
Programming Rich Interactions using
the Hierarchical State Machine Toolkit

Renaud Blanch
∗
, Michel Beaudouin-Lafon

LRI & INRIA Futurs
†

Université Paris-Sud
F-91405 Orsay cedex, France

{blanch|mbl}@lri.fr

ABSTRACT
Structured graphics models such as Scalable Vector Graphics
(SVG) enable designers to create visually rich graphics for user
interfaces. Unfortunately current programming tools make it diffi-
cult to implement advanced interaction techniques for these inter-
faces. This paper presents the Hierarchical State Machine Toolkit
(HsmTk), a toolkit targeting the development of rich interactions.
The key aspect of the toolkit is to consider interactions as first-
class objects and to specify them with hierarchical state machines.
This approach makes the resulting behaviors self-contained, easy
to reuse and easy to modify. Interactions can be attached to graph-
ical elements without knowing their detailed structure, supporting
the parallel refinement of the graphics and the interaction.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User Interfaces—graphical user interfaces, interaction styles, pro-
totyping; D.2.2 [Software Engineering]: Design Tools and Tech-
niques—user interfaces

General Terms
Design, human factors

Keywords
Advanced interaction techniques, hierarchical state machines, post-
WIMP interaction, scalable vector graphics, software architecture,
structured graphics

1. INTRODUCTION
Programming interactive applications is known to be difficult and
costly [18]. User interface toolkits are the most effective solution
proposed so far to reduce the cost and difficulty of developing such

∗now at renaud.blanch@enst.fr.
†in|situ| project (http://insitu.lri.fr),
Pôle Commun de Recherche en Informatique du plateau de Saclay
CNRS, École Polytechnique, INRIA, Université Paris-Sud

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AVI ’06, May 23–26, 2006, Venezia, Italy.
Copyright 2006 ACM 1-59593-353-0/06/0005 ...$5.00.

Figure 1: Two interactions to set a color.
Using a property box (left), or a transparent tool (right)

applications. They usually provide high-level components that hide
the underlying complexity of interactive behaviors. Most user in-
terface toolkits are based on widgets, such as menus or buttons,
which can be assembled to create a complete user interface.

Widget-based toolkits have proved effective, as they are used for
developing most graphical user interfaces. However they result in
a WIMP (Windows, Menus, Icons, Pointing) interaction style that
may not be well-suited to the task at hand. Figure 1 shows two
interactions to perform a color change. On the left, the color is
selected with a modal dialog box and requires three to five clicks.
This type of interaction is common in current applications, because
it is the path of least effort for the programmer when using a tradi-
tional widget-based toolkit. Yet this interaction violates the princi-
ples of direct manipulation [20] that led to the first graphical inter-
faces. Indeed, the color attribute is manipulated indirectly, through
a dialog box [2].

On the right of Figure 1, the color is selected with a single click
through a bimanual transparent tool or toolglass [7]: a trackball
used by the non-dominant hand moves the toolglass over the de-
sired area while the dominant hand selects both the action (chang-
ing the color) and the object of the action in a single click. Such a
bimanual transparent tool is an example of a so-called post-WIMP
interaction technique. Many such techniques have emerged over
the past decade and have been shown to be very efficient for a vari-
ety of tasks.

A drawback of the widget approach, is that the widget set has been
designed in at a given time, and does not take advantage of new
graphical possibilities that have emerged since this time. As an
example, transparency was not anticipated and most toolkits can

Figure 2: Two SVG representations of a file system

not handle this attribute. Non-rectangle widgets are often not pos-
sible either. Thus many post-WIMP techniques cannot be imple-
mented as widgets and are therefore not available to developers us-
ing widget-based toolkits. The only alternative so far is to program
these techniques from scratch using low-level programming.

The advanced graphical features needed by Post-WIMP interaction
techniques are now available using structured graphics models such
as Scalable Vector Graphics1 (SVG), which can be rendered effi-
ciently by taking advantage of modern GPUs [10]. Another advan-
tage of SVG is that they can be both easily produced by graphic
designers, and easily manipulated by programs. For the designers,
authoring tools supporting SVG or equivalent output formats are
now common. For programs, the SVG specification does include
an API based on the Document Object Model (DOM), which is
standard and well documented.

In this paper, we present the Hierarchical State Machine Toolkit
(HsmTk), which takes advantage of these characteristics to provide
an advanced graphical model. The toolkit provides elaborate mech-
anisms to attach interactive behaviors to fragments of the interface
without requiring the full knowledge of their structure, allowing
designers and programmers to refine concurrently the graphics and
the interaction. The toolkit also provides a programming abstrac-
tion designed to make interaction as first class objects, thus encour-
aging factoring and reuse. This abstraction is an extension of the
C++ programming language with a control structure for describing
hierarchical state machines (HSM). The HSM formalism is well
tailored to design and implement interactive behaviors.

