
Towards Mappings and Models Transformations for
Consistency of Plastic User Interfaces

Jean-Sébastien Sottet, University of Grenoble, CLIPS-IMAG Lab., 385, rue de la
Bibliothèque, BP53, 38041 Grenoble cedex 9, France, jean-sebastien.sottet@imag.fr

Gaëlle Calvary, University of Grenoble, CLIPS-IMAG Lab., 385, rue de la Bibliothèque,
BP53, 38041 Grenoble cedex 9, France, gaelle.calvary@imag.fr

Jean-Marie Favre, University of Grenoble, LSR-IMAG Lab, 681, rue de la Passerelle,
BP 72, 38402 Saint Martin d'Hères Cedex, France, jean-marie.favre@imag.fr

Joëlle Coutaz, University of Grenoble, CLIPS-IMAG Lab., 385, rue de la Bibliothèque,
BP53, 38041 Grenoble cedex 9, France, joelle.coutaz@imag.fr

Alexandre Demeure, University of Grenoble, CLIPS-IMAG Lab., 385, rue de la
Bibliothèque, BP53, 38041 Grenoble cedex 9, France, alexandre.demeure@imag.fr

Developing many variants of a same User Interface (UI) on different platforms is costly,
may result in inconsistent behavior and does not address the problem of the variability of
the context of use in ubiquitous computing. As a result, a new property has been
introduced in Human-Computer Interaction (HCI): the plasticity property. In HCI, plasticity
refers to the ability of a UI to withstand variations of context of use while preserving
usability. A context of use is defined as a triple < User, Platform, Environment >. This
paper shows how Model Driven Engineering (MDE) can be used for reasoning on both the
design and execution of UIs at different levels of abstraction. These levels of abstraction
define different perspectives on a same UI. They are linked together through mappings that
tell their properties. Keeping this net of models and mappings at runtime is powerful for
solving plasticity as a models or mappings transformation that preserves properties. This
paper elaborates on the consistency property.

INTRODUCTION
The need of models in Human Computer Interaction (HCI) has been recognized for long.
Nevertheless full automatic generation of User Interfaces (UI) rapidly shown its limits [1]. That does
not mean that model-based techniques are not valuable, but that they have to be further and
differently explored. We identify two ways: (1) investigating reverse and cross engineering instead of
being limited to forward engineering; (2) keeping the models alive at runtime to make the design
rationale available at runtime and so to be able to reason about it when the context of use changes.
This paper investigates this second point.
Model Driven Engineering (MDE) [2] advocates the systematic use of “productive” models that can
be processed by the machine. Full engineering processes are described with explicit models that are
linked together through explicit mappings and transformations [3]. This paper investigates MDE for
both the development and execution of plastic UIs.
In HCI, plasticity denotes the capacity of a UI to withstand variations of context of use while
preserving usability. A context of use refers to the triple <User, Platform, Environment>. Plasticity has
been introduced to face the variety, variability and unpredictability of the context of use in ubiquitous
computing. For instance, from the platform dimension perspective, in the vision of ubiquitous
computing, any object of the physical world may play the role of interaction resources (e.g., walls and
tables as display surfaces). As a result, UIs are no longer confined to a unique desktop, but are
distributed and migratable among a dynamic set of interaction resources. In case of heterogeneous
resources (e.g., PC and PDA), redistribution may require a graceful remolding to accommodate the
UI to the target platform. Whilst product line approaches deal with the production of variants of UIs
(e.g. a UI specifically crafted for a PC or a PDA), plasticity is much more challenging coping with the
change of the context of use and the need of preserving usability. Nevertheless, they share one
issue (at least): consistency.

Proceedings of CHI 2006 Workshop “The Many Faces of Consistency in Cross-Platform Design”

Page 2 of 5

Whilst code-centric approaches might be suited for the development of simple and single UIs, they
simply fail for plasticity. Our approach is to revisit model-based approaches taking benefit from recent
advances in MDE. Our vision is to model an interactive system at different levels of abstraction and
dynamically maintain the mappings between these levels. The mappings tell the properties they
guarantee and as a result serve the adaptation process. Consistency is one of the properties.
This paper is twofold. Section 1 introduces a MDE framework for sustaining our vision. Section 2
focuses on mappings and transformations for ensuring consistency when adaptation occurs.

A MDE FRAMEWORK FOR PLASTIC UIS
The core concepts of MDE are development processes, models and metamodels, mappings and
transformations. This section focuses on development processes, models and metamodels.
Mappings and transformations are discussed next.

