

TESTING THE CARE PROPERTIES OF MULTIMODAL APPLICATIONS
BY MEANS OF A SYNCHRONOUS APPROACH

Laya Madani1, Laurence Nigay2, Ioannis Parissis1
{Laya.Madani, Laurence.Nigay, Ioannis.Parissis}@imag.fr

1 Laboratoire LSR-IMAG - BP 53 38041 Grenoble Cedex 9 - FRANCE

2 Laboratoire CLIPS -IMAG - BP 53 38041 Grenoble Cedex 9 - FRANCE

Abstract
Multimodal interactive applications support several
interaction modalities (e.g., voice, gesture), which may be
combined. As a result, designing and testing such
applications is more complex than classical graphical
applications. In this context, formal methods can make the
development process more reliable. In this paper we focus
on a testing approach dedicated to synchronous software.
Although synchronous programming is mainly used in
real-time applications, synchronous software are, from a
certain point of view, similar to interactive applications:
indeed they both have a behaviour consisting of cycles
starting by reading an external input and ending by
issuing an output. Under this hypothesis, we have been
interested in the Lutess testing environment and in the
possibility to use it to automatically test multimodal
interactive applications. Using Lutess requires providing
a specification of the user behaviour as well as a set of
properties that the software under test must meet. As a
first step, we consider the CARE properties. We provide
patterns making possible to express them in the extended
Lustre language upon which Lutess is built. Preliminary
experimental results on testing a multimodal application
are presented.

 Keywords
Multimodal applications, automated testing, CARE,
synchronous software.

1 Introduction
Multimodal interactive applications are designed to
support interaction modalities, which may be used
sequentially or concurrently, and independently or
combined synergistically [1]. For example the user can
issue the voice command “delete that file” while selecting
the file using the mouse. This illustrates a case of a
synergistic usage of two modalities. The variety of
possible usages of modalities makes the design,
development and test of such software more complex and
time consuming than of usual graphical interactive
applications.

Several formal approaches have been studied for the
design and development of interactive applications,
including the FSM (Formal System Modelling) analysis
[4], the LIM (Lotos Interactor Model) approach [10] and
the ICO (Interactive Cooperative Object) formalism based
on Petri Nets [8]. In these approaches, the interactive
application is formally described as an abstract model and
the properties that it must meet are checked on this model.
They require a rather heavy specification process that
many designers cannot afford.

In this paper we apply the synchronous approach for
testing multimodal applications against properties specific
to multimodality. More precisely, we have been studied
how the Lutess testing environment [3] [9] can be adapted
to the specific needs of multimodal applications testing.
Lutess handles software specifications written in Lustre
[5]. Unlike other formal methods (especially [2], where
the Lustre language is also used), it does not require the
entire application to be specified nor intends to formally
prove the property satisfaction. In fact, Lutess requires a
non deterministic specification of the user behaviour as
well as the description of the software properties. It
automatically builds a simulator feeding with inputs the
software under test. Inputs are computed dynamically,
during the test operation and long sequence of inputs can
be generated by Lutess.

As a first step to assess the feasibility of this new
approach, we have studied the translation of the CARE
(Complementarity, Assignation, Redundancy,
Equivalence) properties [1] into an enhanced version of
the Lustre synchronous language upon which Lutess is
built. The CARE properties define a framework for
characterizing different forms of multimodal usages of an
interactive application. They are formally defined in [6].

The paper is structured as follows: Section 2 presents the
CARE framework. Section 3 introduces useful concepts
about synchronous software and the testing environment,
Lutess. In section 4 we show how CARE properties of a
multimodal application can be tested with Lutess and
provide some preliminary experimental results.

2 Multimodality and the CARE properties
A modality is an interaction method that an agent can use
to reach a goal. A modality can be defined as a pair <d, l
>, where “d” means a physical device and “l” an
interaction language. An interaction language is defined
as a vocabulary of terminal elements and a grammar. The
terminal elements are captured or produced by the
input/output devices. This definition characterizes the
interchanges (events) between the user and the
application. For example, the speech input modality is
described by the pair <microphone, pseudo-natural
language> where the pseudo-natural language is defined
by a specific grammar and a vocabulary of elements. In
other words, the modality defines the type and form of the
data exchanged between the user and the application.