We first present those two main features of the Hierarchical State
Machine Toolkit, illustrating them with toy samples. Next, some
more realistic and useful examples demonstrate the versatility and
expressiveness of HsmTk. Then we compare our work with other
research on interaction toolkits. Finally, we highlight the perspec-
tives of our work.

2. LINKING CODE TO GRAPHICS
The SVG format describes two-dimensional graphics in XML.
SVG is a hierarchical 2D scene graph in which child nodes inherit
graphical properties and geometrical transformations from their an-
cestor. The SVG documents shown in Figure 2 are views on a
filesystem tree structure, and Figure 3 shows the XML document
corresponding to the left view. Such documents can be easily pro-
duced by designers using authoring tools like Adobe Illustrator, or
the free Inkscape2 editor, which makes it possible to manipulate the
SVG tree without requiring to edit manually the XML document.
1SVG is a language for describing two-dimensional graphics in
XML. It is a W3C recommendation. http://www.w3.org/TR/SVG/
2http://www.inkscape.org/

01 <svg xmlns:hsm="http://hsmtk.insitu.fr/">
02 <defs> <!-- definitions -->
03 <!-- open/close arrows -->
04 <symbol id="closed">
05 <path d="M 9 3 l 5 5 l -5 5 z"
06 style="fill:gray" />
07 </symbol>
08 <symbol id="opened">
09 <path d="M 6 6 l 5 5 l 5 -5 z"
10 style="fill:gray" />
11 </symbol>
12
13 <!-- background gradient -->
14 <linearGradient id="bg" ... />
15 </defs>
16
17 <g> <!-- tree -->
18 <g hsm:behavior="tree" hsm-arg:isOpen="1">
19 <!-- label -->
20 <rect style="fill:url(#bg)"/>
21 <use xlink:href="#opened" />
22 <text x="22" y="12.5">˜/test/</text>
23
24 <!-- content -->
25 <g transform="translate(16,16)">
26 <g hsm:behavior="node">
27 <text x="22" y="12.5">README</text>
28 </g>
29 <g hsm:behavior="node">
30 <text x="22" y="12.5">INSTALL</text>
31 </g>
32 ...
33 </g>
34 </g>
35 </g>
36 </svg>

Figure 3: XML (simplified) specifying the SVG document
shown on the left of Figure 2

2.1 SVG annotations
To make the document interactive, objects implementing the be-
havior of particular SVG fragments can be attached to some ele-
ments of the XML tree. This is done by using custom XML at-
tributes. Lines 18, 26, and 29 in Figure 3 show such annotations.
The SVG group starting on line 18 correspond to the top level di-
rectory named ˜/test, and includes its content. The first annotation
(hsm:behavior="tree") states that a C++ object of class “tree” will
be created when loading the SVG node from the document and will
be attached to this node. The annotation system can also be used
to pass values from the SVG representation back to the implemen-
tation, in the same way as C++ constructor arguments. The second
annotation (hsm-arg:isOpen="1") is such an argument specifying
that the directory content should be visible.

From the C++ code perspective, a behavior is a specialization of
the provided hsm::Behavior class (Figure 4). Upon loading of the
SVG node, an instance of this class is created, and a pointer to
the corresponding SVG element is passed to its constructor (elem ,
line 3). This pointer can be used to retrieve the arguments speci-
fied as annotations in the XML document (line 8, the getAttribute

function retrieves the value of the isOpen argument specified as an
attribute of the SVG element, Figure 3, line 18).

In order to dynamically instantiate the class specified by the
hsm:behavior XML attribute, the C++ class must be registered in-
side a behavior factory. This registration is done at run time, pro-
viding that the programmer adds a “magic” variable to its class, and
initialize it with the name chosen for the behavior (lines 12 and 15,
Figure 4). This mechanism is dynamic, meaning that behaviors can
be registered while the application is running by loading plugins

01 struct Tree : hsm::Behavior {
02 // constructor
03 Tree(svg::SVGElement *elem) :
04 hsm::Behavior(elem) {
05
06 // parameter retrieval
07 bool isOpen = false;
08 hsm::svg::getAttribute(elem, "isOpen", isOpen);
09 }
10
11 // behavior registration
12 static const hsm::Behavior::Factory::Reg< Tree >

registration;
13 };
14
15 const hsm::Behavior::Factory::Register< Tree >

Tree::registration("tree");

Figure 4: Tree behavior implementation

18 <g hsm:behavior="tree" hsm-arg:isOpen="1">
19 <!-- label -->
20 <rect style="fill:url(#bg)"/>
21 <use xlink:href="#opened" />
21’ <image xlink:href="./folder.png" />
22 <text x="22" y="12.5">˜/test/</text>

Figure 5: SVG document shown on the right of Figure 2

from the filesystem. Thus, if an application have to present some
elements of its interface containing behaviors for which it is not
aware of an implementation, it can search inside behavior reposito-
ries, and load the requested implementation if one is found. This is
a powerful way to support extensibility and reuse, since behaviors
can be shared between applications, as well as they can be updated
without needing to recompile the whole application.

