

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST '04, October 24-27, 2004, Santa Fe, New Mexico, USA.
Copyright © 2004 ACM 1-58113-957-8/04/0010. . . $5.00.

Visual Tracking of Bare Fingers for Interactive Surfaces

Julien Letessier, François Bérard
CLIPS-IMAG

BP 53
38041 Grenoble Cedex 9

FRANCE
julien.letessier | francois.berard@imag.fr

ABSTRACT
Visual tracking of bare fingers allows more direct manipu-
lation of digital objects, multiple simultaneous users
interacting with their two hands, and permits the interaction
on large surfaces, using only commodity hardware. After
presenting related work, we detail our implementation. Its
design is based on our modeling of two classes of
algorithms that are key to the tracker: Image Differencing
Segmentation (IDS) and Fast Rejection Filters (FRF). We
introduce a new chromatic distance for IDS and a FRF that
is independent to finger rotation. The system runs at full
frame rate (25 Hz) with an average total system latency of
80 ms, independently of the number of tracked fingers.
When used in a controlled environment such as a meeting
room, its robustness is satisfying for everyday use.

Categories and Subject Descriptors: H.5.2 [User Inter-
faces] : Input devices and strategies; I .4.8 [Scene
Analysis]: Tracking -- fingers

Additional Keywords and Phrases: finger tracking with
computer vision, large interactive surface, multi-user
multi-hand interaction

INTRODUCTION
We present a system that tracks the 2D position of the tips of
bare fingers on a planar display surface. The tracker is
founded on computer vision techniques that process a video
stream in real time. The position of the tip of the fingers is
used to control a Graphical User Interface (GUI) projected
on the surface. The maximum number of tracked fingers is
only constrained by the space on the surface, thus the system
supports multi-handed, multi-finger interaction of a group of
users. The provided interaction is also more direct than the
interaction offered by the mouse: the input device
acquisition phase (grasping the mouse) is suppressed
because the finger is the input device.

This work is aimed at providing a low-level, event-based
input mechanism for a range of novel interactive system that
supports multiple users interacting with a single system.
Examples of such systems include the “Magic Table” [1]
and the “RoomPlaner” [9].

We focus on the implementation of a computer vision
system that processes the video stream of a single standard
video camera and doesn’t require any equipment of the
surface. The key advantages of this particular setup are the
following:
– computer vision hardware is off-the-shelf and affordable;

we use low-end Firewire (IEEE 1394a) cameras, a
standard video projector and a recent PC;

– the setup is transportable and compact; the PC used can be
a laptop, thus making the whole hardware under 5 kg, and
the whole system can be ceiling-mounted;

– the hardware is physically robust when setup out of reach
from the users;

– richer data than simple fingertip location can be provided
to the application developer using the same setup and
video stream; for instance an object tracker (for graspable
interfaces), or a surface digitizer [1].

The design choices of the system are justified by a number
of human-centered requirements (described in [6] and [1]):
low system latency, static stability, millimetric resolution,
and robustness to our setup conditions. We also emphasis
our work on autonomy: the system should not require
complex setup or user maintenance.

RELATED WORK
Most finger tracking for Human-computer interaction make
use of equipped surfaces. Commercial products include
DViT from Smart Technologies (smarttech.com/dvit) that
can only track 2 fingers and would be confused by a cup laid
on the sur face . Research pro to types such as the
DiamondTouch [3] and the SmartSkin [5] can track many
fingers but all surface-equipped solutions share some
limitations: user interaction is required for calibration, the
hardware is at reach from the users, and the device has to be
as large as the interactive surface, which limits its
portability. It should also be noted that the various research
prototypes rely on custom hardware: reproducing them
represents a non-trivial effort.

Our approach is to track fingers from a standard camera
view, without using custom or expensive hardware (e.g. a
thermoscopic camera such as in [4]). Aspect-oriented
segmentation methods (such as color models, region-
growing or image differencing) are sensitive to camouflage
and occlusion. We choose to use image differencing because
it can be made autonomous, provides good resolution, and
allows to balance performance and robustness.

SYSTEM DESCRIPTION
Our system is founded on Image Differencing Segmentation
(IDS). IDS generates a similarity map: an image where the
value of each pixel is the probability that the pixel represents
an object of the foreground. Difference maps must be post-
processed in order to extract finger position. Following other
shape filtering proposals [4][6] we propose an original shape
filtering algorithm that is optimized in processing and
invariant to finger orientation.

