
User-Centric Design of a Vision System for Interactive Applications

Stanislaw Borkowski†, Julien Letessier†§, François Bérard§, and James L. Crowley†

†INRIA Rhône-alpes
GRAVIR laboratory – PRIMA group

655 avenue de l’Europe – Montbonnot
38334 Saint Ismier Cedex – France

{stan.borkowski,julien.letessier,james.crowley}@inrialpes.fr

§CLIPS – IMAG
HCI group

BP 53
38041 Grenoble Cedex 9 – France

francois.berard@imag.fr

Abstract

Despite great promise of vision-based user interfaces,
commercial employment of such systems remains marginal.
Most vision-based interactive systems are one-time, “proof
of concept” prototypes that demonstrate the interest of a
particular image treatment applied to interaction. In gen-
eral, vision systems require parameter tuning, both during
setup and at runtime, and are thus difficult to handle by non-
experts in computer vision. In this paper, we present a prag-
matic, developer-centric, service-oriented framework for
the construction of vision-based interactive systems. Our
framework is designed to allow developers unfamiliar with
vision to use computer vision as an interaction modality.
To achieve this goal, we address specific developer- and
interaction-centric requirements during the design of our
system. We validate our approach with an implementa-
tion of standard GUI widgets (buttons and sliders) based
on computer vision.

1. Introduction

Computer vision has the potential to provide a rich
modality for user input in interactive systems. Numerous
examples from the literature illustrate the diversity of appli-
cation domains and interaction styles created using vision
as input modality [7, 11, 9, 14, 2, 12, 10]. Yet, there are sur-
prisingly few examples of commercially available vision-
based interactive systems.

Human-computer interface (HCI) developers are used to
hardware-based input devices that provide data “out of the
box” with little or no off-line or runtime tuning. In contrast,
vision-based input systems can only be integrated by HCI
developers with great difficulty: they require vision exper-
tise for setup, as well as execution conditions incompatible
with typical HCI requirements. In this sense, most current
computer vision systems do not just work.

We believe that to popularize vision-based interfaces,
computer vision systems must be made more developer-
friendly as well as more user-friendly. To accomplish this,
it is necessary that vision system developers adopt a dif-
ferent perspective. In this paper, we present an approach
to vision system design that aims at minimizing the diffi-
culties related to the deployment of vision-based interactive
systems by: (a) encapsulating vision components in isolated
services, (b) imposing these services to meet specific usabil-
ity requirements, and (c) limiting communications between
the services and the interactive applications to a minimum.
We describe our approach in section 3.

In section 4, we design a system for vision-based interac-
tive widgets for augmented surfaces, and propose a break-
down into atomic services. In this context, we identify the
necessary information exchange between services and with
the application. Meeting the requirements detailed in sec-
tion 3 influences the choices of the image processing algo-
rithms used; in particular, they require little or no setup and
tuning and feature usability-grade latency. Our implemen-
tation is robust to light changes and is moderate in CPU
usage. Finally, in section 5 we detail an implementation of
a simple vision-based calculator built using the described
vision system.

In this paper, we consider the requirements of developers
and end-users. By “developers”, we refer to the developers
of the interactive systems aimed at “end-users”. In particu-
lar, these are not the developers of the vision system and we
do not expect them to have computer vision expertise. By
“end-users”, we refer to the users of the final system, who
are assumed to have neither developer nor computer vision
expertise.

2. Related work

Much work has been done in vision-based gesture recog-
nition and novel interaction styles research, but the problem

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

of integrating vision to standard development has only re-
cently received attention. Kjeldsen et al.[5] present an ar-
chitecture for dynamically reconfigurable vision-based user
interfaces (VB-UIs). They propose to separate the applica-
tion from the vision engine. The core application controls
the vision engine by sending XML messages specifying the
current interface configuration. The interface is composed
of interaction widgets defined at the level of functional core
by their function and position in the interface. As end-users
actuate widgets, the image processing engine sends mes-
sages that correspond to interaction events to the applica-
tion’s functional core.