2.2 Structural contract
So far, the only part of the SVG known to the behavior is the el-
ement to which it is attached. The programmer can use the DOM
API to walk through the SVG structure, and to manipulate it. How-
ever, doing so introduces dependencies between the behavior im-
plementation and the SVG structure, and those dependencies are
not explicit.

For example, switching from the tree representation on the left of
Figure 2 to the one on the right introduces a new element: the folder
icon. The corresponding change in the XML tree is shown in Fig-
ure 5. The icon consist of an SVG image element added between
lines 21 and 22. If the behavior needs to manipulate the text of
the label to reflect a name change of the folder, a simple approach
consisting of taking the third child of the root element is not robust
to such a structure change. Moreover, if such navigation in the tree
structure is distributed inside various behavior methods, the depen-
dencies between the code and the associated representation are left
totally implicit. Such implicit dependencies lead to a code that is a
nightmare to maintain.

HsmTk provides a way to explicitly express a structural contract
between the SVG and its associated behavior. Such a contract is
shown in Figure 6, lines 10 and 11. It makes use of the C++ typ-
ing system to search the childs of the SVG node elem . It first tries
to find a text element (label , declared as svg::SVGTextElement

on line 3), and then a group element (content , declared as
svg::SVGGElement on line 4) in the remaining childs. The search
skips unmatched child nodes, and throws an exception if an ele-
ment is not found. Thus, the contract in Figure 6 expresses that to
pretend to be a tree, a SVG node must have at least one text child,

01 struct Tree : hsm::Behavior {
02 // SVG parts
03 svg::SVGTextElement *label;
04 svg::SVGGElement *content;
05
06 Tree(svg::SVGElement *elem) :
07 hsm::Behavior(elem) {
08
09 // structural contract
10 hsm::svg::Childs(elem).assert(label)
11 .assert(content);
12 ...
13 }
14 };

Figure 6: Structural contract

the first of them being considered as the label of the tree. It must
also have at least one group child after this label. This group is then
considered as the content of the tree.

This contract is simple to express and understand. It is flexible
enough to support some changes of the SVG structure. For exam-
ple, adding an icon to the tree representation does not affect the
structural contract of the tree behavior. The only limitation is that
elements of a type already used by the contract should be appended
at the end of the child list.

3. HIERARCHICAL STATE MACHINES
HsmTk provides an abstraction that makes it easy to keep interac-
tive behaviors self-contained and reusable. It is well known that
interactive software often leads to code that is difficult to maintain
and reuse and that can look like a “spaghetti” of callbacks [17]. Due
to the lack of appropriate control structures, imperative program-
ming languages are not adapted to the implementation of interac-
tions. They are tightly bounded to the computer execution model
that, as noted by Wegner, “cannot accept external input while they
compute; they shut out the external world” [21].

Formalisms adapted to the description and specification of inter-
actions do exist. HsmTk extends the C++ programming language
with a control structure, the hierarchical state machines (HSM),
borrowed from such a formalism. We first present an example of
behavior programmed using HSMs. Then the syntax and the se-
mantic of the HSM control structure are presented.

3.1 Button Behavior Example
Figure 7 shows on the left the look of a button produced using a
SVG authoring tool, and on the right the basic behavior of a button
specified using a finite state machine (FSM). This behavior does
only take into account the press and release events. In order to
capture the subtleties of the complete behavior, the FSM should be
refined: when one pushes the mouse button inside the button, then
leaves the button and reenters it, releasing the mouse button should
trigger the action. Meanwhile, the look of the button should have
changed from up to down, to up again when the mouse is outside,

push

release
/doIt()

Disarmed Armed

Disarmed

Armed

Figure 7: The look (left) and the behavior (right) of a button

Armed

Disarmed

enter

release

leave

press

release
/doIt()

enter

leave

InUp

OutUp

OutDown

InDown

Figure 8: A refined version of the button behavior

and down again when it reenters the button. This behavior is cap-
tured by the HSM shown graphically in Figure 8. The hierarchy of
states allows to keep at the first level the two states relative to the
visual state of the button. Those two states can be refined to han-
dle cursor enter/leave events as well as mouse button press/realease
events.