Our approach is a four-step process: (a) foreground
extraction using IDS yields a grayscale difference map, (b)
automatic thresholding converts it into a binary map, (c)
shape filtering extracts the fingertip positions, and (d)
association generates high-level events (such as “motion”)
for the client application. We detail each of these steps in the
following subsections.

Foreground extraction
The literature abounds with variants of IDS. In order to
characterize and compare these variants, we first propose a
general model of IDS. An IDS variant can be modeled as the
combination of three choices:
– the form of the background model,
– the metric used to compare the background model and the

current image,
– the background maintenance process.

Background model. Background modeling is achieved by
modeling each pixel variations. This pixel-level model can
be as complex as a mixture of Gaussians in the Hue
Saturation Value (HSV) color space [8] or as simple as a
simple luminance value [6]. In our operating conditions,
pixel variations are due to camera and lighting noise, and to
background changes; they are roughly the same over the
image. Consequently, we model the background as a simple
image: each pixel of the model is the mean over time of the
measured pixel values.

Comparison metric. We note that hand and fingers cast a
shadow on the surface when they are close to it. If shadows
are segmented as part of the foreground, they make the task
of finger shape recognition very difficult because they
extend the finger silhouette to arbitrary shapes and connect
fingers together [6].

We propose a new metric that is purely color-based (hence
naturally robust to shadows) and which simplicity supports
computational optimization. It is the Euclidian distance
between corresponding pixels in the (r,g) normalized
chromaticity plane. We name it Chrominance Euclidian
Distance (CED). The similarity between pixels p and p’ is
computed as d(p, p’) given by

p = [R,G,B]

[r, g] = [R/(R + G + B), G/(R + G + B)]

d(p, p’) = ||[r, g] - [r’, g’]||

Figure 1 show an example of the similarity map obtained
using the CED metric.

Background maintenance. In order to adapt the segmen-
tation process to a changing background, we maintain the
background model Bg by computing the average of recent
pixel measurements. This is approximated by a running
average. Let the current frame be Im; the background model
at time t + 1 is given by

The learning rate is biased by the IDS results, i.e.
given small values over segmented objects, and high values
over the background.

Dealing with the projected feedback. I n t he ca se o f an
interactive surface, we project visual feedback on the
surface. The feedback changes the appearance of the
background and thus causes a lot of false alarms in the
difference map. As the projection on a white surface is much
brighter than the physical objects in the scene, we can
eliminate this effect by augmenting the camera gain
(causing overexposure on purpose).

Automatic thresholding
The shape filtering stage presented below requires the
similarity map to be transformed into a binary image. Since
our segmentation method ignores luminance variations over
the image, we use a uniform threshold . We determine
automatically from the similarity map. A typical histogram
of the similarity map exhibits two modes. The lower mode
represents the background noise; it contains roughly 80% of
the pixels. Ideally should be chosen to eliminate this first
mode while preserving the other mode(s). We approximate
the first mode’s moments by its median () and median
absolute deviation (); is then given by

 being the similarity map at time t. The computed
threshold is stable and empirically close to manually chosen
thresholds.

Bg x y,()
t 1+ α x y,()

t Im x y,()
t⋅ 1 α x y,()

t–() Bg x y,()
t⋅+=

α x y,()
t

Fig. 1. Segmentation example using the CED metric.
Background model (a), current frame (b), similarity
map (c). The map is noisy but insensitive to lighting
and shadows, and provides high-resolution contours.

θt θt

θt

m0
m1 θt

m0 median x y,()d
t x y,()=

m1 median x y,() m0 dt x y,()–=

θt m0 4 m1⋅+=

dt

Shape filtering
Shape filtering for fingertip detection (as introduced in [4])
is a method that scales to any number of fingers with no
performance hit because it processes the input image as a
whole. The idea behind shape filtering is to use simple
geometric criteria that characterize the searched object, and
verify these criteria for each pixel in the (binary) image.

Formally, a geometric model can be presented as a set of
binary characteristics,

where 0 stands for “the pixel doesn’t match” and 1 for “the
pixel possibly matches the model”. The ck are independent,
and ordered according to both their performance (low cost
characteristics first) and the number of pixel they reject
(characteristics that reject many pixels first). Once this is
defined, the filter algorithm is trivial; we call its instances
Fast Rejection Filters (FRFs):

for each pixel (x,y):
for each k:
if ck(x,y) = 0, skip pixel;

mark (x,y) as a candidate;
return the map of candidates.