The modular decomposition of vision components, as
well as the separation of image treatment from the func-
tional core of applications are important steps toward
“developer-usable” VB-UI components. However, as pre-
sented, the VB-UI approach requires its developer to define
sets of parameters and calibration data for the vision treat-
ment engine for each interface configuration and location.
Setting parameters for particular conditions allows fine tun-
ing of the vision system. On the other hand, it requires the
user of the vision system (the developer) to understand the
underlying image processing algorithms, which is contra-
dictory with the idea of VB-UI deployment by developers
unfamiliar with vision.

In [13] Ye et al. present a framework for vision-based in-
teractive components design. Both Kjeldsen et al. and Ye et
al. propose to analyze camera input only in regions of inter-
est around interactive “zones” of the interface, thus making
the vision engine more economic in CPU usage. However
Ye et al. go a step further, and instead of applying one vi-
sion algorithm per widget type, they propose to use a set of
different detection techniques to obtain visual events called
Visual Interface Cues (VIC). Each VIC detector called also
selector examines a small part of the camera image for vi-
sual events that can be of different nature, like color, tex-
ture, motion or object geometry. Selectors are structured
into hierarchies, and each selector can trigger one or more
other selectors. Interaction events are detected based on se-
quences of selectors output. For instance, a touch sensitive
button uses only motion detection at first. Once motion is
detected, a VIC-based button switches to color-based im-
age segmentation and to segmentation-based gesture recog-
nition.

While the VIC paradigm presented in [13] is appealing
for widget-oriented interface design, it lacks the analysis
of VIC selectors suitability for interactive systems. Indeed,
the VICs framework is presented from the perspective of an
expert in computer vision. It does not consider setup and
maintenance issues related to each selector such as thresh-
old setting or lighting requirements. In section 4 we present
a VIC-based implementation of basic interactive widgets
that was conceived to respect the requirements identified in

section 3.
Finally, the Papier-Mâché [6] toolkit features a frame-

work for the creation of multimodal interactive applications,
in particular using computer vision. The toolkit design is
based on a detailed user study, and offers an abstract, event-
based model to work with multiple modalities. The vision
part allows object recognition and tracking to be used as ap-
plication input. While the design seems to be well-thought
from the HCI perspective, it has several architectural short-
comings; in particular typical problems linked to object
recognition (such as the aspect variations due to lighting
changes) are not dealt with, and several thresholds must be
set manually, on-line, by the developer using the toolkit.

3. Service-oriented design

Vision-based user interfaces rely on vision processes that
extract high-level, abstract information from streams of im-
ages. This information is what is relevant for the interaction
task. Except for “proof of concept” demonstrations created
by computer vision researchers, this information is to be
used by interactive application developers who have little to
no expertise in the computer vision. This implies that a vi-
sion system that aims to be used outside the laboratory must
be designed from a developer-centric point of view. In ad-
dition, all interactive systems, including vision based once,
must consider end-user requirements. In this section, we de-
scribe how user-centric and developer-centric requirements
influence both the structure of a VB system and its applica-
tion programming interface (API).

Our goal is to provide a set of computer vision services to
developers of interactive systems. We aim at offering these
services at different levels of abstraction. At the highest
level, a service is an autonomous “black-box” application
that, once launched, provides abstract information through
some communication channel (a network socket, or a shared
memory for examples). Developers should not need any
knowledge of the vision processes. They simply connect to
the black-box application and receive abstract events such
as the position of the fingers in the case of a finger tracker
service, or activation of striplets in the case of the SPOD
service that we describe later. We facilitate the communi-
cation between the vision application and the developer’s
application by using a very simple communication proto-
col. This approach is developer-centric in the sense that we
only expose and make easy to access what matters to the
developer: the high-level events.

3.1. Non-functional requirements

Typical user-centric criteria against which an interactive
system is evaluated include overall latency, reliability and

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

autonomy [7]. Here, we shortly describe these criteria and
how they constrain the architecture of vision systems.

