
eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia Final Project Report

Abstract— After a first workshop at eNTERFACE 2005

focusing on developing video-based modalities for an augmented
driving simulator, this project aims at designing and developing a
multimodal driving simulator that is based on both multimodal
driver's focus of attention detection as well as driver's fatigue
state detection and prediction. Capturing and interpreting the
driver's focus of attention and fatigue state will be based on video
data (e.g., facial expression, head movement, eye tracking). While
the input multimodal interface relies on passive modalities only
(also called attentive user interface), the output multimodal user
interface includes several active output modalities for presenting
alert messages including graphics and text on a mini-screen and
in the windshield, sounds, speech and vibration (vibration wheel).
Active input modalities are added in the meta-User Interface to
let the user dynamically select the output modalities. The driving
simulator is used as a case study for studying software
architecture for multimodal signal processing and multimodal
interaction using two software component-based platforms,
OpenInterface and ICARE.

Index Terms— Attention level, Component, Driving simulator,
Facial movement analysis, ICARE, Interaction modality,
OpenInterface, Software architecture, Multimodal interaction.

I. INTRODUCTION
HE project aims to study component-based architecture
using two platforms, namely OpenInterface [1] and

ICARE [2] [3], for combining multimodal signal processing
analysis and multimodal interaction. OpenInterface is a

This report, as well as the source code for the software developed during the
project, is available online from the eNTERFACE’05 web site:
www.enterface.net.

This research was partly funded by SIMILAR, the European Network of
Excellence on Multimodal Interfaces, during the eNTERFACE’06 Workshop
in Dubrovnik, Croatia.

component-based platform developed in C++ that handles
distributed heterogeneous components. OpenInterface
supports the efficient and quick definition of a new
OpenInterface component from an XML description of a
program. By so doing, any program can be included as an
OpenInterface component and can then communicate with any
other existing OpenInterface component. As opposed to
OpenInterface, ICARE is a conceptual component model for
multimodal input/output interaction [2]. One implementation
of the ICARE model is defined using JavaBeans components
[3].
In this project, we study the development of a multimodal
interactive system using the OpenInterface platform while the
component architecture is along the ICARE conceptual model.
The selected case study for this project is a driving simulator
[4].
The structure of the paper is as follows: first we present the
selected case study by explaining the rationale for selecting
this interactive system from a multimodal interaction point of
view and by giving an overview of the interactive system. We
then recall the key points of the two platforms, OpenInterface
and ICARE before presenting the software architecture along
the ICARE conceptual model. We then detail the software
architecture that has been implemented followed by a
discussion on the tradeoffs and differences with the initial
ICARE architecture.

II. CASE STUDY: DRIVING SIMULATOR

A. Rational for selecting a driving simulator
The case study is a driving simulator. Indeed, facing the
sophisticated sensing technology available in modern cars,
multimodal interaction in cars constitutes a very challenging

Multimodal Signal Processing and Interaction
for a Driving Simulator:

Component-based Architecture
A. Benoit, L. Bonnaud, A. Caplier

Institut National Polytechnique de Grenoble, France, LIS Lab.

Y. Damousis, D. Tzovaras
Centre for Research and Technology Hellas – Thessaloniki, Greece, IT Institute

F. Jourde, L. Nigay, M. Serrano
Université Joseph Fourier, Grenoble 1, France, CLIPS Lab.

L. Lawson
Université Catholique de Louvain, Belgium, TELE Lab.

T

eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia Final Project Report

domain. The key issue in terms of interaction design is that the
main task of the user is the driving one, a critical task which
requires a driver to keep her/his eyes on the road. A driving
task relies on local guidance that includes sub-tasks involving
control of the vehicle and knowledge of the environmental
situation. In this context of a driving task, our application
domain, our goals are:

- to capture a driver's focus of attention,
- to capture a driver’s state of fatigue,
- to predict a driver’s state of fatigue,
- to design and develop an output multimodal user

interface for presenting alert messages to the driver.
Several projects focus on User Interfaces (UI) in cars and

involve various interaction technologies such as trackpad fixed
on the steering wheel [5], dedicated buttons, mini-screens as
well as head-up display (HUD) technology. For example
HUDs are used for displaying icons and texts, usually found
on the dashboard of a car, in the windshield as shown in
Figure 1.