Multimodality refers to the multiplicity of modalities for a
given interactive application. Let us consider a
multimodal application that we have developed [7]: a
multimodal notebook, a personal electronic book.]. It
allows a user to create, edit, browse, and delete textual
notes. In particular, to insert a note between two notes, the
user can say “Insert a note” while simultaneously
selecting the location of insertion with the mouse. To edit
the content of a note, one modality only is available:
typing. Browsing through the set of notes is performed by
clicking dedicated buttons such as “Next” and “Previous”
or by using spoken commands such as “Next note”. To
empty the note book, a “Clear notebook” command may
be specified using voice or clicking the mouse on the
“Clear” button. The simple notebook application
highlights several usages of multiple modalities. For
describing such various forms of multimodality, we
propose the CARE properties [1]. CARE stands for
Complementarity, Assignment, Redundancy, and
Equivalence that may occur between the interaction
modalities available in a multimodal application.
Equivalence expresses the availability of choice between
multiple modalities while assignment designates the
absence of choice. Redundancy and complementarity go
one step further by considering the combined used of
multiple modalities under temporal constraints.
Redundancy is defined by the existence of redundant
information specified along different modalities and
complementarity is characterized by cross modality
references.

Although each modality can be used independently within
a multimodal application, the availability of several
modalities in an application naturally leads to the issue of
their combined usage. Although the combined usage of
multiple modalities opens a vastly augmented world of
possibilities in multimodal application design, it also
implies that software performs fusion. Fusion involves the
combination of data to obtain a complete command/task
such as the “Insert a note” in the NoteBook application.
The input elementary events to be combined can be
produced simultaneously or sequentially within a
temporal window. The criteria for triggering fusion are

twofold: the complementarity of data, and time.
According to the strategy adopted, fusion is made as soon
as the input events are captured (early fusion) or is
delayed until the end of a temporal window (lazy fusion).
In that latter case, events are processed and a task is
determined according to the confidence factors associated
with the events.

3 Lutess: a testing environment for
synchronous programs

3.1 Synchronous programs
A synchronous program behaves as follows: the time is
divided in discreet instants defined by a global clock. At
instant t the synchronous program reads its inputs it from
its external environment. Then, it computes and issues
outputs ot. The synchrony hypothesis states that the
computation of the output values is made instantaneously,
at the same instant t. More realistically, this hypothesis is
satisfied when software is able to take into account any
external evolution. Hence, an interactive application can
be considered as a synchronous program as long as all
user initiated actions and all external stimuli can be
caught.

3.2 The Lustre language
Lustre [5] is a language designed to write synchronous
programs (called nodes). Consider the following Lustre
program:

node Never (A : bool) returns (never_A : bool);
let

never_A = not A -> (not A and pre (never_A));
tel

This program has a single boolean input and a boolean
output. At any moment, the output is true if and only if the
input has never been true since the beginning of the
program execution. For instance, the program produces
the output sequence (true, true, true, false, false) for the
input sequence (false, false, false, true, false).

A Lustre node consists of a set of equations defining
outputs as functions of inputs and, possibly, local
variables. A Lustre expression is made up of constants,
variables and operators. An operator may be logical,
arithmetic or Lustre-specific. The third kind serves to
specify temporal constraints. It consists of two main
temporal operators. The first, called “pre”, makes possible
to use the last value an expression has taken (at the last
tick of the clock). The second, called “followed by”, is
used to assign initial values to expressions. These two
operators are defined as follows:

• If E is an expression denoting the sequence (e0, e1,
..., en, ...), pre E denotes the sequence (nil, e0, e1, ...,
en-1, ...) where nil is an undefined value. In other

words, pre E returns, at a moment t, the value of the
expression E at the moment t-1.

• If E and F are expressions denoting, respectively, the
sequences (e0, e1, e2, ..., en, ...) and (f0, f1, f2, ..., fn,
...), E -> F denotes the sequence (e0, f1, f2, ..., fn, ...).
Informally, the operator -> makes possible to assign
the initial value of an expression (i.e. at time t=0).