The HsmTk code corresponding to the HSM shown in Figure 8
is given in Figure 9. States are recursively nested using braces as
block delimiters, as does C++. The Button HSM thus defines two
sub-HSMs: Disarmed (lines 2 to 32) and Armed (lines 34 to 41).
The first one starts with some variable definitions (lines 3 to 6).
These variables are used by the behavior to manipulate the SVG
it is attached to. They are initialized using the structural contract
featured by HsmTk (lines 10 and 11). Here, a button must have two
SVG group childs each one representing the button in the armed or
disarmed state. The initialization removes the armed version of
the button from the displayed scene graph using the standard DOM
API (line 12).

The synchronization between the internal state of the button and
its visual representation is insured by updating the SVG document
when the Disarmed state becomes active (enter action, line 16) or
inactive (leave action, line 17). These actions are triggered when
the Button active state switches from Disarmed to Armed . The re-
maining parts of the HSM do specify the other sub-HSMs, and the
transitions governing the global state changes. For example, the
OutUp state (lines 19 to 21), which is active when the cursor is
outside the button and when the mouse button is not depressed,
specifies a single transition (line 20). This transition is triggered
when the cursor enters the button on screen (enter()). The transi-
tion specifies its target InUp, which becomes the active state. The
transition given line 39 associates some C++ code to the transition.
This code is executed when the transition is triggered, performing
the button action when the mouse button is released.

3.2 Hierarchical State Machines
In this section, we present more formally the syntax of the HSM
control structure and its semantics. Since we are extending C++,
we use C++ definitions of type, identifier and statement.

3.2.1 States
A HSM has a name, can define variables and inputs, and can specify
initialization, enter and leave actions. It can contain sub-HSMs,
transitions and some other constructs described below. The syntax
for defining a HSM is:

hsm Name { content }

01 hsm Button {
02 hsm Disarmed {
03 // variables
04 var svg::SVGElement *elem;
05 var svg::SVGGElement *armed = 0;
06 var svg::SVGGElement *disarmed = 0;
07
08 // initialization
09 init {
10 hsm::svg::Childs(elem).assert(armed)
11 .assert(disarmed);
12 elem->removeChild(armed);
13 }
14
15 // visual aspect coherence
16 enter { elem->replaceChild(armed, disarmed); }
17 leave { elem->replaceChild(disarmed, armed); }
18
19 hsm OutUp {
20 - enter() > InUp
21 }
22
23 hsm InUp {
24 - leave() > OutUp
25 - press() > Armed::InDown
26 }
27
28 hsm OutDown {
29 - enter() > Armed::InDown
30 - release() > OutUp
31 }
32 }
33
34 hsm Armed {
35 hsm InDown {
36 - leave() > Disarmed::OutDown
37
38 // action invocation
39 - release() { doIt(); } > Disarmed::InUp
40 }
41 }
42 }

Figure 9: Hierarchical state machine specifying the behavior of
a button

Name is an identifier starting with a capital letter, and content is
a succession of any number of the declarations below, and zero or
more sub-HSMs.

Initial HSM
When several HSMs are defined inside a parent HSM, the first one
is the initial HSM. When a HSM is entered (after a transition), it
sets its own current state to its initial HSM, which is then entered,
and so on recursively. However, to put the HSM in a state consistent
with its inputs, it is possible to specify rules for choosing the initial
state as follows:

[condition] : Name

Name should be one of the direct sub-HSMs. The condition can be
any boolean expression involving variables or inputs that are in the
scope of the HSM.

Variables
HSMs can declare variables of any type, initialized or not. Vari-
ables are accessible inside any action of the HSM. The scope of
variables in the HSM hierarchy is unusual. First, nested HSMs
cannot access their parent’s variables. Second, if a variable is de-
clared and not initialized, it is aliased with an implicitly declared
variable in the parent HSM that has the same type and name. As a
result, a parent HSM can access inner HSM variables when they are
not initialized. This process recurs to the top, unless a parent HSM
explicitly initializes the variable. The instantiation of the top HSM

will then require the specification of all the nested non-initialized
variables. The syntax for declaring variables is one of the following
(the first one is the declaration without initialization):
var type identifier;
var type identifier = value;
var type identifier(value, ...)

Inputs
An input is a special variable that can trigger transitions. It has
the same scope properties as regular variables and is declared and
defined as follows:
in identifier;
in identifier = value;
in identifier(value, ...)

3.2.2 Transitions
Transitions between HSMs are triggered by events it receives. They
are driven by ordered rules. A typical rule has the following form:
- input.EVENT [condition] {

code
} send(EVENT) > Target(var = value, ...)

EVENT denotes the type of event that can trigger the transition.
Some predefined event types are provided to notify modification,
creation and removal of components. To catch all event types one
can use a wildcard (*). Omitting the event type is a shortcut for the
most common event: modification. If the input is omitted, events
coming from any sender and matching the event specification will
trigger the transition.

A clause between square brackets specifies guards for the transi-
tion. The boolean condition must be true for the transition to oc-
cur. It should be calculable within the scope of the HSM. Multiple
guards are or-ed together. Guards are optional.