HUD: Text and icons

displayed in the windshield

Fig. 1. In-car HUD (from [5]).

We distinguish two main classes of UI studies in cars:

design of interactive dashboards that nowadays include a
screen (e.g., graphical user interface for controlling the radio
and so on) and Augmented Reality (AR) visualizations.
Several on-going projects focus on Augmented Reality (AR)
visualizations for the driver using head-up display (HUD)
technology. For example for displaying navigation
information or for guiding the driver's attention to dangerous
situations, transparent graphics (e.g., transparent path of the
route) are directly projected onto the windshield [6] as shown
in Figure 2, making it possible for the driver to never take
her/his eyes off the road.

Fig. 2. In-car Augmented Reality: Guiding driver’s attention to dangerous
situation. The arrow indicates the position of imminent danger (from [6]).

Complementary to these projects, our task focuses on

supporting the driving activity by monitoring and predicting
the state of the driver (attention and fatigue). Instead of
focusing on external dangers (e.g. a potential collision with a
car coming from behind as in Figure 2), the project aims at
detecting dangerous situations due to the driver's fatigue state
and focus of attention. From the Human-Computer Interaction

point of view, the project focuses on multimodal input and
output interaction that combines passive input modalities
(implicit actions of the driver) for detecting dangerous
situations as well as active modalities (explicit actions of the
driver) for perceiving alarms (output active modalities) and for
changing the output modalities (input active modalities).

B. Overview of the driving simulator
Starting from the programs developed during a first

workshop at eNTERFACE 2005 [4], the overall hardware
setting of the driving simulator includes:

- 3 PCs: one under Windows for the driving simulator,
one under Linux for capturing and predicting the
driver’s states (focus of attention and state of
fatigue), and one on Windows for the output user
interface developed using the ICARE platform
(JavaBeans component).

- 1 LOGITECH webcam sphere
- 1 LOGITECH force feedback wheel
- 1 video-projector
- 2 loudspeakers

Figure 3 shows the system in action. For software, the
driving simulator we used is the GPL program TORCS [7] and
the multimodal interaction is developed using the two
platforms OpenInterface and ICARE.

Fig. 3. Multimodal driving simulator: demonstrator in use.

III. COMPONENT PLATFORMS

A. OpenInterface platform
OpenInterface is a component-based platform developed in

C++ that handles distributed heterogeneous components.
OpenInterface supports the efficient and quick definition of a
new OpenInterface component from an XML description of a
program. Although the platform is generic, in the context of
the SIMILAR project, the OpenInterface platform is dedicated
to multimodal applications. We define a multimodal
application as an application that includes multimodal data
processing and/or offers multimodal input/output interaction
to its users.

eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia Final Project Report

Figure 4 gives an overview of the platform. Each
component is registered in OpenInterface Platform using the
Component Interface Description Language (CIDL) and
described in XML. The registered components properties are
retrieved by the Graphic Editor (Java). Using the editor the
user can edit the component properties and compose the
execution pipeline (by connecting the components) of the
multimodal application. This execution pipeline is sent to the
OpenInterface Kernel (C/C++) to run the application.

Fig. 4. Overview of the OpenInterface platform.

OpenInterface is designed to serve three levels of users:

programmers, application designers (AD) and end-users.
Programmers are responsible for the development and
integration of new components into the platform. The
application designers focus on end-user’s needs and are aware
of the resources provided by the platform. The AD will use the
graphical editor to assemble components in order to develop a
multimodal application. End-users interact with the final
application whose components are executed within the
platform.

B. ICARE platform
ICARE (Interaction CARE -Complementarity Assignment,

Redundancy and Equivalence-) is a component-based
approach which allows the easy and rapid development of
multimodal interfaces [2] [3]. The ICARE platform enables
the designer to graphically manipulate and assemble ICARE
software components in order to specify the multimodal
interaction dedicated to a given task of the interactive system
under development. From this specification, the code is
automatically generated. The currently developed ICARE
platform that implements a conceptual component model that
describes the manipulated software components, is based on
the JavaBeans technology [8]. The ICARE conceptual model
includes:

1. Elementary components: Such components are building
blocks useful for defining a modality. Two types of ICARE
elementary components are defined: Device components and
Interaction Language components. We reuse our definition of
a modality [9] as the coupling of a physical device d with an
interaction language L: <d, L>. In [10], we demonstrate the
adequacy of the notions of physical device and interaction

language for classifying and deriving usability properties for
multimodal interaction and the relevance of these notions for
software design.