A simple geometric model for the finger is a long rectangle
ended by a half disc which size can vary between the
smallest and the largest possible visible finger size (9 to
20 mm). This model is illustrated by figure 2. Using the FRF
formalism, we propose and implement a set of character-
istics inspired by [4] and [6] but improved by the use of a
circle instead of a bounding rectangle. This way, we insure
that our filter is not sensitive to finger orientation. Our filter
characteristics are:

– c1: the pixel p is classified as foreground in the binary map;
– c2: p is within a region of connected pixels that is large

enough to be a hand (20 sq. cm);
– c3: p is surrounded by a fully segmented disc (9 mm);
– c4: while scanning the contour C (20 mm) around p,

exactly one connected component is encountered;
– c5: the distance AB is coherent with the size of a finger.

The successive rejection of pixels is illustrated on figure 3.
The pixels that are not rejected by the filter are then

clustered into groups of connected pixels. The output of the
FRF is the list of (x,y) coordinates of the vertical and
horizontal medians of these clusters. The algorithm
parameters can be determined using only the view scale. In
particular the perspective deformation of the camera view
does not significantly hinder the filter.

Association
The output of the FRF has to be translated into events for the
client application. The difficulty is to identify the fingers so
that the same ID parameter is provided with the appear,
motion and disappear events that concern one particular
finger. We implement a very simple closest neighbor
algorithm detailed in [1]. After receiving the FRF result, the
algorithm executes the two following steps:
– each detected fingertip at frame t is matched to the closest

memorized finger at frame t-1. If there is no memorized
finger or the closest one is further than the distance
threshold , we generate an appear event with a new finger
ID. Otherwise, if the matched finger has moved of more
than a fixed motion threshold, we generate a motion event.
The motion threshold is introduced in order to satisfy the
stability requirement of the tracker’s output.

– memorized fingers that were not matched to any fingertips
in the previous step are forgotten and disappear events are
generated with their IDs.

Since the speed of fingertips is typically under 2.5 m/s, we
choose the distance threshold as the maximum finger
movement per frame: for quarter-PAL frames at 25 Hz, we
use 40 image pixels as the threshold. We actually add a
50 ms. time window before generating an appear event and
a 200 ms. time window before disappear events in order to
add tolerance to false alarms and misdetections. The
200 ms. time window allow the system to successfully track
finger that are momentarily hidden to the camera by an
occluding object.

Our system has no way to detect the contact of a finger with
the surface corresponding to a mouse button event. We add a
spatiotemporal filter on top of the association component of
the system. This filter detects pauses in finger trajectories
and reports a button event when a pause lasts more than
300 ms.

c1 …cn,{ } ck x y,() 0 1,{ }∈

A

BC

p

Fig. 2. A simple geometric model of the fingertip,
used in our Fast Rejection Filter. (gray): the observed
finger; (dashed) the smallest and largest finger
models; (full circle) the scanned contour.

∅

∅
∅

Fig. 3. Typical output of our Fast Rejection Filter.
(right) rejection map: grey pixels where rejected by c1
or c2, black by c3, pink by c4, blue by c5. The detected
pixel clusters are white, their centers are represented
by red circles on the left image.

c1 or c2

c3
c4

c5

All events are complemented by the (x,y) location of the
finger at the time of the event, in display coordinates. The
conversion between camera and display coordinates is
achieved using an off-line, automatic calibration process. A
set of 9 bright disks is projected on the surface at known
coordinates. Their location is easily recovered in the camera
image using automatic thresholding and connected
component analysis, and the set of corresponding points is
used to compute the projective transformation between
camera and projector image [2].

EVALUATION SUMMARY
We evaluated the performances of the system as well as its
usability during one formal (Fitts-like) and one informal
user experiment. The following is a summary of the results
of the evaluations.

Autonomy. When used in a stable, controlled lighting
environment, the system is almost autonomous thanks to the
automatic thresholding and camera-projector calibration
algorithms. The only parameter is the view scale, which has
to be determined manually.

Resolution and Stability. The PAL video stream is processed
at quarter definition (388x284). While the output of the
shape filter has sub-pixel accuracy, the instability of the
video signal forces us to set a 1.6 pixel motion threshold
before reporting a motion event. In our setup, the camera
view is set to encompass the 100 cm x 75 cm surface. The
resolution is thus approximately 4 mm which, with a
1024x768 display, translates to 4 display pixels.

