
Models at Run-time for Sustaining
User Interface Plasticity

Jean-Sébastien Sottet1 Gaëlle Calvary1 Jean-Marie Favre2

University of Grenoble
CLIPS-IMAG1, LSR-IMAG2

BP 53, 38041 Grenoble Cedex 9, France
+33(0)4 76 51 48 54

jean-sebastien.sottet@imag.fr gaelle.calvary@imag.fr jean-marie.favre@imag.fr
ABSTRACT
In the vision of ubiquitous computing, users are
imagined as evolving in various, changing and not
always foreseeable environments, in which
platforms may arrive and disappear in an
opportunistic manner. As a result, there is a need
for User Interfaces (UI) to adapt to their context
of use (<User, Platform, Environment>) while
preserving usability. This capacity of UIs is called
Plasticity. In a forward engineering approach, UIs
are designed step by step starting from domain-
based descriptions (user’s tasks and concepts) t o
code. It is now well understood that plasticity may
impact UIs at any level of abstraction. This calls
for keeping the UIs design rationale alive at run-
time. As models are practiced since a long time in
Human-Computer Interaction (HCI), this paper
investigates to which extent Model-Driven
Engineering (MDE) is relevant for plasticity. UIs
are designed as a net of models that define different
perspectives on a same UI (user’s task, domain,
concepts, widgets, etc.). The net is alive at run-time
and transformed when the context of use changes.
Transformations are performed with respect t o
usability. This paper sketches the vision on a small
running case study. It highlights a set of strengths
and doubts that give rise to many perspectives.

Keywords
Plasticity of User Interfaces, adaptation, context of
use, models at run-time, mapping, transformation,
metamodel.

1. INTRODUCTION
With ubiquitous computing, the Human-Computer
Interaction (HCI) community has now to cope with
various, variable and unforeseeable contexts of use.
By context of use, we mean the triple <User,
Platform, Environment>. This evolution is
problematic as the know-how in HCI relies on an
explicit description of the targeted context of use
that is supposed to be fixed. From now on, UIs have

to be plastic, i.e. capable of adapting to their
context of use while preserving usability. This
paper explores Model Driven Engineering (MDE)
for sustaining plasticity. The challenge is all the
most crucial that it would save a long and strong
expertise in model-based design in HCI. As sketched
in section 3, the key of our approach is a
unification between design-time and run-time
making the design-time models alive at run-time.
UIs are envisioned as octopuses made of a net of
models [1] and mappings, whose transformations
plastify the UI. The paper is illustrated on a small
running example that is described in section 2.
Section 4 opens the paper on a research agenda.

2. RUNNING EXAMPLE
“Sedan-Bouillon” is a web site that aims at
promoting tourism in the regions of Sedan and
Bouillon in France and Belgium
(http://www.bouillon-sedan.com/). Initially, the web
site has been designed for PC screens only. A plastic
light weight version (called LSB for Light Sedan-
Bouillon) has been developed in the European
CAMELEON project for exploring the distribution
of a web site across a PC screen and a PDA. LSB is
limited to French speaking users and covers the
hotel browsing task only. LSB promotes a user-
controlled distribution of the UI among the web
browsers with which the user is connected to LSB.

Let us consider Lionel and Alice who are planning a
trip to Sedan. Lionel turns on his PC, and connects
to the LSB web site. He logs in for accessing the
web site. LSB is composed of three workspaces
(Figure 1): a title, a navigation bar and an
informational content. The navigation bar is
augmented with a “Meta-UI” link that allows
Lionel to control the distribution of the UI across
the available resources (here, the PC and the PDA).

In order to comfortably browse the web site while
sitting in the sofa, Lionel turns on his PDA and
connects to the web site with the same identifier.
The meta UI is being displayed, telling Lionel that

he is currently using two browsers (log_Lionel_0 on
the PC, and log_Lionel_1 on the PDA) on a same
web site (Figure 2), and that it is possible t o
redistribute the UI among these resources.

Figure 1: The light “Sedan-Bouillon” centralized
version. It is made of three workspaces: a title, a

navigation bar and a content.