2. Composition components: Such components describe
combined usages of modalities and therefore enable us to
define new composed modalities. The ICARE composition
components are defined based on the four CARE properties
[10]: the Complementarity, Assignment, Redundancy, and
Equivalence that may occur between the modalities available
in a multimodal user interface. We therefore define three
Composition components in our ICARE conceptual model: the
Complementarity one, the Redundancy one, and the
Redundancy/Equivalence one. Assignment and Equivalence
are not modeled as components in our ICARE model.
Assignment and Equivalence are not modeled as components
in our ICARE model. Indeed, an assignment is represented by
a single link between two components. An ICARE component
A linked to a single component B implies that A is assigned to
B. As for Assignment, Equivalence is not modeled as a
component. When several components (2 to n components)
are linked to the same component, they are equivalent. As
opposed to ICARE elementary components, Composition
components are generic in the sense that they are not
dependent on a particular modality.

The two ICARE composition components,

Complementarity and Redundancy/Equivalence have been
developed in C++ as connectors within the OpenInterface
platform.

In the following section, examples of ICARE component

assemblies are provided in the context of the multimodal
driving simulator.

IV. SOFTWARE ARCHITECTURE OF
THE MULTIMODAL DRIVING SIMULATOR

In this section, we first present the overall architecture
along the ICARE conceptual model that we defined at the
beginning of the project followed by the implemented
architecture developed during the workshop. We finally
conclude by a discussion of the tradeoffs and differences
between the initial conceptual architecture and the
implemented one.

A. ICARE conceptual architecture
In Figure 5, we present the overall software architecture of

the entire multimodal driving simulator in order to highlight
the scope of the code organized along the ICARE conceptual
model. As pointed out in Figure 5, within the architecture, we
identify two types of link between the ICARE components and
the rest of the interactive system:

- For inputs, the connection between the ICARE Input
components and the rest of the interactive system is at
the level of the elementary tasks. From explicit or
implicit actions performed by the driver (i.e., the user)
along various modalities, the ICARE components are
responsible for defining elementary tasks that are

eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia Final Project Report

independent of the used modalities. Such elementary
tasks are then transmitted to the Dialogue Controller.
One example of an driving task is the “accelerate”
task.

- For outputs, the Dialogue Controller is sending
elementary presentation tasks to the ICARE output
components that are responsible for making the
information perceivable to the driver along various
output modalities. One example of an elementary task
is the “present alarm” task.

Fig. 5. Overall architecture of the multimodal driving simulator.

Because we reuse the GPL driving simulator TORCS [7]

that we extend to be multimodal, some parts of the
architecture of Figure 5 are already developed. Figure 6 shows
the code that we need to develop along with the existing
TORCS code. All the modalities for driving (input modalities
based on the steering wheel and the pedal) and for displaying
the graphical scene are reused and not developed with ICARE

components.
To better understand the extensions to be developed, Figure

7 presents the task tree managed by the Dialogue Controller.
Within the task tree, the task “Choose output modalities” does
not belong to the main Dialogue Controller of the driving
simulator but rather belongs to a distinct Dialogue Controller
dedicated to the meta User Interface (meta UI) as shown in
Figure 8. Indeed the meta UI enables the user to select the
modalities amongst a set of equivalent modalities. Such a task,
also called an articulatory task, does not correspond to a task
of the driving simulator itself. The meta UI includes a second
Dialogue Controller (Dialogue Controller (2) in Figure 8) as
well as ICARE input components for specifying the selection.
The selection is then sent by the second Dialogue Controller to
the ICARE output components [11].

Fig. 8. Meta User Interface: ICARE components within an overall software
architecture of an interactive system and the meta UI that enables the selection
of equivalent modalities by the user (from [11]).