Lustre makes possible to implement basic logical and/or
temporal operators expressing invariants or safety
properties. For example, the temporal operator
OnceAFromBToC specifies that property A must hold at
least once between the instants where events B and C
occur.

3.3 Lutess
Lutess [3] is a tool for functional testing of synchronous
software. The main idea is to automatically generate long
input sequences and to examine whether a program
satisfies some stated properties. These properties are
requirements imposed on the program behaviours, such as
“a user’s phone goes back to its idle state every time the
user goes on the hook”. An important point is that input
sequences are generated under assumptions on the
possible behaviours of the environment interacting with
the software. For example, it is physically impossible for
the user of a telephone to go on the hook twice without
going off the hook in between.

Lutess requires three elements: the software under test, its
environment description and a test oracle (as shown in the
following figure).

 Lutess automatically builds a test data generator and a
test harness which links the generator, the software under
test and the oracle, coordinates their execution and
records the sequences of input-output values and the
associated oracle verdicts.

The test is operated on a single action-reaction cycle,
driven by the generator. The generator randomly selects
an input vector for the software and sends it to the latter.
The software reacts with an output vector and feeds back
the generator with it. The generator proceeds by
producing a new input vector and the cycle is repeated.
The oracle observes the program inputs and outputs, and

determines whether the software requirements are
violated. The test data generator is automatically built by
Lutess from an environment description written in Lustre.
The software and the oracle are both executable programs
with boolean inputs and outputs and a synchronous
behaviour.

The trace collector stores the input, output and oracle data
(boolean values) into specific files and displays the traces
in a textual mode, defined by the user.

During a test run, at each cycle (or step), the Lutess
generator randomly selects an input vector for the system
under test. Basically, the input is selected using the
environment description and assuming that the data
distribution is uniform. But the user can also define an
input statistical distribution or scenarios to guide the test
data generation.

4 Testing multimodal applications with
Lutess

4.1 Main issues
From the previous section, it results that, in order to test a
multimodal application with Lutess, one must provide:

1. The software to test as an executable program.
No hypothesis is made on the program
implementation, but an event translator must be
added to the program, translating the program
input and output events to boolean events (that
Lutess can handle).

2. The Lustre specification of the behaviour of the
external environment of the application (that is,
user initiated actions or signals as well as inputs
issued by external devices).

3. A Lustre specification of the test oracle
describing the properties that the software must
meet. Software properties may deal with
functional requirements or interaction related
requirements or recommendations.

The scope of this paper is limited to the third point and,
more precisely, to the Lustre translation of the application
CARE properties. In order to build a test oracle able to
check at every execution step the validity of the CARE
properties, the latter should be expressed as Lustre logical
expressions. For every CARE property we propose a
generic Lustre formula (see section 4.2,). This formula
can be used as a pattern and can be adapted to any
multimodal application. As an illustration, we present
some CARE properties expressed on an application
example in section 4.3.

Software
under
test

Environment
simulator

Oracle
Verdict Trace

Analyzer

4.2 Expressing CARE properties in
LUSTRE

Assume M to be a modality and n the number of
application input events associated with M. Let M[0..n-1]
be a vector of boolean variables such an entry M[i]
corresponds to a unique event of M. At a given instant, at
most one entry of M[0..n-1] is set to true.

Let MCF[0..n-1] be a vector of integer values containing
the event confidence factors. The confidence factor of the
event M[k] is MCF[k].

Output tasks are represented by boolean variables, set to
true whenever the tasks occur.

The temporal window involved in fusion is implemented
by two boolean variables start and end, which become
true respectively at the beginning and the end of every
occurrence of the temporal window. Start is defined as
follows:

 start = true -> pre end

This means that temporal windows follow each other.

4.2.1 Complementarity
Complementarity requires at least one event of two
different modalities to occur before activating the
associated output task. The expression of this property
depends on the fusion strategies mentioned in section 2:
early and lazy.

