dispositif sonore
(URL) (person.) loudspeakers
| | i
A 4 h 4 A 4
‘ [data —>» Fl |——» F2 [—» F3 |—>» F4 |

Sound source 2

Figure 3. Internal representation of two sound sources and
their associated modules. General modules are represented by
white boxes, specialised modules by grey ellipses.
Handlers are not represented.

Other digital objects, the handlers, provide the sound sources
with the specialised modules they need. In particular, the handlers
manage the sharing of specialised modules between sound
sources. A particular handler deals with the user interactions;
events managed by this handler include all the user actions that
can affect the sound sources properties, such as the order to replay
the last event of a sound source. Therefore, the specialised
modules which have made the appropriate request can be
informed of the user interactions and consequently modify their
treatment; for example, the scheduling module can stop a sound
repetition if the user has made a particular action. Furthermore,
handlers ease the adding of plug-ins, which correspond to
specialised modules. Indeed existing modules and handlers are
not modified by adding a plug-in.

It should be noticed that our design and execution tool runs on
several platforms (Windows, Mac and Linux) because it is
exclusively based on cross-platform languages and APIs. In the
following paragraph we present an example of an application
developed and executed with our tool.

4. PHICON + EARCON = PHEARCON

In order to completely define a sound interactive application,
besides the definition of sound sources, we need to know how the
user is going to interact with the sound sources. Indeed, it is quite
obvious that the user should be able to switch off or lower the
volume of each monitored sound source at any time, because the
source becomes less important compared to the user’s current
task, or because the user does not want to disturb her/his

neighbours. Furthermore, without an independent control of the
different sound sources, the user may forget what information
sources are sonified, and therefore have trouble differentiating the
monitored sound sources.

Various kinds of interfaces have been proposed for manipulating
several sound sources independently. For example, the physical
mixing table allows a quick and multi-threaded access to the
volume of several sound sources. However the number of
controllable sound sources is limited by the number of tracks on
the table; moreover this device does not allow placing the sound
sources into space, which makes their discrimination harder. The
graphical interfaces can solve these problems, however a study
carried out by [11] shows that these interfaces are not adapted for
sound sources monitoring, because they require the user’s focus (a
problem which does not occur in audio-only interfaces), and
because they introduce a perceptual discontinuity between the
sound sources visual and audio representations. This very study
proposes an interaction based on physical objects placed on a
bench equipped with sensors, the position of the objects on the
bench determines the position of sound in space. However this
system forces the objects to conform to a precise format and
sound spatialisation is rendered through a relatively imprecise
stereo loudspeaker system. As a matter of fact, the authors have
observed that users were not using the spatialisation provided
with this system for differentiating the monitored sound sources.

The interface proposed by our application also relies on a
coupling between physical objects (phicons), disposed on a table
and tracked by a computer vision system, and sonified
information sources (earcons in its widest meaning), this coupling
being materialised by the spatialisation of sounds according to the
objects positions. We call the resulting combined object a
"phearcon". As shown in figure 4 and unlike the previous system,
this application allows the user to freely choose and place the
physical objects on the table within the limits imposed by the
recognition system.

Camera +
projector

Figure 4. a. (left) The phearcons while being used.
b. (right) Sketch of the interaction with the phearcons.

The phearcons present several advantages. First they provide the
user with control on the surrounding audio space. Indeed, by
moving the physical objects, the user can quickly adjust the
corresponding sound sources positions in space, and therefore
make their understanding and discrimination easier. This may be
of some help each time the monitored sources characteristics
and/or the user’s needs evolve; for instance if a monitored sound
source becomes important for the wuser, by bringing the
corresponding object into the foreground, the user can listen to
the sound more carefully. Inversely, a noisy sound source can be
"put aside" by moving the corresponding object. Finally, the
objects provide a familiar visual support to sounds, making the

memorisation of the sound sources locations and natures easier.
The phearcons application is detailed in [12].

5. CONCLUSION

We have presented a software tool that enhances users of various
skill levels to (i) design, specify sound sources that signal
continuously monitored information sources, and (ii) run the
specified sound sources. As regards the execution, we propose to
structure the code generated by our tool into general and
specialised modules that are directly related with the steps in our
sonification process. After introducing the use of our tool, we
have finally presented an application, called the phearcons, which
allows the final user to place sound sources in space by means of
physical objects that represent the sound sources.

Our ongoing work aims at evaluating the sonification design
parameters presented previously, by measuring (i) the time for a
user to specify a sound source, and (ii) the number of
specification/execution loops between before the user gets a
satisfying result in terms of usage.

6. REFERENCES
[1] S. Barrass and G. Kramer, “Using sonification”, Multimedia
Systems, Vol. 7, No 1, 1999.

[2] D. Malandrino, D. Mea, A. Negro, G. Palmieri and V.
Scarano, ‘“NeMoS: Network monitoring with sound”, in Proc.
ICAD’03, pp. 251-254, 2003.

[3] H. Ishii and B. Ullmer, “Tangible Bits: Towards Seamless
Interfaces between People, Bits and Atoms,” in Proc. CHI’97, pp.
234-241, 1997.

[4] E. Chi and J. Riedl, “An Operator Interaction Framework for
Visualization Systems”, in Proc. Info Vis "98, 1998.

[5] E. Pedersen and T. Sokoler, “AROMA: abstract
representation of presence supporting mutual awareness”, in Proc.
CHI'97, pp. 51-58, 1997.

[6] W. W. Gaver, “What In The World Do We Hear ? An
Ecological Approach to Auditory Event Perception”, Journal of
Ecological Psychology, Vol. 5, No 1, pp. 1-29. 1993.

[7]1 S. Conversy, “Conception d'Icones Auditives Paramétrées
pour les Interfaces Homme-Machine”, thése de Doctorat,
Université de Paris-Sud, 2000.

[8] M. Russ, “Sound Synthesis and Sampling”, Francis Rumsey
(ed.), Focal Press, 1997.

[9] V. R. Algazi, R. O. Duda, D. M. Thompson and C.
Avendano, “The CIPIC HRTF Database”, in Proc. IEEE
Workshop on Applications of Signal Processing to Audio and
Electroacoustics, pp. 99-102, 2001.

[10] S. Daudé and L. Nigay, “Design Process for Auditory
Interfaces”, in Proc. ICAD'03, pp. 176-179, 2003.

[11] A. Singer, D. Hindus, L. Stifelman and S. White “Tangible
Progress: Less Is More In Somewire Audio Spaces”, in Proc.
CHI'99, 1999.

[12] S. Daudé et L. Nigay, “Objets physiques pour manipuler des
sources sonores - Phicon + Earcon = Phearcon”, in Proc.
Mobilité-Ubiquité, 2004.