To obtain the final ICARE architecture, for each elementary

task of Figure 7, an ICARE diagram is defined. Figure 9
presents the four ICARE diagrams designed for the four
elementary tasks to be developed.

Fig. 6. TORCS code and extensions to be developed within our architecture.

eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia Final Project Report

The ICARE diagrams for the multimodal driving simulator

include pure modalities and two composition components.
- For input, pure modalities made of a device and an

interaction language components are used for the two
tasks; (i) capture the user’s state of fatigue and
attention and (ii) predict the user’s state of fatigue.

These two modalities are passive input modalities. The
modality for capturing the user’s state is based on eye
blinking and mouth movement (yawning) for detecting
the state of fatigue and on face movement for capturing
the focus of attention. Instead of one pure modality, we
can also define three modalities, one for the state of

eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia Final Project Report

fatigue based on mouth movement, one for the state of
fatigue based on eye blinking and one for the focus of
attention. The three modalities will then be combined
by two composition components as shown in Figure 10.

Fig. 10. Combined modalities for capturing and detecting user’s
state.

For selecting the output modalities the user issues
speech commands such as “windshield screen voice
beep tactile” for selecting all the output modalities. For
using this combined modality, the user first selects a
wheel button then issues the voice command, and
finally selects again the button to indicate the end of the
speech commands. As shown in Figure 9 two pure
modalities, speech and button, are combined by a
Complementarity composition component. Finally an
Interaction Language component is responsible for
combining all the recognized words between the two
button press events. The output of this component is a
list of selected modalities that is sent to the second
Dialogue Controller of the meta User Interface.

- For outputs, five pure modalities made of a device and
an interaction language component are defined for
presenting an alarm. Such modalities are combined by
a Redundancy/Equivalence composition component.
This composition component implies that the five
modalities can be used all together in a redundant way
or that only a sub-set of the modalities (1 to 5
modalities) can be used in a redundant way.

Having presented the ICARE overall software architecture

of the multimodal driving simulator, we now present the
implemented architecture and in particular which components
of the architecture have been implemented in OpenInterface.

A. Implemented architecture
We first describe the implemented OpenInterface

components and then explain in the following section the
differences between the ICARE conceptual architecture and

the implemented architecture. We have developed six
OpenInterface components:

- One OpenInterface component is dedicated to the video
stream. Such a component is not explicit in the ICARE
architecture since it represents a supplementary layer of
the physical device driver.

- One OpenInterface component is implementing the
software interface to be able to send messages to the
TORCS code.

- One OpenInterface component implements all the
ICARE diagrams for the task “Show alert message” of
Figure 9 as well as the meta User Interface. This
component has been implemented with ICARE
JavaBeans components. The final implemented ICARE
diagram is presented in Figure 11. First, due to time
constraints, the Complementarity component of Figure
9 has not been used for developing the combined active
modalities based on speech and a steering wheel
button. Second, we decided to add a new modality for
choosing modalities using dedicated buttons on the
steering wheel. The two modalities are then equivalent
for the task “Choose output modalities”.

Fig. 11 Implemented ICARE components for the output modalities and
meta User Interface. All the ICARE components are encapsulated in one
OpenInterface component.

- One OpenInterface component corresponds to the “Eye

Blinking history” for predicting the user’s state of
Fatigue.

- Two OpenInterface components correspond to the
ICARE diagram of Figure 10 for capturing the user’s
state (Attention & Fatigue). Figure 12 presents the
implemented processes of these two implemented

eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia Final Project Report

OpenInterface components.

Fig. 12 Implemented OpenInterface components for capturing the user’s

state. Starting from the input provided by the Video Stream component, two
OpenInterface components, namely Retina component and User’s State
component, have been implemented for providing four outputs: Focus of
attention (head motion), duration of eyes closed, yawning and eye blinking
history.

The video analysis system for capturing user’s state is

composed of two OpenInterface components: a prefiltering
component that enhances the input data and extracts different
information. The second component computes the user face
analysis and outputs different indicators related to the user’s
state.

Retina Component description

Once a frame is acquired from the video stream component,
it is processed by the Retina component. This component is a
filter coming from the modeling of the human retina [12, 13].
It provides three outputs for each frame:

- a gray picture close to the input frame but with a
corrected luminance. This output allows a better
extraction of the details of the picture in the dark areas
by enhancing locally the sensitivity to the luminance.