Figure1. A MDE Framework for the development of UIs

DEVELOPMENT PROCESSES
Current industrial practices are still mostly code-centric (right bottom of Figure 1). At the opposite,
MDE processes are based on successive models refinements, integrating new information step by
step [5]. They start at an entry point (in a top-down approach, the task model) until reaching an exit
point (the final running program in case of forward engineering). Typical forward development
processes start with the task and the domain models. Then, based on a design know-how, the UI is
progressively refined in terms of workspaces, interactors and finally program elements that are this
time dependent on the target platform and the available libraries. As suggested in Figure 1, models
are revised at each step to take into account the constraints related to the current level of abstraction
(for instance, M1-Task can be revised into M1-Task’ and M1-Task’’ according to new constraints).
Product line processes favor both the factorization of the product common parts and the decoration
(annotation) of specific parts. Plasticity goes one step further for coping with the change of the
context of use. This calls for new (meta)models as explained below.

(META)MODELS FOR PLASTIC UIS ENGINEERING
As explained in CAMELEON [5], five (meta)models structure the development process of classical
UIs.

• Task. A task refers to “a goal, together with some procedure or set of actions that will
achieve the goal”. From a MDE perspective, a task model can be described as a tree made
of binary and unary operators.

Proceedings of CHI 2006 Workshop “The Many Faces of Consistency in Cross-Platform Design”

Page 3 of 5

• Concept. A concept is an entity “relevant to users to accomplish tasks in a particular
domain”. A concept model can be described as an UML class diagram.

• Workspace. A workspace enables a “set of logically/semantically connected tasks. In
graphical UIs, a workspace can be mapped onto a window, a set of panels”.

• Interactor. An interactor is “an abstraction of a software component that allows users to
manipulate and/or observe domain concepts and functions”.

• Program. The program is “the UI produced at the very last step of the reification process
supported by a multi-target development environment. It is expressed as source code”.

A simplified backbone of four (under elaboration) metamodels is provided in Figure 2. The mappings
are discussed in the next section.

Figure2. A simplified backbone of four metamodels.

As explained in CAMELEON [5], these (meta)models are not sufficient for plasticity. New
(meta)models are introduced to describe both the context of use and the expected usability.

• User. The user is “the archetypal set of end-users envisioned for the interactive system”. This
model captures general information (e.g., age, gender) as well as skill level.

• Environment. The environment refers to “the physical setting where the interaction takes
place. It can be modeled as the set of objects, persons and events that are peripheral to the
current activity but that may have an impact on the system and/or users behavior”. From an
engineering perspective, the environment can be modeled as a graph of contexts and
situations [9].

• Platform. The platform denotes “the set of physical and software resources that function
together to form a working computational unit whose state can be observed and/or modified
by a human user. It may be an elementary platform or a cluster of platforms”. Platform
modeling is a core issue in MDE.

• Usability. Usability refers to “the extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of
use”. Existing frameworks (e.g. Scapin & Bastien [7], IFIP [8]) enumerate a set of properties
without localizing them on the map of metamodels (like Figure 2). Whilst some properties are

Proceedings of CHI 2006 Workshop “The Many Faces of Consistency in Cross-Platform Design”

Page 4 of 5

confined to a unique (meta)model (for instance, the ergonomic consistency that is
computable at the interactor level), some others depend on the mappings between different
metamodels.

MAPPINGS AND TRANSFORMATIONS FOR CHECKING AND
ENSURING CONSISTENCY
Without mappings and transformations, models would be isolated. In this area, MDE promotes
extensible libraries of small transformations to be composed. The designer selects and, if necessary,
tunes the appropriate transformations. If no transformation is available then a new one can be written
thanks to transformation languages. The new one can then be added to libraries. Quite often,
transformation engines are limited to the metamodels they manipulate. HCI could take benefit from
software engineering transformation environments not devoted to HCI.
We use generic MDE techniques and extensible libraries of transformations and metamodels. Whilst
emerging standards for expressing MDE transformations are under active development (e.g. QVT),
we investigate [4] the appropriateness of a generic MDE transformation language for plasticity. This
language should be able to describe both the mappings and transformations that link together
elements of metamodels (for instance in Figure 2, the association Class-Task links together the
Concept and Task metamodels). Based on this generic transformation language, we are elaborating
libraries for forward engineering and plasticity in HCI. Now, we envision the integration of consistency
along the mappings and transformations.

MAPPINGS AND CONSISTENCY
The mapping problem has been defined by Puerta and al [10]. It states that mappings are the key for
acceptable model-based UIs. Some tools like DynaMo-Aid [11] demonstrate the benefit of mappings
at design time. The goal is now to ensure consistency at runtime when the context of use changes.
From our understanding, the key lies in the mappings:

• Mappings connect together a set of metamodels, at least two. Each mapping describes its
role (for instance, the Task t manipulates the Concept c) and its cost/benefit ratio (for
instance, the interaction length for performing the task). By nature, the role can deal with
either functional or structural concerns.