Latency. Interactive systems generally require a con-
straint on latency. For user input systems latency is mea-
sured as the time between the user action and the notifica-
tion of the application. Typically, when using a vision-based
finger tracker or a mouse to drag projected objects on a sur-
face, the latency must be under 50 ms to optimize usability
[8]. On the other hand, for a system that monitors the num-
ber of persons present in a room, a latency of 1 second may
be acceptable. In consequence, a general architecture for
vision services must be able to respect strict latency limits
in communicating information to the application.

Autonomy. Vision-based systems usually require opera-
tor intervention for initial setup and maintenance. While ac-
ceptable in a laboratory setting, such intervention is poorly
suited for deployment. Our “black-box” approach reduces
the possibility of operator maintenance by reducing com-
munication between the vision service and the developer’s
application to a minimum.

Ideally, vision system developers should devise auto-
matic maintenance solutions without offering a mainte-
nance API. However, we acknowledge that designing fully
autonomous vision system is a difficult goal that will not
be reached in the short run for many services. When oper-
ator intervention is mandatory, one must take into account
that the calibration task will be performed by a non-expert.
Therefore, the maintenance procedure must be designed ap-
propriately to minimize disrupting the end-user from her/his
primary tasks.

Reliability. In most cases, information needs to be reli-
ably conveyed between the input system and the applica-
tion. For instance, an application that receives events when
a person enters or exits an augmented room cannot afford
to “miss” an event because its state would become incoher-
ent. Losing some events from a tracking system, on the
other hand, would not necessarily break the interaction, but
would deteriorate the end-user experience. Therefore, our
architecture must include reliable transport for interactive
events.

3.2 Functional requirements

We propose a number of developer-centric requirements
for our system in order to successfully address the target au-
dience. These requirements include abstraction, isolation,
and contract. Together they form the notion of a service.

Abstraction. To HCI developers, “abstracting the input
[is] the most time consuming and challenging piece of ap-
plication development” [6]. Since we assume the user of
our vision system (the application developer) has no vision
expertise, vision-specific information should not be made
visible.

Even though coupling processing results with a confi-
dence factor might be richer, this information is, in most
cases, of no interest to developers. For instance, optical
mice use normalized cross-correlation to determine the di-
rection and speed of the movement. As long as the corre-
lation coefficient is above a threshold they send positional
data to the computer, otherwise they remain silent. The cor-
relation coefficient is not sent to the system. The services
internal data, such as the confidence factor, should not be
considered as first-class output of services and should not
be made visible by default. However, in cases where devel-
opers need to access this information, it should be available
by explicit request from the developer.

End-user input should be abstracted to interaction events
that are the same for a given class of input. For example,
a finger tracker should produce “motion” events compatible
with mouse “motion” events so that developers can, as a first
step, quickly substitute vision-based input to existing event
processing code. In other words, the abstracted data from
the vision service should be in a form that is easily con-
nectable to existing graphical user interface code. Conse-
quently, the API of a VB input system for interaction should
(a) render the vision aspects invisible, and (b) generalize the
input used for a given task.

Isolation. Input subsystems like a VB-UI may need to
be used by multiple applications, possibly running on dif-
ferent machines – for performance or geographic reasons.
For instance, a video capture service might be used concur-
rently by a surveillance system located on a remote server,
by a video-conference application, and by a motion cap-
ture service, both co-located to the camera. Since “a par-
ticular piece of input can be used for many different types
of output” [6], information generated by a vision system
must be shareable, and both remotely and locally accessi-
ble. Moreover, any input system for interaction should be
easily extensible (for instance using output adapters, aggre-
gators, or supervisor patterns) and embeddable in other ser-
vices or in applications. Designing a VB input system as a
federation of “black box” components therefore appears to
be adequate.

Contract. Developers of toolkits or input devices usually
establish a contract with the UI developer, in terms of HCI-
centric, non-functional criteria. For instance, for positional
or tracking input (mice, trackpads, laser trackers, etc.), the

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

relevant criteria are latency, precision, robustness, and au-
tonomy.