- a picture of all the contours in the input frame. This
output contains only the contours of the input. It is
robust against spatio-temporal noise and luminance
variations. It allows a description of the details of the
input such as eyes and mouth contours which are used
by the fatigue detection.

- a picture of all the moving contours. This output only
reports energy on the areas in which contours are

moving. It allows event detection and motion
description [14].

As an illustration, Figure 13 shows the three outputs of this
component according to a frame input. The data provided by
this Retina component are directed to the different modules of
the User’s State component.

Fig. 13 Illustration of the outputs of the Retina component.

Description of the User State component

The first module of the User State component provides the
position of the head in the visual scene, and is made of the
Machine Perception Toolbox [14]. This module accepts as
input a gray level picture. Nevertheless, luminance variations
on the face can make this module fail. Then, in order to make
it more robust, its input is the corrected luminance output of
the Retina component instead of the Video Stream
Component.

Once the face is detected, two modules work in parallel.
The first is the Optical Flow Computing module, which
computes the velocity on the face area with the help of
neuromorphic velocity filters [15]. This module provides the
horizontal and vertical estimated velocities. The second
module is the Spectrum Analysis module. It consists of the log
polar spectrum analysis of both contour output and moving
contour output of the Retina component. This module is based
on the modeling of the primary visual cortex area V1. As
explained in [13] [16], by analyzing the temporal response of
the log polar spectrum of the moving contours response of the
face, it is possible to retrieve motion event alarms and motion
orientation when motion is occurring. Finally, this module
provides alarms for different face motions: the global head
motion, eyes and mouth motions (opening/closing). Also, by
analyzing the temporal evolution of the Retina component
contour output, it is possible to evaluate the state “Open” or
“Close” of the eyes and the mouth yawning.

Outputs generation

The User State module provides different outputs that are
used by the components presenting the alarms.

Three outputs are alarms related to the estimation of the
driver fatigue level. An alarm is sent when the user closes his
eyes for more that a specified duration (we experimentally fix
it to 200ms). Another is sent when the driver yawns.

Also, an alarm is generated when the user moves his head
longer than a specified period (we experimentally fix it to
300ms). The generation of this alarm is based on the data
provided by the Optical Flow Computing module and the
global head spectrum analysis. Once a head motion event is
detected by the Spectrum Analysis module, the velocity data
coming from the Optical Flow module and motion orientation

eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia Final Project Report

coming from the Spectrum Analysis module are fused to
generate the appropriate alarm in the event that the
information is redundant.

 These alarms are developed to signal user fatigue
dynamically. In order to provide a long term prediction of
hypo-vigilance, we generate a last output which is a list of the
duration of the eye blinks encountered in the last 20 seconds.
This output is sent to the hypo-vigilance prediction
component.

Sleep prediction component

The aim of this component is to provide the driver with a
warning several minutes before he/she loses control of the
vehicle due to extreme hypo-vigilance or sleep. The prediction
is made based on the 20 second eyelid activity history of the
subject. Specifically the input of the component is the start and
end timestamps of the blinks as these are registered by the
video analysis system.

The output of the component is a binary value 1 or 0
corresponding to warning or no warning.

The prediction of the component is calculated via the fuzzy
fusion of several features that characterize the blinking
behavior of the driver (Fuzzy Expert System). These features
that were selected based on literature review [17], [18] and the
expertise gained in previous related projects such as AWAKE
[19] are the following:

• Long blinks duration: the blinks in the 20 second
window are filtered and only the ones lasting more than
0,3s are kept. If the number of long blinks is larger than 2
the sum of their durations is the long blink duration
feature. Else the LBD = 0.

• Maximum interval between blinks is defined as the
interval between the end of the current blink and the
beginning of the next (t1[blink+1] - t3[blink]).

• Blinking rate.
Although these features are not the most efficient ones they

were the only ones that could be extracted given the input data
and the camera used for video acquisition (30fps). Features
that take into account velocity characteristics of the blinks are
reported to have greater accuracy [20], however for the
extraction of these features a high speed camera capable of
200fps and special software is needed.