• A functional mapping is a coupling between models that produces a new function. For
instance, a label “Name” coupled with an input field provides the end-user with the function
“Specify name”. For plasticity, the coupling with the physical entities (mouse, keyboard, table,
etc.) is a key issue as the user evolves in a changing environment. These functional
mappings will help for reasoning about consistency at a structural level.

• A structural mapping links together models in order to propagate any relevant modification
that occurs in one model to the connected ones. We identify two kinds of structural mappings
whether they are exogenous (i.e., involving two metamodels at least) or endogenous (i.e.,
limited to a given metamodel). Deleting a task t should suppress the corresponding
interactors (exogenous). Interactors should be compliant to a given style to provide the end-
user with the feeling of a global consistency (endogenous). Whatever the mapping is (either
endogenous or exogenous), it should convey its elasticity, i.e., the extent to which it can be
tuned when adapting the UI to its context of use.

CONSISTENCY DRIVEN TRANSFORMATIONS
The core idea is to drive the transformations and support consistency by the descriptions that are
embedded in the functional and structural mappings. When the context of use changes, the net of
models and mappings is carefully transformed without breaking the elastic mappings for as long as
possible staying within the elasticity domain of the mappings. Advances in graceful degradation [12]
could be relevant in this area.
Mappings should either locally embed their transformations to maintain consistency (close
transformations) or be able to request and use external transformations (open transformations). Of
course, mappings have to describe their open/close capacities.

Proceedings of CHI 2006 Workshop “The Many Faces of Consistency in Cross-Platform Design”

Page 5 of 5

CONCLUSION
Models are not new in HCI but they traditionally were limited to a poor forward engineering. The poor
quality of the produced UIs was disappointing. In this paper, we revisit models, promoting a dynamic
net of models in which mappings and transformations play a central role. Mappings and
transformations support the description and management of consistency. Transformations are
performed with respect to consistency.
Actually, we are dealing with three open issues: (1) modeling consistency along the net of models
and mappings; (2) investigating the observability and control of models, mappings and
transformations by the end-user (we call this UI the meta-UI); (3) exploring MDE advances to avoid
the production of ad-hoc and technological domain dependent solutions.

REFERENCES
[1] Myers B., Hudson S.E., Pausch R. "Past, Present, and Future of User Interface Software

Tools", Transactions on Computer-Human Interaction (TOCHI), Vol 7, Issue 1, 2000
[2] Planet MDE, "A Web Portal for the Model Driven Engineering Community" http://planetmde.org
[3] Favre J.M., "Foundations of Model (Driven) (Reverse) Engineering", Dagsthul Seminar on

Language Eng ineer ing fo r Mode l Dr i ven Deve lopment , DROPS,
http://drops.dagstuhl.de/portals/04101, 2004

[4] Sottet, J.S., Calvary, G.,Favre, J.M., Toward Model Driven Engineering of Plastic User
Interfaces. International workshop on Model Driven Development of Advanced User Interfaces,
MDDAUI, Jamaica, 2005

[5] Calvary G., Coutaz J. Thevenin, D. Limbourg, Q., Bouillon, L., Vanderdonckt J. "A Unifying
Reference Framework for Multi-Target User Interfaces, Interacting With Computers, 2003

[6] Demeure, A., Calvary, G., Sottet, JS.,Vanderdonkt, J. A Reference Model for Distributed User
Interfaces TAsk MOdels and DIAgrams for user interface design, Gdansk, 2005

[7] Scapin D., Bastien, C.H., "Ergonomic Criterias for Evaluating the Ergonomic Quality Interactive
Systems." Behaviour and Information Technologies, Vol 16, 1997

[8] Abowd G., Coutaz J., Nigay L., "Structuring the Space of Interactive System Properties",
Proceeding of the IFIP, 1992

[9] Crowley, J., Coutaz, J., Rey, G. , Reignier, P., Perceptual Components for Context-Aware
Computing, UbiComp 2002:, Göteburg, Sweden Sept./Oct. 2002

[10] Puerta, A., Eisenstein, J. Toward a General Computational Framework for Model-Based
Interface Development Systems. International Conference on Intelligent User Interfaces, Los
Angeles 1999

[11] Clerckx, T., Luyten, K., Coninx, K. The Mapping Problem Back and Forth: Customizing
Dynamic Models while preserving Consistency. TAsk MOdels and DIAgrams for user interface
design, Prague, 2004

[12] Florins, M., Vanderdonkt, J. Graceful Degradation of user Interfaces, Intelligent User
Interfaces, ACM, 2004