• latency is implicitly under a usability threshold for
standard tracking input devices (the textbook value [8]
is around 50 ms);

• precision is also implicitly defined for a
mouse/trackpad (under 1 display pixel, scaled
with respect to the device gain)

• robustness is generally “absolute”. In other words the
device or system either works or doesn’t. For instance
an optical mouse “just works” as long as used on an
adequate surface, and stops emitting positional events
as soon as the contact stops.

• autonomy, or the lack of setup and maintenance, is also
tacit for traditional devices.

In the case of VB input systems, these criteria are dif-
ficult to meet. Therefore, it is the role of the vision sys-
tem designer to explicitly state in contract form the limita-
tions with respect to these criteria. For instance, the system
should notify the client application about robustness-related
failures rather than provide incorrect or distorted informa-
tion along with a (low) confidence factor. This corresponds
to a binary quality of service evaluation and requires the
system to perform introspection.

3.3. A pragmatic approach

Our approach is to generally isolate as much as possi-
ble the VB input system from the application that uses it,
and minimize the communications between them. We pro-
pose to encapsulate the relevant services into independent,
“black-box” processes that use only serialized communica-
tions.

To allow for low latency while preserving reliabil-
ity, we propose to use traditional socket-based (TCP and
UDP) communications. We use the TCP link to guar-
antee the connection between services or with the appli-
cation, and to allow for reliable, high-latency communi-
cations, and the UDP link for low-latency communica-
tions. This constitutes the base of the “BIP/1.0” protocol
we use for communications between services (draft spec-
ification at http://www-prima.inrialpes.fr/
prima/pub/Publications/index.php).

System autonomy cannot be enforced at the architec-
tural level. Nevertheless, not providing support for syn-
chronous communications (thus making it difficult to im-
plement transactions between the application and a service)
limits the possibility of implementing setup mechanisms
where automatic setup can be devised.

Finally, since the contract offered by a VB input system
cannot be expressed simply as a part of an API, we propose
to document it explicitly. This means that the developer
of the system must evaluate it against the criteria presented
above in order to circumscribe conditions of use for the vi-
sion system.

4. Basic services for vision-based UI design

To illustrate our service-oriented approach with an im-
plementation, we choose to study vision systems applied
to traditional interfaces. Typically, we investigate the use
of graphical WIMP-like interfaces projected on surfaces of
mundane objects. We assume that end-users are free to in-
teract with projected images without wearing markers or ac-
tuating any hardware.

We break down our VB input system into three services:
(1) the widget service, which the client will interoperate
with; (2) the image capture service, which abstracts the
camera, allowing it to be used by other systems eventually;
and (3) the calibration service, which establishes the geo-
metrical mapping between the camera view and the display.

4.1. Simple Pattern Occlusion Detectors

In [3] we presented an appearance-based implementation
of touch sensitive projected buttons which we called “Sen-
sitive widgets”. The presence of an object over a button on
the interaction surface is detected by observing the change
of perceived luminance over the button center area with re-
spect to a reference area. By defining the reference area
around the central-one, the button is made robust to com-
plete occlusion, and sensitive to appearance changes made
by elongated objects. Very simple image processing allows
this system to maintain several dozens of sensitive widgets
at camera frame rate (PAL-size images at 25 Hz) on a typ-
ical desktop computer. Moreover, this approach is robust
to lighting changes, and thus suitable for configurations in
which the interface is projected frontally from a video pro-
jector.

Implementation and evaluation of several interface pro-
totypes based on sensitive widgets demonstrated that, from
the end-user’s perspective, robustness to partial occlusions
is also necessary. Indeed, a user pointing at a far-part of the
interface would likely hover her/his arm over projected but-
tons, thus triggering partially occluded widgets. A partial,
unsatisfactory solution was obtained by deactivating partly
occluded widgets based on the input from widgets placed
further away from the user. The idea of combining inputs
from several sensitive widgets led us to re-think the touch
detection approach.