Early fusion

The complementary input events which are temporally
close are merged and the associated output task is enabled
as soon as the required inputs have been identified.

The occurrence of one event of every modality in the
current temporal window is enough to enable the output
task. It is however possible that several events of the same
modality occur in this window. In that case, the task is
computed according to the last event of each modality.
This is translated in LUSTRE as follows:

IsEquivalentTo (TM1jM2k,
 (OnceSince(M1[j], start) and
 OnceSince(M2[k], start) and
 IsLast(j, M1) and
 IsLast(k, M2)));

The node IsEquivalentTo implements the ordinary logical
equivalence while the task TM1jM2k is supposed to be
associated with the events M1[j] (of the modality M1) and
M2[k] (of the modality M2). IsLast(i, T), where i is an
integer and T a boolean vector, returns true if T[i] is the
last element that has taken the value true.

Lazy fusion

The input events which are temporally close and have the
highest confidence factors are merged in the end of the
temporal window and the associated output task is
enabled. Hence, the output task is determined at the end of
the temporal window. For each modality involved in the
interaction, only the event with the highest confidence
factor (among all the events of the same modality) in the
temporal window is taken into account. This is translated
in LUSTRE as follows:

IsEquivalentTo (TM1jM2k,
 (end and OnceFromTo(M1[j], start, end) and
 OnceFromTo(M2[k], start, end) and
 IsTheHighestCFFromTo(M1CF[j], M1, M1CF, start,
end)
 and
 IsTheHighestCFFromTo (M2CF[k], M2, M2F, start,
end)));

The node IsTheHighestCFFromTo takes as input a
confidence factor (integer) of an event, a vector of
Boolean variables and a vector of confidence factors, as
well as two boolean variables (start, end) indicating the
beginning and the end of a temporal window. It returns a
true value if no event has occurred between start and end
the confidence factor of which has been more elevated
than the confidence factor of the first parameter.

4.2.2 Redundancy and Equivalence
If there are several input events, redundancy requires the
fusion process to choose one event among those of all the
available modalities. Equivalence admits a single input
event to be propagated.

For example, if the mouse cursor can be manipulated by
two input devices (either the mouse, or the tactile
pavement), these two devices are considered as redundant
and equivalent. In case of redundancy, the fusion process
will choose one of the two events while in case of
equivalence, the presence of several events is not
required.

Early fusion

An output task is activated as soon as the associated input
event is received:

IsEquivalentTo (TM1jM2k, (M1[j] or M2[k])) ;

Lazy fusion

At the end of the temporal window, the input event with
the highest confidence factor is propagated and the
adequate output task is activated. The considered event
must have the highest confidence factor among all the
events of all the modalities, which have occurred within
the temporal window. A LUSTRE expression of this
property is the following:

IsEquivalentTo (
 TM1jM2k,
 (end and (
 (OnceFromTo(M1[j], start, end) and
 IsTheHighestCFFromTo (M1CF [j],
 M1|M2, M1CF|M2CF, start, end)
) or
 (OnceFromTo(M2[k], start, end) and
 IsTheHighestCFFromTo (M2CF [k],
 M1|M2, M1CF|M2CF, start, end)))));

M1|M2 denotes the concatenation of the two vectors M1
and M2.

4.3 An application example: Geonote

4.3.1 Brief description
Geonote is a prototype multimodal application developed
for PDAs. Geonote users can read, write, get and drop
virtual digital notes (“post-it”). The digital notes are
localized in space. When a user moves from a place to
another, his/her PDA catches the virtual notes that other
users have dropped. The user can read a virtual note
and/or delete it. He/she can also create a new note and
drop it.

The Geonote user can issue commands by means of the
PDA pen or by voice: two input modalities are therefore
available.

When Geonote detects a new “post-it”, the task “manage
current post-it” becomes available. The user can then
read, delete or save the post-it:

• by using the pen on the PDA (for example, by
selecting the “delete” button);

• by issuing a voice command (for instance, by saying
“read”);

• by using the two modalities in a redundant way (for
instance, by saying “read” while selecting the “Read”
button).