Latency. On a 1.4 Ghz PowerPC G4 machine, we measure
an average latency of 80 ms with a standard deviation of
18 ms. This is not ideal when considering the 50 ms
requirement expressed in [7] but it is close to ideal.

Robustness. The typical robustness failures are taken care
of by the system:
– Occlusions, as caused by the body or a limb, are rare in our

setup (users are sitting around the table). On the other hand
occlusions between different users’ hands are frequent. We
compensate this problem by allowing a 200 ms time
window before considering that a finger has actually
“disappeared”.

– In spite of the simplicity of the “association” algorithm
presented above, finger aliasing rarely occurs during
tracking. This allows unconstrained user movements
(except extremely fast ballistic gestures).

– Finally, the performance of the system doesn’t degrade
when the number of tracked fingers increases.

Usability. During the formal experiment, we observed that
our finger tracker supports target acquisition tasks with an
efficiency that is in the same range as with a mouse. In the
informal experiment, subjects were asked to spatially
reorganize a set of photographs. Users easily interacted with
the system. Bi-manual interaction was natural and
frequently used. The main problem was to detach a finger
from a photograph: the finger had to be hidden from the
system. It seems suitable to introduce a 300 ms. pause for
detaching (i.e. the same as for attaching).

CONCLUSION
Our finger tracker mostly satisfies the requirements of
Human-Computer Interaction. It provides the location of
more than 20 fingers at 25 Hz with 80 ms average latency,
using commodity hardware. The output is stable and the
tracker is robust to typical usage in a controlled lighting
environment. User experiment shows that the system
support efficient interaction. Our contributions include the
modeling of two families of vision algorithms that are key to
finger tracking, and a set of design choices for their instan-
tiation. Our Image Differencing Segmentation (IDS) is
insensitive to shadows and our Fast Rejection Filter (FRF) is
insensitive to finger orientation.

This work can be improved in many ways. Its robustness
should be maintained in a less controlled environment such
as a train station or an airport hall. Also, providing more
information (such as finger orientations and connection to
the hand) will increase the design space of client developers.

REFERENCES
1. Bérard, F. The Magic Table: Computer-Vision Based

Augmentation of a Whiteboard for Creative Meetings.
CD-ROM proceedings of the IEEE International
Conference in Computer Vision, Workshop on Projector-
Camera Systems (PROCAMS’03), Nice, France (2003).

2. Criminisi, A. Reid, I. Zisserman, A. A plane measuring
device. British Machine Vision Conference, UK (1997).

3. Dietz, P. and Leigh, D. DiamondTouch: A Multi-User
Touch Technology. ACM Symposium on User Interface
Software and Technology, Orlando, Florida, pp 219-226
(2001).

4. Koike, H. Sato, Y. Kobayashi, Y. Tobita. H. and
Kobayashi, M. Interactive textbook and interactive Venn
diagram: natural and intuitive interfaces on augmented
desk system. SIGCHI conference on Human factors in
computing systems, The Hague, The Netherlands, pp.
121-128 (2000).

5. Rekimoto, J. SmartSkin: an infrastructure for freehand
manipulat ion on interact ive surfaces . SIGCHI
conference on Human factors in computing systems,
Minneapolis, Minnesota, pp. 113-120 (2002).

6. Von Hardenberg, C. and Bérard, F. Bare-hand human-
computer interaction. Workshop on Perceptive User
Interfaces, Orlando, Florida (2001).

7. Ware, C. and Balakrishnan, R. Reaching for Objects in
VR Displays: Lag and Frame Rate”. ACM Transactions
on Computer-Human Interaction (TOCHI), Vol. 1, No. 4,
pp 331-356 (1994).

8. Wren, C., Azarbayejani, A. Darrell, T. and Pentland, P.:
Pfinder: Real-time tracking of the human body. In IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 19(7):780–785, (1997).

9. Wu, M. and Balakrishnan, R. Multi-Finger and Whole
Hand Gestural Interaction Techniques for Multi-User
Tabletop Displays. ACM symposium on User Interface
Software and Technology, Vancouver, Canada, pp. 193 -
202 (2003).

	Visual Tracking of Bare Fingers for Interactive Surfaces
	Abstract
	Introduction
	Related work
	System description
	Foreground extraction
	Background model
	Comparison metric
	Background maintenance
	Dealing with the projected feedback

	Automatic thresholding
	Shape filtering
	Association

	Evaluation summary
	Autonomy
	Resolution and Stability
	Latency
	Robustness
	Usability

	Conclusion
	References