We now choose to assemble atomic occlusion detectors,
which are to be placed within and around widgets, in a way

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

that allows the system to distinguish some simple occlusion
patterns. The geometry of the detectors (called “striplets”)
is simplified to a rectangular strip. These detectors are as-
sembled into a federation to provide the SPOD (Simple
Pattern Occlusion Detectors) service. The SPOD service
is internally divided into two separated layers: the image
processing layer called the Striplet Engine (SE), in charge
of image processing, and the Vision Events Interpretation
Layer (VEIL), in charge of input abstraction. Both of these
layers were designed to meet the requirements described in
section 3.

Striplets are defined as sensitive patches on the interface.
Their response is calculated as the integral of the perceived
luminance multiplied by a gain function over the surface
of the striplet. The gain function has to be chosen so that
the integral equals zero when the luminance over the whole
striplet is constant. In current implementation the gain func-
tion is a symmetric step function with positive value over
the central part of the striplet and negative value at both
ends of the striplet (Figure 1).

x

1

−1

x

y

gain

Figure 1. Striplet geometry and the gain func-
tion.

Striplets are designed to detect occlusion by elongated
objects. Each striplet is 40 millimeters long and 10 millime-
ters wide on the projected interface. These dimensions are
chosen to ensure a maximal response to occlusions made
by finger-sized objects occluding the striplet’s central area.
Occlusions of any extremity of a striplet are intentionally
ignored.

The camera coordinates of a striplet are calculated based
on its position in the interface as given by the VEIL ser-
vice and the camera-interface mapping. The event trigger
threshold, on the other hand, is estimated individually for
each striplet by the SE without any control from the client
application. This threshold is automatically set to half of
the maximal positive response of a striplet during interac-
tion. The only assumption is that fingers contrast with the
interface, which is true in most setups.

The VEIL is the “brain” of the SPOD service. The VEIL
(a) translates widgets coordinates defined by the client ap-
plication to a set of striplets coordinates, and (b) analyses
the occlusion events generated by the SE and issues inter-
action events when appropriate.

Currently two types of interactive widgets are imple-
mented: touch buttons and sliders. This allows a designer to
build simple WIMP-like user interfaces. The button widget
is composed of six striplets: two crossed in the center and
four other surrounding the button center (Figure 2). Touch
events are issued only if occlusion is detected by at least
one of the center striplets and no more than one surrounding
striplets. Sliders are simply obtained by assembling multi-
ple partially overlapping buttons.

Finger

Projected button

Stripltes sending
occlusion event

Figure 2. Button widget made of six striplets.

Since monocular vision systems cannot detect when a
finger actually touches the interface, interaction events are
generated only after detecting a short pause of the finger
over a widget. The dwelling period, set to 250 ms, cor-
responds to the button-down event for mouse-based inter-
action. To move a slider, the end-user has to first “press” it
and then drag it. This is coherent with existing WIMP inter-
face behavior. In contrast, the dragging task requires from
the end-user 2D movement coordination. If user’s finger
exits the SPOD slider area, dragging is stopped.

By assembling striplet detectors in more sophisticated
ways, it is also possible to develop different types of inter-
active widgets, for instance crossing-based menus [1]. An
extreme case would cover the whole interface surface with
SPOD-button-like structures, thus making a SPOD-based
finger tracker.

Service API. The SPOD service requires the client appli-
cation to specify the position of each interactive widget in a
normalized coordinate frame of the interface. Additionally,
the SPOD service needs to know the mapping between the
camera view and the interface, as well as a rough estimate
of the number of pixels per unit length of the interface in the
scene. Both the mapping and the scale, are provided by a

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

calibration service (discussed below). The communication
between SPOD service and calibration service is invisible to
the client application. The SPOD service exclusively sends
to the client application a stream of interaction events. All
communication occurs via TCP/IP connections, using the
BIP protocol described in section 3.3.

