
Mapping Model: A First Step to Ensure Usability
for sustaining User Interface Plasticity

Jean-Sébastien Sottet
12

Gaëlle Calvary
1

Jean-Marie Favre
2

University of Grenoble, CLIPS
1
 and LSR

2
 Labs

385, Rue de la Bibliothèque, BP53, 38041 Grenoble cedex 9, France

jean-sebastien.sottet@imag.fr gaelle.calvary@imag.fr jean-marie.favre@imag.fr

ABSTRACT

Ubiquitous computing has introduced the need for interactive

systems to be able to adapt to their context of use (<User,

Platform, Environment>) while preserving usability. This property

has been called plasticity. Until now, efforts have been put on the

functional aspect of adaptation, neglecting the usability part of the

definition. This paper investigates MDE mappings for embedding

both the description and control of usability. It first provides a

general definition and metamodel of the notion of “mapping” that

are not devoted to Human-Computer Interaction (HCI). A

mapping describes a transformation that preserves properties. A

transformation is performed by a set of transformation functions

that can be described either by a function and/or an execution

trace. The mappings properties provide the designer with a means

for both selecting the most appropriate transformation functions

and previewing the resulting design. When applied to HCI,

mappings are an easy way for both describing and controlling

ergonomic criteria either at design time or runtime. Mappings are

rubber bands that link together different perspectives of a same

User Interface (UI). They break when the UI goes outside its

plasticity domain.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Contructs and

Features – abstract data types, polymorphism, control structures.

The ACM Computing Classification Scheme:

http://www.acm.org/class/1998/

General Terms

Algorithms, Design, Human Factors, Standardization, Languages,

Theory.

Keywords

Model, Metamodel, Mapping, Model transformation, Advanced

User Interfaces, Plasticity, Usability, Adaptation.

1. INTRODUCTION
In Human-Computer Interaction (HCI), plasticity refers to the

ability of a User Interface (UI) to withstand variations of context

of use (<User, Platform, Environment>) while preserving

usability. Until now, efforts have been put on the functional

aspect of adaptation. Model Driven Engineering (MDE) has been

seen as promising [3] [10]. At MDDAUI’05, we presented a MDE

approach promoting the description of a UI as a net of models and

mappings (called octopus) [17]. In this paper, we go one step

further investigating the usability part of the plasticity definition.

We show how usability can be described and controlled along the

mappings that compose a UI (the octopus legs). The idea was

roughly sketched in [18].

The paper is threefold. In a first section, it provides a short

reminder of the octopus vision and a basic case study for

illustration. Then, it elaborates a general definition and

metamodel of the notion of “mapping” that are not devoted to

HCI but applicable to the domain as demonstrated on the case

study. Finally, the paper opens a discussion on issues and

perspectives in the areas of advanced UIs and MDE in general.

2. TOWARDS OCTOPUSES
Taking benefit from the past in HCI, the idea is to describe a UI as

a net of models and mappings. The models define different

perspectives on a same UI: domain concepts, user’s task,

workspaces (Wks) and interactors (I) (Figure 1). For their

deployment, these models require resources that are supplied

either by the functional core (FC) and/or the context of use (in

particular, the platform that provides the end-user with input and

output devices). Deployment is modeled as a set of mappings (the

gray boxes on Figure 1). Models and mappings are compliant to

metamodels.

Figure 1. In our MDE vision, UIs look like octopuses. They are

net of models whose mappings define the UI deployment on the

functional core (FC) and the context of use.

As illustration, let us consider a basic booking system inspired

from Nogier’s book [13]. For making a reservation, the end-user

is supposed to first specify the date, then the period of the day

(morning versus evening), and finally the number of seats he/she

would like to book. Figure 2 illustrates a sub-part of the

corresponding octopus: the mappings between tasks, concepts and

interactors. In Figure 2a, dashes have been introduced at the

interactor level to make explicit the fact that the task “Specify

date” is mapped on two guiding labels (“Date”, “mm/dd/yy”). In

this case, there is no (human) error protection: text fields do not

prevent the end-user from bad entries. In contrast in Figure 2b, the

calendar and the radio buttons decrease the risk of error when

specifying the date and the period of the day.

Figure 2. A basic case study illustrating a sub-part of the

octopus: the mappings between tasks, concepts and

interactors. For legibility, the equivalent dashes for the other

mappings in a) and b) have not been drawn.

This paper deals with usability. It shows how usability can be

described along mappings. To that end, it provides a general

definition and metamodel of mappings that go beyond HCI.

3. MAPPING METAMODEL
Our mapping metamodel is centered on the notion of

transformation. Thus, we first define the notions of mappings and

transformations before presenting the metamodel.