The code is any set of C++ statements valid in the scope. It is exe-
cuted when the transition is triggered. The execution occurs in the
context of the current HSM, before leaving it. The broadcast sec-
tion allows to generate events and dispatch them to other compo-
nents. Thus HSMs can be used as event filters. Dispatching occurs
right after executing the code and just before leaving the current
HSM. Code and broadcast clauses are optional.

The last part of a transition defines the name of the target HSM.
The name resolution rules are those of C++ namespaces. For ex-
ample, one can specify a sub-HSM of a sibling HSM using scope
qualification (e.g. Armed::InDown in Figure 9). The final part of
the target clause allows to pass values to the target’s variables, and
can be omitted. If the target is the current state, the HSM is left
and then reentered, with the associated code being executed. Con-
versely, if no target is specified, the HSM stays in the same state
without leaving and reentering it.

Special Transitions
Two actions can trigger special transitions: the explicit invocation
of a method and the firing of a timer. In the first case, the arguments
passed by the method call are available within the code. In the
second case, ms denotes the time in milliseconds after which the
transition is fired, the timer being armed when the HSM is entered.
In both cases, only the first part of the transition is special. The
rest of the transition can consist of the same optional parts than any
other transition, i.e. conditions, code, broadcast and target clauses:

- method(type var, ...) { code } > ...
- ms > ...

Hsm

RunWait

Stuff1 Stuff2Stage1 Stage2

transition

leave

leave enter

enter
1

2

3

Figure 10: Target resolution
Lines denote HSM hierarchy, bold ones the active state, the bold

arrow the transition, and dashed arrows the target resolution order.

3.2.3 Event Handling
An event triggering a transition is consumed by the transition. In
some cases, it can be useful to propagate the event to the target
HSM instead of consuming it. This can be done using a special
arrow (=>) for the transition.

When a transition triggers, the target HSM is entered after a three-
step process:

1. First, the HSM where the transition occurred is left. This pro-
cess is recursive, starting by leaving the inner-most current
HSM, and recursing upward until the source of the transition
is reached.

2. Then, the target HSM is resolved. To perform this resolu-
tion, HSMs are left upward until a common ancestor of the
source and target HSMs is found. Starting from this HSM,
the branch leading to the target HSM is followed down and
each HSM along this path is entered.

3. Finally, the target HSM is entered. The initial HSM of the
target HSM is entered unless a history transition is specified.
In this case, the last current sub-HSM is entered, and the
rules specifying the initial HSM are ignored. This process is
recursive, going downwards. To specify a history transition,
a special arrow (h> or =h>) is used.

This process is illustrated in Figure 10. The three steps —leaving
the current HSM, finding the target HSM, entering the target
HSM— are labeled 1, 2, and 3.

Enter & Leave Actions
During this process, custom code can be executed by specifying
enter and leave actions for each HSM (in Figure 9 such code is
used to set the look of the button according to its current state):

enter { code }
leave { code }

Requirements
A last convenience structure, called requirements, is provided in
order to handle exceptions. A requirement can take the following
forms (the code section is optional):

require (condition) else { code } Target
! (condition) : { code } Target

The validity of the conditions is tested before entering the HSM. If
the condition evaluates to false, the optional code is executed, and
target resolution restarts with the supplied target as new goal. The
target specification can include parameters as for a normal transi-
tion target.

01 hsm Translater {
02 [button] : Translating
03
04 hsm Idle {
05 - button > Translating
06 }
07
08 hsm Translating {
09 - button > Idle
10
11 hsm Op {
12 var hsm::SVGLWindow *w;
13 in point;
14
15 var hsm::Translate *op = 0;
16 var hsm::Point origin(2);
17
18 require
19 (op = w->pick< hsm::Translate >(point))
20 != 0
21 else
22 Nop
23
24 enter { origin = point; }
25
26 - point {
27 hsm::Point delta(2);
28 delta = point;
29 delta -= origin;
30 op->translate(delta);
31 origin += delta;
32 }
33 }
34
35 hsm Nop {}
36 }
37 }

Figure 11: HSM translating mouse action into dragging inter-
action

01 hsm::SVGLWindow *window = new hsm::SVGLWindow("test");
02 window->setDocument("test.svg");
03
04 hsm::Device *pointer = hsm::getDevice("Pointer");
05
06 Translater::Hsm translater(
07 window,
08 *pointer/"buttons"/hsm::Button::L, // left button
09 *pointer/"position"); // mouse position

Figure 12: HSM initialization

4. SAMPLE APPLICATION
We present an example of HsmTk use illustrating how it can facil-
itate the incremental refinement and the reuse of existing interac-
tions. Starting from a simple implementation of the dragging direct
manipulation, we show how it can be easily enhanced to perform a
constrained drag, and then how it can be multiplexed with another
interaction using a control menu [19].