Figure 2: The Meta-UI allows the user to specify
the platforms on which he/she would like to see the

workspaces composing the UI. The Meta-UI
appears when the user either clicks on the Meta-UI

link (see the navigation bar in Figure 1), or
connects to the same web site using another

platform.

Lionel asks for the title (“titre”) on both the PC
and the PDA (see the first row of the table on

Figure 2), the content (“contenu”) on the PC only
(see the second row), and the navigation bar on the
PDA only (see the third row). Both the PC and the
PDA screens are updated accordingly (Figure 3): the
navigation bar leaves the PC and arrives on the
PDA; the title is replicated on the PDA. When
migrating from the PC to the PDA, the navigation
bar is remolded switching from a vertical (Figure 1)
to a horizontal (Figure 3) layout.

Figure 3: A distributed version of the light “Sedan-
Bouillon” web site, according to the user’s

preferences (Figure 2).

Next section sketches our approach unifying design
-time and run-time around the MDE key notions of
models, mappings and transformations. All of them
are compliant to metamodels [2].

3. APPROACH: TOWARDS OCTOPUSES,
NETS OF MODELS ALIVE AT RUN-TIME
Models are not new in HCI. UIs are traditionally
designed step by step transforming a task model
into workspaces (also called abstract UI), then
interactors (concrete UI) and finally code.
Transformations lean on the usability properties
that have been elicited during the requirements
phase. At each step of the transformation process,
hypotheses can be made on the context of use. As a
result, if the context of use changes, then the design

Title

Navigation

Content

has to be revised from this branching point. Given
that, our idea is to keep benefit from the past
making the models and transformations alive at
run-time so that the UI is able to reason about its
own adaptation when the context of use changes:

- The UI is a net of interconnected models, those
who traditionally supply the design process.
They are enhanced with both the corresponding
transformations and new models [3] specially
crafted for plasticity: requirements, context of
use, usability, and transformations;

- Plasticity is driven by an evolution model that
specifies the way the net of models has to be
transformed when the context of use changes.

Figure 4 illustrates the set of models corresponding
to the case study. For legibility, the models are
given in a concrete syntax and are limited to the
user’s task, workspaces and platform models (i.e., a
subpart of the context of use). The mappings

between workspaces and platform specify the way
the UI is distributed among the available display
surfaces (Figure 4): the title workspace (on the top
of the Figure) is replicated on both the PC and the
PDA (see the two mappings connecting the
corresponding workspace to both the PC and the
PDA); the navigation bar (the workspace on the
left) and the content (the workspace on the right)
are respectively assigned to the PDA and the PC
(see the unique mapping linking each of them t o
one unique platform). In the same way, Figure 1
(the centralized web site) would simply be described
by associating the root workspace to the PC screen.

The case study shows how the two leverages of
plasticity (remolding and redistribution) are
uniformly addressed by transforming models and/or
mappings. To make the adaptation performable at
run-time, models and mappings (M1) have to be
compliant to explicit metamodels (M2). Figure 5
emphasizes these two levels M1 and M2.

Figure 4: UIs are modeled as a net of models and mappings. The mappings between the workspaces and the
platform models specify the way the UI is distributed among the available interaction resources.

M1-Tsk’M1-Cpt' M1-Wks M1-Int M1-ProgM1-Ptf’’ M1-Env’M1-Usr’ M1-Ppt'

M2-TskM2-Cpt M2-WksM2-Ptf M2-EnvM2-Usr M2-Ppt

Context of use

PropertiesUser

M2

M1

T
ra

ns
fo

rm
at

io
ns

 (
M

1 -
T

rf
)

Different perspectives on a same UI

Platform Environment Concepts Tasks Workspaces Interactors Program

M1-TskM1-CptM1-Ptf M1-EnvM1-Usr M1-Ppt

M2-Int M2-Prog

…

M2-Req

Requirements

M2-Trf

Transfos.