In the following figure a schematic representation of the
fuzzy system’s premise space is shown. The features form a
three dimensional space and their partitioning using three
fuzzy sets per input leads to the formation of 27 fuzzy rules.
Each fuzzy rule has a different output thus giving us the ability
to model 27 different blinking behaviors prior to the sleep
onset. The final output/prediction of the system is calculated
by combining the outputs of the fuzzy rules that are triggered
by the eyelid activity pattern (LBD | Max interval | blinking
rate) on real time.

Fig. 14 A schematic of the FES premise space. Depending on which fuzzy

rules are triggered by the eyelid activity pattern the output of the system is
calculated in real time.

For the training of the fuzzy system’s parameters data from

30 drowsy drivers were used, namely the blinking history of
the subjects and the timestamps of the accidents during the
driving sessions.

The method that was used for training was a real-coded
genetic algorithm and the fitness function was chosen so as to
maximize the correct predictions ratio and minimize the
number of alarms so as to be as unobtrusive to the driver as
possible [21]. Even though the training of the FES parameters
with a GA takes a substantial amount of time that can reach
one hour, once the parameters are trained the system generates
its output instantly for online operation. Tests that were
carried out during the workshop using this data led to a
prediction accuracy of 80% for the training set of 30 drivers.

The component was developed in C++ and was delivered in
the form of a dll for integration.

B. Discussion: tradeoffs and compatibility between ICARE
and OpenInterface
There is no direct 1-1 mapping between the ICARE

component architecture and the implemented OpenInterface
component architecture. Nevertheless we demonstrated the
compatibility and feasibility of the approach.

For the user’s state capture, the two implemented
OpenInterface components define large components. The
componentization as described in Figure 10 would have been a
difficult task since the code is developed in Matlab. Matlab
had been initially used for exploring solutions. For providing
final components after a feasibility phase made in Matlab, it
would be useful to fully redevelop the final version in C++.
Moreover we did not define one component for each feature
used in the image, as advocated by Figure 10, for efficiency
reasons because this would involve duplication of the video
stream input.

For the output multimodal interface, we show the benefit of
the ICARE approach, that is, that it allows us to quickly add a
new equivalent modality for selecting the output modalities

eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia Final Project Report

within the meta User Interface and that it allows us to reuse
components such as the Device component Loudspeakers for
lexical feedback from the speech recognizer.

More OpenInterface components could have been defined
corresponding to the ICARE software architecture: this was
not pursued simply due to time constraints.

V. CONCLUSION
By considering the case study of a driving simulator, we

focused on designing a software component architecture for
multimodal interfaces from the Human-Computer Interaction
domain, and how to implement it using the OpenInterface as
well as the ICARE platforms. The compatibility of the two
platforms is evident since several ICARE components are
encapsulated within one OpenInterface component.

In future work, we first need to integrate the user’s state
prediction component within the demonstrator. We also plan
to define new OpenInterface components particularly for the
developed output multimodal interfaces. Moreover new native
OpenInterface connectors could be defined corresponding to
the ICARE output composition components. This work has
already been done for the input ICARE composition
components although we did not use them in this case study.

Moreover we would like to use new passive modalities for
capturing the stress level of the user based on biological
signals analysis. We are currently defining the corresponding
OpenInterface components. We plan to integrate the stress
level within our demonstrator as part of the meta User
Interface for automatically selecting the output modalities in
addition to allowing the user to select them.

Finally we would be interested to perform some usability
experiments and to study the benefit of our component
architecture in quickly modifying multimodal interaction and
retesting the interaction as part of an iterative user centered
design method.

REFERENCES
[1] SIMILAR, European Network of Excellence, WP2, OpenInterface

platform. www.similar.cc
[2] J. Bouchet and L. Nigay, “ICARE: A Component-Based Approach for

the Design and Development of Multimodal Interfaces”, in Proc.
CHI’04 conference extended abstract, ACM Press, 2004, pp. 1325-1328.

[3] J. Bouchet, L. Nigay and T. Ganille, “ICARE Software Components for
Rapidly Developing Multimodal Interfaces”, in Proc. ICMI’04
conference, ACM Press, 2004, pp. 251-258.