Two CARE properties are relevant for the task “manage
current post-it”: (1) equivalence since the task can be
performed by using one of the two available modalities;
(2) redundancy since the user can use the two available
modalities in a redundant way.

4.3.2 LUSTRE expression of CARE
properties

In order to provide a LUSTRE expression of these CARE
properties, we use two boolean vectors, Pen [0..2] and
Voice[0..2]:

• Pen[0] or Voice [0] are set when the user command is
“Consult”;

• Pen[1] or Voice [1] are set when the user command is
“Delete”;

• Pen[2] and Voice [2] correspond to the “Save”
command.

Assume that we want to check that the user can save a
post-it by a vocal command or by pen manipulation (i.e.
that the equivalence property holds) or by the two
modalities (i.e. that redundancy holds).

If the early fusion strategy is used, this property is simply
expressed as follows:

IsEquivalentTo (SaveCPostT, (Pen[2] or Voice[2])).

For the lazy fusion, we need two more vectors (PenCF
[0..2], VoiceCF [0..2]) such as PenCF[i] is the confidence
factor of Pen[i] (similarly for VoiceCF and Voice).

The LUSTRE expression for the same property is:

IsEquivalentTo (
 SaveCPostT,
 (end and (
 (OnceFromTo(Pen[2], start, end) and
 IsTheHighestCFFromTo (PenCF[2],
 Pen|Voice, PenCF|VoiceCF, start, end)
) or
 (OnceFromTo(Voice[2], start, end) and
 IsTheHighestCFFromTo (VoiceCF[2],
 Pen|Voice, PenCF|VoiceCF, start, end)))));

The Geonote application has been tested with test oracles
built according to that method. In two cases, the
application failed to satisfy the associated CARE
properties: these failures indeed correspond to software
faults.

5 Conclusion and future work
This paper presents a first study towards the definition of
a method for automatically testing multimodal
applications by means of the synchronous approach. We
have focused on the CARE properties that describe
different forms of multimodality. Lustre patterns have
been defined, making possible to build test oracles to
automatically detect a non respect of the properties.

As future work, we plan to study the test data generation.
Up to now, the latter has been randomly made. The
strategies provided by Lutess should be used to improve
the testing effectiveness.

6 References
[1] Coutaz, J., Nigay, L., Salber, D., Blandford, A., May,

J. and Young, R. (1995). Four Easy Pieces for
Assessing the Usability of Multimodal Interaction:
The CARE properties. INTERACT'95, Norway.

[2] B. d'Ausbourg. Using Model Checking for the
Automatic Validation of User Interfaces Systems.
DSVIS'98, pages 242 -- 260, Abingdon, UK, June
1998.

[3] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and
N. Zuanon. Lutess: a specification driven testing
environment for synchronous software. In 21st
International Conference on Software Engineering,
pages 267-276. ACM Press, May 1999.

[4] Duke, D. and Harrison, M. (1993). Abstract
Interaction Objects. Computer Graphics Forum.
Eurographics'93.

[5] N. Halbwachs. Synchronous programming of reactive
systems, a tutorial and commented bibliography. In
Tenth International Conference on Computer-Aided
Verification, CAV'98, LNCS 1427, Vancouver
(B.C.), June 1998. Springer Verlag.

[6] Nigay, L., Jambon, F. Coutaz, J. Formal Specification
of Multimodality. CHI’95, Workshop on Formal
Specification of User Interfaces.

[7] Nigay, L. & Coutaz, J. (1993). A design space for
multimodal interfaces: concurrent processing and
data fusion. Proc. InterCHI'93 ACM: New York,
172-178

[8] Palanque P., Bastide R. (1995). Verification of
Interactive Software by Analysis of its Formal
Specification. INTERACT'95, Norway.

[9] I. Parissis, F. Ouabdesselam. Specification-based
Testing of Synchronous Software. ACM SIGSOFT
Fourth Symposium on the Foundations of Software
Engineering, San Francisco, 1996.

[10] Paterno, F. and Faconti, G. (1992). On the Use of
LOTOS to Describe Graphical Interaction. In People
and Computers VII, Proc HCI'92. Cambridge
University Press, 155-173.