4.1 Simple Drag
Figure 11 show the implementation of the simple drag direct ma-
nipulation using HSMs. The Translater HSM has two sub-HSMs:
Idle and Translating . Its first line (line 2) specifies that the ini-
tial state depends of the state of the mouse button when the HSM
is initialized. Both Idle and Translate HSMs start with the def-
inition of a transition (lines 5 and 9). The transitions make these
states alternatively active when the mouse button is depressed and
released. Together with the specification of the initial state (which
depends of the initial mouse button state), they create and maintain
an invariant: the Translater HSM is in Idle state when the mouse
button is released, and in Translating state when it is pressed.

01 hsm ConstrainedTranslater {
02 [shift] : Constrained
03
04 in point;
05 in p = point;
06
07 hsm Normal {
08 hsm Translater;
09 - shift > Constrained
10 }
11
12 hsm Constrained {
13 var hsm::Point constr(2);
14 in point = &constr;
15 var hsm::Point origin(2);
16
17 enter { constr = origin = p; }
18
19 local void constrain(hsm::Point &c,
20 const hsm::Point &o,
21 const hsm::Point &p) {
22 /* details omitted */
23 }
24
25 - p { constrain(constr, origin, p); }
26
27 hsm Translater;
28 - shift > Normal
29 }
30 }

Figure 13: Interaction refinement through reuse

The Translating initial sub-HSM, Op , actually performs the trans-
lation. It defines some variables and one input (lines 12 to 16). It
then defines a requirement (lines 18 to 22) that should be met be-
fore entering in this state: the picking inside the window (w), at
the cursor position (point) should return an object that implements
the hsm::Translate interaction protocol3. If the requirement is not
met, the active state becomes Nop (line 35) which is a “do nothing”
state. The sub-HSMs Op and Nop allow to stay in the Translating

state according to the mouse button state, while performing or not
the translation action —the actual action being performed depend-
ing on the presence of a compatible object under the cursor.

If such a compatible object is found, Op becomes effectively active.
Upon enter, line 24 stores the origin of the interaction. The transi-
tion defined lines 26 to 32 moves the object each time the mouse
is moved. This transition has no target, so Op remains active when
it is triggered. Only the transition of the parent state Translating

defined line 9 will leave Op or Nop and the Translating when the
mouse button will be released.

To use this HSM, one must instantiate it and give it explicitly values
for its undefined variables and inputs (w , button , and point). Fig-
ure 12 shows the minimal code creating a window, loading a SVG
document inside it, requesting an object representing the pointer,
and initializing the Translater HSM we have just defined.

4.2 Constrained Drag
The preceding interaction technique is simple. However, it can
be reused as a basis to create refined variations. Figure 13
shows a HSM implementing a constrained drag when the shift

3HsmTk provides a mechanism to declare interaction protocols as
a set of methods implemented by an object. The pick method
(line 19, Figure 11) performs a typed picking, returning only ob-
jects of the requested type —thus implementing the desired inter-
action protocol— present below the mouse cursor.

key is depressed, and a normal drag when it is not. The
ConstrainedTranslater HSM consists of two sub-HSMs, Normal
(line 7 to 10) and Constrained (line 12 to 29), that becomes alter-
natively active when the shift key is pressed or not. As seen previ-
ously with the Translater HSM, the combination of an initial state
specification (line 2) and two transitions (lines 9 and 28) insure the
coherence of the active state with the shift key state.

Both sub-HSMs include the previously defined Translater HSM
without needing to redefine it (lines 8 and 28). The Normal HSM in-
cludes it just as it is without altering its behavior. The Constrained

HSM adapts its input by constraining it using an auxiliary function
constrain. Since input are identified using naming conventions,
the HSM redefines the point input as an alias to the constrained
position constr (line 14). This constrained position is computed
using the real position p defined by the top level HSM as an alias to
the original point position (line 5). The constrained position is up-
dated each time the input position changes by the transition defined
line 25. The included Translater HSM uses this altered position
as input, resulting in a constrained movement when the shift key is
depressed.

4.3 Multiplexed Pan & Zoom
using a Control Menu

Control menus are an extension of pie menus where the selection of
the action and its continuous control can be performed in a single
gesture [19]. Figure 14 shows a control menu multiplexing a pan
and a zoom interaction on a single interaction device. If the move-
ment begins vertically, a pan interaction is started (Figure 14 left)
whereas if the movement is initiated horizontally, a zoom interac-
tion begins (Figure 14 right). As with marking menus, it is not
required to show the menu since advanced users learn quickly its
layout. Thus the menu is displayed only after a short timeout when
the mouse has not been moved after the button has been pressed.