3.1 Mappings and transformations
In the MDA literature (see Table 1), the term “mapping” is far

from being clear. However, it is clearly coupled with

transformations.

Table 1. A confusing literature on “mappings” and

“transformations” terms.

Figure 3 aims at clarifying the situation according to [5]. In

particular, it defines the labels of the columns of Table 1.

On Figure 3, “f(x)=x+2” is a transformation model that is

compliant to a mathematical metamodel. A transformation model

describes (the µ relation) a transformation function in a predictive

way: in our example, {(1,3),(2,4),(3,5)…} for “f” when applied to

integers. A transformation function is the set of all the

transformation instances inside the variation domain (here, the

integers). A transformation instance is a subset (the ε relation) of

the transformation function. It is the execution trace of the

function (“f”).

Figure 3 refines the µ relation into µp and µd. These relations

respectively stand for predictive and descriptive representations.

Predictive means that there is no ambiguity: the transformation

model (e.g., “f(x)=x+2”) fully specifies the transformation

function. Descriptive refers to a qualifier (e.g., “growing”). It is

not sufficient for specifying the transformation function, but it is a

means for providing additional information. Figure 3 illustrates

two kinds of descriptive representations: one that deals with a

transformation model (“f(x)>x”); another one that deals with

transformation instances (“growing”). In the first case, the

description is made a priori versus a posteriori in the second case.

A posteriori descriptions are subject to incompleteness and/or

errors due to too few samples.

 d p

d

Figure 3. Clarification of the notions of transformation

model/function/instance.

Next section provides a metamodel of mappings based on these

clarifications.

3.2 A Mapping Metamodel
The metamodel is provided in Figure 4. The core entity is the

Mapping class. A mapping links together entities that are

compliant to Metamodels (e.g., Task and Interactor). A mapping

can specify Transformation functions (e.g., {(Specify date, Date: -

-/--/-- (mm/dd/yy)), (Specify period of the day, “Period of the day:

- (M: Morning; E: Evening)), …}) by patterns. A Pattern is a

transformation model. It links together source and target elements

(ModelElement) to provide a predictive description of the

transformation function. In addition, a mapping can describe the

execution trace of the transformation function. The trace is made

of a set of Links between Instances of ModelElements. The couple

(Specify date, Date: --/--/-- (mm/dd/yy)) is an example of Link.

Figure 4. A Mapping MetaModel.

A mapping conveys a set of Properties (e.g., “Error protection”).

A property is described according to a given Referential (e.g.,

Bastien&Scapin[1] that defines eight criteria among which is the

“Error protection”). These properties are descriptive. They qualify

either the global set of mappings or one specific element: a

mapping, a pattern or a link.

Associated transformations are in charge of maintaining the

consistency of the net of models by propagating modifications

that have an impact on other elements. For instance, if replacing

an interactor with another one decreases the UI consistency, then

the same substitution should be applied to the other interactors of

the same type. This is the job of the associated functions.

Figure 5 applies the mapping metamodel to the case study

according to Bastien&Scapin’s referential. Three criteria are

considered:

• Compatibility to check the extent to with the UI design

is compliant to the user’s task;

• Error protection to measure the extent to which the UI

prevents the end-user from bad actions;

• Homogeneity-Consistency to ensure a global

consistency in the UI (e.g., style).

As pointed out in Figure 5:

• Compatibility is preserved along all the mappings

linking together tasks and interactors: the UI fully

supports the user’s task (Figures 5 a and b);

• Homogeneity-Consistency is satisfied in Figure 5a as

the transformation function (that is modeled by the

mappings) associates the same type of interactor (input

fields) to all the user’s actions;

• Error protection is guaranteed in Figure 5b thanks to

interactors that preserve the user from mistakes

(calendar and radio buttons).

In Figure 5, the scope of compatibility (e.g., C1, C2, C3) is one

mapping whilst homogeneity-consistency and error protection

deal with the global net of mappings (C4 on a and b).

Figure 5. The Mapping Metamodel applied to the case study.

For legibility, Figure 5 only mentions the criteria that are

satisfied. For instance, the “Error protection” that is not preserved

in Figure 5a has not been mentioned. In reality, octopuses should

tell the extent to which each criteria is satisfied (positively or

negatively).

This work provides a sound basis for future work. Next section

elaborates on perspectives for both HCI and MDE.

4. CONCLUSION AND PERSPECTIVES
In 2000, B. Myers stated that model-based approaches had not

found a wide acceptance in HCI. They were traditionally used for

automatic generation and appeared as disappointing because of a

too poor quality of the produced UIs. He envisioned a second life

for models in HCI empowered by the need of device

independence. In our work, we promote the use, the description

and the capitalization of elementary transformations that target a

specific issue.