Inter-layer API. Both the SE and the VEIL are imple-
mented as independent services, running in independent
processes. Their communication also is asynchronous and
event-driven, using BIP. For a given interface configuration,
the VEIL sends to the SE coordinates of all striplets together
with the interface-camera mapping matrix. The SE layer
sends back to VEIL striplets state-change events that result
from end-user interaction with the system.

Contract for the SPOD service. The initial SPOD ser-
vice implementation can handle up to 300 striplets at cam-
era frame rate (30 Hz) with images of 320x240 pixels size
on a 2.8 GHz Pentium IV processor. In terms of widgets,
this means the system can handle roughly 50 SPOD buttons
simultaneously.

Because actuating buttons is not close coupled interac-
tion, the latency is less of an issue. In fact, the VEIL
makes the distinction between accidental occlusions and in-
tentional actions based on a dwell time. On the other hand,
the SE service is implemented to minimize latency.

Striplets only provide coarse resolution for finger posi-
tions. The resolution can be enhanced by averaging the
position of several striplets detecting the same finger. Our
implementation of a slider widget achieves a resolution of
about 5 millimeters.

The SPOD service is made autonomous (i.e. exept for
the UI-camera mapping and scale there are no parameters
to set), at the expense of robustness to certain condition
changes. In particular, the SE layer would fail to detect oc-
clusion from a finger on a dark background, it would also
fail if the image contrast decreases due to a change in cam-
era setting.

While the SPOD service was designed to respect the
developer-centric requirements, it does not fully meet user-
centric requirements. In particular, the simplistic auto-
matic threshold estimation results in occasional false pos-
itive touch detections. However, the SPOD service can be
described within the Visual Interface Cues (VICs) frame-
work [13], with local luminance changes as the only visual
cue. Using a similar approach for spacio-temporal gesture
recognition like in [13], we can hope to alleviate the need of
setting an occlusion threshold. Instead, striplets responses
would be fed to a neural network based VEIL.

4.2. Support Services

Calibration consists in the geometrical coupling of the
camera view (what the vision system percieves) and the dis-
played interface (what the application developer controls).
The calibration service clients need to access the mapping
information to transform vision information (e.g. positions
in camera coordinates) into application-relevant data (e.g.
positions in interface coordinates). This is achieved by pro-
viding the associated projective transformation in matrix
form. Because the calibration service needs information
from both the camera and the application, two approaches
are possible: (a) If it controls the graphical output, it can
work without interaction with the application. This is the
case in the PDS example [3], where the interactive surface
itself is tracked by the service. (b) In the general case, it
must negotiate with the client application the display of a
calibration grid [7].

Image acquisition service creates an abstraction of the
camera. It allows concurrent access to the camera by multi-
ple services. In our case, both the calibration service and the
SE require access to the image stream. Low latency video
sharing is implemented using shared memory buffers.

5. Application

Using the widget implementation described above, we
have implemented a simple calculator application. The cal-
culator interface can be projected and manipulated directly
with fingers on the top of a desk. This interface allows a
user to perform basic calculations such as addition, subtrac-
tion, division and multiplication. Numbers can be either
typed on the calculator keyboard or chosen from the history
buffer containing results of previous operations. The his-
tory buffer can be browsed using a slider on the left side of
the calculator.

An informal evaluation of the calculator application,
made by volunteers from our laboratory, showed that
SPOD-widgets are easy to use and allow fast interface
prototyping. A video showing the application working is
available in the demo section of http://www-prima.
inrialpes.fr/

6. Conclusions

This paper presents a developer oriented design approach
for vision-based interactive systems. Inspired by [5], we de-
compose the vision-based applications to isolated processes
of vision components and functional core of the applica-
tion. The implementation of the vision-components draws
on the VICs framework presented by Ye et. al in [13].

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

We believe that extending these two design approaches by
an HCI-centric requirements analysis allows to build vision
systems that can be used for interactive systems designed by
developers unfamiliar with vision. Following the guidelines
of the developer-centric and end-user-centric requirements
analysis we implemented vision-based interactive widgets:
buttons and sliders. We illustrate the feasibility of our ap-
proach with an implementation of a simple calculator for
projection-augmented surfaces.