Figure 15 gives an implementation of such a control menu using
HsmTk. Once again, the top level Controler HSM consists of two
sub-HSMs, one waiting the beginning of the interaction (Idle) and
the other performing the real work (Do). This HSM consists itself
of three sub-HSMs. Its initial state, Choose , handles the visual
feedback and the interaction selection. The transition on lines 27
to 30 is triggered by the expiration of a timeout. It displays the
circular menu reflecting the possible actions after 500 ms if no in-
teraction has been selected so far. This menu is destroyed when the
state is leaved (line 32). Transitions on lines 34 to 39 do select the
appropriate interaction according to the principal direction of the
movement. The pan and zoom implementations (lines 42 and 43)
are not detailed since they use the same techniques as previously
seen.

Figure 14: Pan (left) and zoom (right) multiplexed using a con-
trol menu

01 hsm Controler {
02 [button] : Do
03
04 hsm Idle {
05 - button > Do
06 }
07
08 hsm Do {
09 - button > Idle
10
11 hsm Choose {
12 var hsm::SVGLWindow *window;
13 var hsm::Point o(2);
14
15 var hsm::Translate *tl = 0;
16 var hsm::Zoom *zm = 0;
17
18 var hsm::SVGLCursor *menu = 0;
19
20 enter {
21 o = *point/hsm::Point::cast;
22 tl = window->pick< hsm::Translate >(o);
23 zm = window->pick< hsm::Zoom >(o);
24 menu = 0;
25 }
26
27 - 500 {
28 menu = new hsm::SVGLFeedback(
29 o, window, getMenuSVG(tl, zm));
30 }
31
32 leave { if(menu != 0) delete menu; }
33
34 - point [abs(o/Y - point/Y) > 10]
35 > Translate(translate = tl)
36
38 - point [abs(o/X - point/X) > 10]
39 > Zoom(zoom = zm)
40 }
41
42 hsm Translate { /* details omitted */ }
43 hsm Zoom { /* details omitted */ }
44 }
45 }

Figure 15: HSM defining a control menu

5. DISCUSSION & PERSPECTIVES
HsmTk has been successfully used for a larger project: Indigo, a
generic post-WIMP distributed application [8]. In this application,
so-called conceptual objects are managed by client applications and
sent to a rendering and interaction server (RIS) as XML streams.
They are transformed into SVG fragments on the RIS side, using
XSL rules specified by the application (and according to the ca-
pabilities of the display device). These SVG fragments are anno-
tated to specify their interactive capabilities, and then presented to
the user. When a particular behavior is unknown to the interaction
server and no corresponding plug-in is found, the interaction server
requests its implementation from the application, compiles it into a
plug-in and loads it. The behavior is then ready for reuse by other
object servers. We have developed a generic rendering and interac-
tion server using HsmTk, as well as several client applications: a
multi player game, a file system explorer and a simple chart editor.

Our use of the toolkit so far validates our approach: we have used
it to implement a wide variety of techniques and have found that
it makes simple things simple and complex things possible. Some
limitations do however exist as well as room for improvement. For
example, the SVG graphic model does not support visualization
techniques using non linear transformations such as fisheye views.
Another drawback is the lack of supporting tools. In particular, the
consistency between SVG and HSM is checked only at run time,

leading to potential problems when only one of them is upgraded
to a new version. Another tool is missing for the development of
HSMs: at compilation time, C++ code is generated from the HSMs,
and the errors reported by the compiler are relative to this generated
code. Going back to the actual source of the problem in case of an
error can be somewhat difficult.

6. RELATED WORK
Some toolkits do provide support for specific interaction needs: the
Jazz and Piccolo toolkits [6, 5] provide a well-designed Java frame-
work to build ZUIs. However, the graphical model of these Java-
based toolkits is rather poor and there is no support for directly us-
ing the work of graphical designers. Similar limitations apply to the
Ubit toolkit [16]. However, Ubit relies on the interesting brickget
concept —a dynamic combination of fine-grained brick elements,
e.g. box, text, image. This approach combines the advantages of
scene graph and widget-based toolkits, but the behavior of objects
is included directly in the brickget graph. Magglite [14] and In-
tuiKit [9] do provide a similar mixed-graph approach, where inter-
action specification and graphic specification are mixed together.
The DoPIdom toolkit [4] relies on an annotation mechanism simi-
lar to our to add behavior to graphics.

Various types of finite automata have been used for programming
interactions before the advent of GUIs, e.g., [12]. Statecharts [13]
were designed for this purpose but their semantics is difficult to
implement. Petri nets have clear semantics and can be used to per-
form some automatic verifications [1]. However, these formalisms
can not easily be integrated into a programming language. They
require a dedicated environment for programming and a runtime
framework to support their execution. Dataflow or reactive lan-
guages have also been used to support interaction, together with
state based approaches [15], or standalone as a visual programming
language to configure the mapping between actual physical input
devices and logical devices using ICON [11]. However, they usually
require a visual representation, and they are inherently stateless.