A UI is described as a net of models and mappings both at design

time and runtime. At design time, mappings convey properties

that help the designer in selecting the most appropriate

transformation functions. Either the target element of the mapping

is generated according to the transformation function that has

been selected, or the link is made by the designer who then

describes the mapping using a transformation model. We envision

adviser tools for making the designer aware of the properties

he/she is satisfying or neglecting.

At runtime, mappings are the key for reasoning on usability.

However, it is not so easy as (1) there is not a unique consensual

referential; (2) ergonomic criteria may be inconsistent and, as a

result, require difficult trade-offs. Thus, (1) the metamodel will

have to be refined according to these refentials; (2) a meta-UI

(i.e., the UI of the adaptation process) may be relevant for

negotiating trade-offs with the end-user.

Beyond HCI, this work provides a general contribution to MDE.

It defines a mapping metamodel and clarifies the notions of

mappings and transformations. Mappings are more than a simple

traceability link. They can be either predictive (transformation

specifications) or descriptive (supported properties), as a result

covering both the automatic generation and the hand-made

linking. This is new in MDE as most of the approaches currently

focus on direct transformation. Our mapping metamodel will be

stored in the ZOOOMM project.

5. ACKNOWLEDGMENTS
The work has been supported by the European project EMODE.

Authors would like to thank Joëlle Coutaz and Alexandre

Demeure for their strong contribution. Metamodels are edited

under Topcased plugin for eclipse: http://www.topcased.org.

6. REFERENCES
[1] Bastien J.M.C, Scapin D. Ergonomic Criteria for the

Evaluation of Human-Computer Interfaces, Technical report

INRIA, N°156, June 1993

[2] Caplat, G., Sourrouille, J.L, Considerations about Model

Mapping, Wisme 2003

[3] Clerckx, T., Luyten, K., Coninx, K. The mapping Problem

Back and Forth: Customizing Dynamic Models while

preserving Consistency, 3rd International Workshop on Task

Model and Diagrams for User Interfaces Design, Prague,

Czeck Republic, November 2004, pp 33-42

[4] DSTC, IBM, MOF STC Query/View/ Transformation,

Submission by DSTC IBM, ad/2003-02-03, March 2003

[5] Favre, J.M. Toward a Basic Theory to Model Driven

Engineering, Workshop on Software Model Engineering,

WISME 2004, joint event with UML 2004, Lisboa, Portugal,

October 11,2004

[6] http://zooomm.org

[7] Judson, S.R, France, R.B., Carver, D.L. Specifying Model

Transformation at on the Metamodel Level, Wisme 2003

[8] Kleppe, A., Warmer, Bast, W. MDA Explained. The Model

Driven Architecture: Practice and Promise, Addison-

Wesley, April 2003

[9] Kurtev, I., Van den Berg, K. A Synthesis-Based Approach to

Transformations s in an MDA Software Development

Process, In Proc. of Model Driven Architecture: Foundations

and Applications, pp. 121-126, University of Twente,

Enschede, The Netherlands 2003

[10] Limbourg, Q., Vanderdonckt, J. Adressing the mapping

problem in User Interfaces Design, 3rd International

Workshop on Task Model and Diagrams for User Interfaces

Design, Prague, Czeck Republic, November 2004, pp 155-

163

[11] Mellor, S.J., Scott, K., Uhl, A., Weise, l.D MDA Distilled:

Principles of Model-Driven Architecture, Addison-Wesley,

March 2004

[12] Myers, B., Hudson, S.E., Pausch, R. Past, Present, and

Future of User Interface Software Tools, Transactions on

Computer-Human Interaction (TOCHI), Vol 7, Issue 1,2000

[13] Nogier, J.F. De l'ergonomie du logiciel au design des sites

Web, Third edition, Dunod 2005

[14] OMG, MDA Guide Version 1.0.1, omg/2003- 06-01, June

2003

[15] Peltier, M. Techniques transformations de modèles basées

sur la méta-modélisation, PhD, University of Nantes,

October 2003

[16] QVT- Partners Revised Submission for MOF 2.0 Query /

Views / Transformation RFP, http://qvtp.org, August 2003

[17] Sottet, J.S., Calvary, G., Favre, J.M., Coutaz, J., Demeure,

A., Balme, L. Towards Model-Driven Engineering of Plastic

User Interfaces, in Conference on Model Driven Engineering

Languages and Systems (MoDELS’05) satellite proceedings,

Springer LNCS, pp 191-2005

[18] Sottet, J.S., Calvary, G., Favre, J.M., Coutaz, J., Demeure, A.

Towards Mappings and Models Transformations for

Consistency of Plastic User Interfaces The Many Faces of

Consistency. Proc. (CHI2006), Montréal, Québec, Canada,

April 22-23, 2006,