[4] A. Benoit et al., “Multimodal Focus Attention Detection in an
Augmented Driver Simulator”, in Proc. eNTERFACE’05 workshop,
2005, pp. 34-43. www.enterface.net/enterface05/

[5] J-F. Kamp, “Man-machine interface for in-car systems. Study of the
modalities and interaction devices”, Ph.D. dissertation, ENST, Paris,
1998.

[6] M. Tonnis, C. Sandor, G. Klinker, C. Lange, H. Bubb, “Experimental
Evaluation of an Augmented Reality Visualization Car Driver’s
Attention”, in Proc. ISMAR’05, IEEE Computer Society, 2005, pp. 56-
59.

[7] TORCS Driver Simulator: torcs.sourceforge.net
[8] JavaBeans 1.01 specification, Sun Microsystems 1997.

java.sun.com/products/javabeans/docs/
[9] L. Nigay, J. Coutaz, “A Generic Platform for Addressing the

Multimodal Challenge”, in Proc. CHI’95 conference, ACM Press, 1995,
pp. 98-105.

[10] L. Nigay, J. Coutaz, “The CARE Properties and Their Impact on
Software Design”, in Intelligence and Multimodality in Multimedia
Interfaces, 1997.

[11] B. Mansoux, L. Nigay and J. Troccaz, “Output Multimodal Interaction:
The Case of Augmented Surgery”, in Proc. HCI’06 conference,
Springer-Verlag and ACM Press, 2006, to appear.

[12] W. Beaudot, "The neural information processing in the vertebrate retina:
A melting pot of ideas for artifficial vision", PhD Thesis in Computer
Science, INPG (France) december 1994.

[13] A. Benoit , A. Caplier "Head nods analysis : interpretation of non verbal
communication gestures " IEEE, ICIP , Genova, Italy, 2005

[14] Machine Perception Toolbox (MPT)
http://mplab.ucsd.edu/grants/project1/free-software/MPTWebSite/API/].

[15] A. Torralba, J. Herault "An efficient neuromorphic analog network for
motion estimation." IEEE Transactions on Circuits and Systems-I:
Special Issue on Bio-Inspired Processors and CNNs for Vision. Vol 46,
No. 2, February 1999.

[16] A. Benoit , A. Caplier "Hypovigilence Analysis: Open or Closed Eye or
Mouth ? Blinking or Yawning Frequency ?" IEEE, AVSS, Como, Italy,
2005.

[17] Yannis Damousis, Dimitrios Tzovaras: Correlation between SP1 data
and parameters and WP 4.4.2 algorithms, SENSATION Internal Report,
November 2004.

[18] Alex H. Bullinger et al “Criteria and algorithms for physiological states
and their transitions, SENSATION_Del_1_1_1.doc”, SENSATION
Deliverable 1.1.1, August 2004

[19] A. Giralt et al. “Driver hypovigilance criteria, filter and HDM module”,
AWAKE Deliverable 3.1, September 2003.

[20] Johns, MW The amplitude-Velocity Ratio of Blinks: A New Method for
Monitoring Drowsiness.

[21] I. G. Damousis et al “A Fuzzy Expert System for the Early Warning of
Accidents Due to Driver Hypo-Vigilance”, presented at the Artificial
Intelligence Applications and Innovations (AIAI) 2006 Conference, 7-9
June, 2006, Athens, Greece.

A. Benoit was born in 1980 in France. He graduated from Institut National
Polytechnique de Grenoble (INPG). Currently he is a Ph.D. candidate in the
Laboratoire des Images et des Signaux (LIS) of Grenoble. His research
interests are in the areas of human motion and head motion analysis. His work
is based on the human visual perception system. He is also teaching signal
processing at the Master level.

L. Bonnaud was born in 1970 in France. He graduated from the École
Centrale de Paris (ECP) in 1993. He obtained his PhD from IRISA and the
Université de Rennes-1 in 1998. Since 1999 he is teaching at the Université
Pierre-Mendès-France (UPMF) in Grenoble and is a permanent researcher at
the Laboratoire des Images et des Signaux (LIS) in Grenoble. His research
interests include segmentation and tracking, human motion and gestures
analysis and interpretation.