Design and adaptation

M1-Req

M1-Req’

Net of interconnected models

M1

Plasticity is performed by transforming (M1-Trf) the net of models according to an evolution model (M1-Evol)

M2-Evol

Evolution

M1-Tsk’M1-Cpt' M1-Wks M1-Int M1-ProgM1-Ptf’’ M1-Env’M1-Usr’ M1-Ppt'

M2-TskM2-Cpt M2-WksM2-Ptf M2-EnvM2-Usr M2-Ppt

Context of use

PropertiesUser

M2

M1

T
ra

ns
fo

rm
at

io
ns

 (
M

1 -
T

rf
)

Different perspectives on a same UI

Platform Environment Concepts Tasks Workspaces Interactors Program

M1-TskM1-CptM1-Ptf M1-EnvM1-Usr M1-Ppt

M2-Int M2-Prog

…

M2-Req

Requirements

M2-Trf

Transfos.

Design and adaptation

M1-Req

M1-Req’

Net of interconnected models

M1

Plasticity is performed by transforming (M1-Trf) the net of models according to an evolution model (M1-Evol)

M2-Evol

Evolution

Figure 5: UIs are envisioned as a net of models both telling their design rationale and sustaining plasticity.

Actually, the Sedan-Bouillon prototype does not
embed its net of models at run-time because the
vision was not set when the web site has been
developed. Now, we are mature enough to redevelop
the application based on our metamodels and MDE
technologies. We have defined metamodels for the
traditional models (user’s tasks, domain concepts,
workspaces, interactors) and more innovative ones
for plasticity (platform, mapping and
transformation). Usability properties are elicited on
the mappings.

We have selected the Eclipse Modeling Framework
(EMF) for supporting our metamodels and models
definitions. We use the editor of the Topcased
project [4].

For the interactors and program models (Figure 5),
we are defining additional transformations to target
other technical spaces than EMF: C# and XAML
[6], XUL [7], HTML, etc. This is necessary for
being able to distribute UIs among a set of
heterogeneous platforms. The mappings on the
platform act as a deployment model.
Transformations are ATL-based [5] and performed
at run-time. One example is provided in [2].

4. OPEN ISSUES AND CONCLUSION
In the past, design-time and run-time have always
been managed in an isolated way. This paper shows
how MDE bridges the gap between design-time and
run-time thanks to models, mappings and
transformations that are compliant to explicit
metamodels. This unification is all the most
relevant that there is a strong know-how in model-
based design in HCI. Solving plasticity by enhancing
this know-how is a nice perspective.

Now, we have to refine our metamodels (especially
the mapping metamodel for conveying the usability
properties), and check whether general tools from
MDE are convenient for HCI (in particular, with
regard to the latency property).

In a farther future, we envision a unification with
evaluation. As requirements are alive at run-time,
the UI should be able to check the extent to which
it is compliant with these requirements.

5. ACKNOWLEDGMENTS
The work has been supported by the European
SIMILAR network of excellence. Authors would
like to thank Joëlle Coutaz and Alexandre Demeure
for their contribution to the work.

6. REFERENCES
[1] Demeure, A., Calvary, G., Sottet, J.S.,

Vanderdonkt, J., A Reference Model for
Distributed User Interfaces, TAMODIA’2005,
pp 79-87.

[2] Sottet, J.S., Calvary, G., Favre, J.M. Towards
Model Driven Engineering of Plastic User
Interfaces, International workshop on Model
Driven Development of Advanced User
Interfaces, MDDAUI, Jamaica, 2005.

[3] Sottet, J.S., Calvary, G., Favre, J.M., Demeure,
A., J Coutaz, J. Mapping and Model
Transformation For Consistency of Plastic
User Interfaces, Workshop on The Many Faces
of Consistency in Cross-platform Design, ACM
conf. on Computer Human Interaction, CHI
2006, Montréal, 22-23 Avril 2006.

[4] http://www.topcased.org.

[5] http://www.sciences.univ-nantes.fr/lina/atl/.

[6] XML User Interface Language
http://www.mozzila.org/projects/xul .

[7] Petzold, C. Code Name Avalon: Create Real
Apps Using New Code and Markup Model.
Microsoft MSDN Magazine Volume 19 January
2004.