Acknowledgments

This work has been partially funded by the European
project FAME (IST-2000-28323), the FGnet working group
(IST-2000-26434), and the RNTL/Proact ContAct project.

References

[1] G. Apitz and F. Guimbretière. Crossy: a crossing-based
drawing application. In UIST ’04: Proceedings of the 17th
annual ACM symposium on User interface software and
technology, pages 3–12, 2004.

[2] F. Bérard. The magic table: Computer-vision based augmen-
tation of a whiteboard for creative meetings. In Proceedings
of the ICCV Workshop on Projector-Camera Systems. IEEE
Computer Society Press, 2003.

[3] S. Borkowski, J. Letessier, and J. L. Crowley. Spatial con-
trol of interactive surfaces in an augmented environment. In
R. Bastide, P. A. Palanque, and J. Roth, editors, EHCI/DS-
VIS, volume 3425 of Lecture Notes in Computer Science,
pages 228–244. Springer, 2004.

[4] J. L. Crowley, J. H. Piater, M. Vincze, and L. Paletta, edi-
tors. Computer Vision Systems, Third International Confer-
ence, ICVS 2003, Graz, Austria, April 1-3, 2003, Proceed-
ings, volume 2626 of Lecture Notes in Computer Science.
Springer, 2003.

[5] R. Kjeldsen, A. Levas, and C. S. Pinhanez. Dynamically
reconfigurable vision-based user interfaces. In Crowley et al.
[4], pages 323–332.

[6] S. R. Klemmer, J. Li, J. Lin, and J. A. Landay. Papier-
mâché: toolkit support for tangible input. In Proceedings
of the 2004 conference on Human factors in computing sys-
tems (CHI’04), pages 399–406. ACM Press, 2004.

[7] J. Letessier and F. Bérard. Visual tracking of bare fingers
for interactive surfaces. In UIST ’04: Proceedings of the
17th annual ACM symposium on User interface software
and technology, pages 119–122. ACM Press, 2004.

[8] I. S. MacKenzie and C. Ware. Lag as a determinant of hu-
man performance in interactive systems. In Proceedings
of the conference on Human factors in computing systems,
pages 488–493. Addison-Wesley Longman Publishing Co.,
Inc., 1993.

[9] C. Pinhanez, R. Kjeldsen, T. Levas, G. Pingali, M. Pod-
laseck, and P. Chou. Ubiquitous interactive graphics. In
IBM Research Report RC22495 (W0205-143), May 2002.

[10] R. S. Rao, K. Conn, S. H. Jung, J. Katupitiya, T. Kientz,
V. Kumar, J. Ostrowski, S. Patel, and C. J. Taylor. Hu-
man robot interaction: Application to smart wheelchairs.
In Proceedings of the 2002 IEEE International Conference
on Robotics and Automation (ICRA’ 02), pages 3583–3589,
May 2002.

[11] R. Raskar, J. van Baar, P. Beardsley, T. Willwacher, S. Rao,
and C. Forlines. iLamps: geometrically aware and self-
configuring projectors. ACM Trans. Graph., 22(3):809–818,
2003.

[12] P. Wellner. The digitaldesk calculator: Tactile manipulation
on a desk top display. In ACM Symposium on User Interface
Software and Technology, pages 27–33, 1991.

[13] G. Ye, J. J. Corso, D. Burschka, and G. D. Hager. Vics: A
modular vision-based hci framework. In Crowley et al. [4],
pages 257–267.

[14] Z. Zhang, Y. Wu, Y. Shan, and S. Shafer. Visual panel:
virtual mouse, keyboard and 3d controller with an ordinary
piece of paper. In Proceedings of the 2001 workshop on
Percetive user interfaces, pages 1–8. ACM Press, 2001.

Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS 2006)
0-7695-2506-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