7. CONCLUSION
In this paper we have described the HsmTk toolkit and illustrated its
versatility through several examples. The most important aspects of
HsmTk are the support for a rich graphical model that is compatible
with the authoring tools used by graphic designers and the explicit
support for interactions as a language construct that programmers
can easily adapt to. HsmTk promotes reification, polymorphism
and reuse, three principles that have proved important to user in-
terface design [3]: HSMs reify the concept of an interaction; the
decoupling of graphics (SVG) and interaction (HSM) encourages a
form of polymorphism where the same interaction can be used in
different contexts; the use of SVG for graphics and plug-ins for in-
teraction encourages reuse of both graphical and interaction com-
ponents. While supporting tools would help make HsmTk more
usable for real-world development, we believe it provides a sound
base for a new generation of user interface toolkits.

8. REFERENCES
[1] R. Bastide and P. Palanque. A petri net based environment

for the design of event driven interfaces. In Proceedings of
the 16th International Conference on Application and
Theory of Petri Nets, 1995.

[2] M. Beaudouin-Lafon. Instrumental interaction: an
interaction model for designing post-WIMP user interfaces.
In Proc. CHI’00, pages 446–453, 2000.

[3] M. Beaudouin-Lafon and W. E. Mackay. Reification,
polymorphism and reuse: three principles for designing
visual interfaces. In Proc. AVI’00, pages 102–109, 2000.

[4] O. Beaudoux. DoPIdom : Une approche de l’interaction et de
la collaboration centrée sur les documents. In Proc. IHM’06.
ACM International Conference Proceedings Series, 2006.

[5] B. B. Bederson, J. Grosjean, and J. Meyer. Toolkit design for
interactive structured graphics. IEEE Trans. Soft. Eng.,
30(8):535–546, 2004.

[6] B. B. Bederson, J. Meyer, and L. Good. Jazz: an extensible
zoomable user interface graphics toolkit in java. In Proc.
UIST’00, pages 171–180, 2000.

[7] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D.
DeRose. Toolglass and magic lenses: the see-through
interface. In Proc. SIGGRAPH’93, pages 73–80, 1993.

[8] R. Blanch, S. Conversy, T. Baudel, Y.-P. Zhao, Y. Jestin, and
M. Beaudouin-Lafon. INDIGO : une architecture pour la
conception d’applications graphiques interactives
distribuées. In Proc. IHM’05, pages 139–146. ACM
International Conference Proceedings Series, 2005.

[9] S. Chatty, S. Sire, J.-L. Vinot, P. Lecoanet, A. Lemort, and
C. Mertz. Revisiting visual interface programming: creating
GUI tools for designers and programmers. In Proc. UIST’04,
pages 267–276, 2004.

[10] S. Conversy and J.-D. Fekete. The svgl toolkit: enabling fast
rendering of rich 2d graphics. Technical Report 02/1/INFO,
École des Mines de Nantes, 2002.

[11] P. Dragicevic and J.-D. Fekete. Input device selection and
interaction configuration with ICON. In Joint proc. HCI’01 &
IHM’01, pages 543–558, 2001.

[12] M. Green. A survey of three dialogue models. ACM Trans.
Graph., 5(3):244–275, 1986.

[13] D. Harel. Statecharts: a visual formalism for complex
systems. Sci. Comp. Prog., 8(3):231–274, 1987.

[14] S. Huot, C. Dumas, P. Dragicevic, J.-D. Fekete, and
G. Hégron. The MaggLite post-WIMP toolkit: draw it,
connect it and run it. In Proc. UIST’04, pages 257–266, 2004.

[15] R. J. K. Jacob, L. Deligiannidis, and S. Morrison. A software
model and specification language for non-WIMP user
interfaces. ACM TOCHI, 6(1):1–46, 1999.

[16] É. Lecolinet. A molecular architecture for creating advanced
GUIs. In Proc. UIST’03, pages 135–144, 2003.

[17] B. A. Myers. Separating application code from toolkits:
Eliminating the spaghetti of call-backs. In Proc. UIST’91,
pages 211–220, 1991.

[18] B. A. Myers and M. B. Rosson. Survey on user interface
programming. In Proc. CHI’92, pages 195–202, 1992.

[19] S. Pook, É. Lecolinet, G. Vaysseix, and E. Barillot. Control
menus: excecution and control in a single interactor. In Ext.
abstracts CHI’00, pages 263–264, 2000.

[20] B. Shneiderman. Direct manipulation: a step beyond
programming languages. IEEE Comp., 16(8):57–69, 1983.

[21] P. Wegner. Why interaction is more powerful than
algorithms. Com. ACM, 40(5):80–91, 1997.