A. Caplier was born in 1968 in France. She graduated from the École
Nationale Supérieure des Ingénieurs Électriciens de Grenoble (ENSIEG) of
the Institut National Polytechnique de Grenoble (INPG), France, in 1991. She
obtained her Master’s degree in Signal, Image, Speech Processing and
Telecommunications from the INPG in 1992 and her PhD from the INPG in
1995. Since 1997, she is teaching at the École Nationale Supérieure
d’Électronique et de Radioélectricité de Grenoble (ENSERG) of the INPG and
is a permanent researcher at the Laboratoire des Images et des Signaux (LIS)
in Grenoble. Her main interest concerns the analysis and the interpretation of
human motion. She works in the domain of facial expressions classification,
human postures recognition, Cued Speech language classification and head
rigid or non rigid motion analysis.

Y. Damousis was born in 1974 in Thessaloniki-Greece. He received the Dipl.
Eng. Degree and a Ph.D from the Department of Electrical and Computer
Engineering at the Aristotle University of Thessaloniki in 1997 and 2003
respectively. Currently he is a senior researcher at the Informatics &
Telematics Institute of the Centre for Research and Technology Hellas in
Thessaloniki. His research interests are in the areas of expert systems,
optimization and fusion in AI applications. He is a member of the Technical
Chamber of Greece.

D. Tzovaras received the Diploma in electrical engineering and the PhD
degree in 2D and 3D image compression from Aristotle University of

eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia Final Project Report

Thessaloniki, Thessaloniki, Greece, in 1992 and 1997, respectively. He is a
senior researcher in the Informatics and Telematics Institute of Thessaloniki.
Prior to his current position, he was a senior researcher on 3D imaging at the
Aristotle University of Thessaloniki. His main research interests include
virtual reality, assistive technologies, 3D data processing, medical image
communication, 3D motion estimation, and stereo and multiview image
sequence coding. His involvement with those research areas has led to the
coauthoring of more than 35 papers in refereed journals and more than 80
papers in international conferences. He has served as a regular reviewer for a
number of international journals and conferences. Since 1992, he has been
involved in more than 40 projects in Greece funded by the EC and the Greek
Secretariat of Research and Technology. He is an associate editor of the
EURASIP Journal of Applied Signal Processing and a member of the
Technical Chamber of Greece..

F. Jourde was born in 1981 in France. He graduated in computer science
from the University of Grenoble 1. He is currently working as a research
associate at the CLIPS laboratory of Grenoble. His research interests focus on
Computer-Human Interaction (HCI) and in particular his research studies
centre on formal specification of multimodal user interfaces and formal tests
of multimodal interaction based on Lustre, a synchronous programming
language.

L. Nigay was born in 1965 in France. She is a Professor at Université Joseph
Fourier (UJF, Grenoble 1) and at Institut Universitaire de France (IUF). Her
research interests focus on the design and development of user interfaces. In
particular her research studies centre on Multimodal and Augmented Reality
(AR) user interfaces such as the component-based approach named ICARE
(Interaction Complementarity, Assignment, Redundancy and Equivalence) for
the development of multimodal and AR interfaces and new interaction
modalities combining the real and the physical worlds such as tangible user
interfaces, embodied user interface and mobile augmented reality. She has
published more than 130 articles in conferences, journals and books. L. Nigay
has received several scientific awards (including the CNRS Bronze medal in
2002 and the UJF gold medal in 2003 and again in 2005) for excellence in her
research and is involved in many international scientific societies and events,
as well as European research projects.

M. Serrano was born in 1981 in Spain. He graduated in computer science
both from the Facultad de Informatica of the Universidad Politecnica de
Madrid in Spain and from the École Nationale Supérieure d'Informatique et de
Mathématiques Appliquées de Grenoble (ENSIMAG) in France, in 2005. He
is currently working as a research associate at the CLIPS laboratory of
Grenoble. His research interests focus on Computer-Human Interaction (HCI)
and in particular his research studies centre on output multimodal interaction
for augmented surgery and multimodal interaction on mobile devices such as
phone and PDA.

L. Lawson was born in 1982 in Bénin. He graduated from the Engineering
School of Université Catholique de Louvain (UCL) and obtained his Master
degree in Computer Science and Engineering in 2004. He is currently working
as a research associate at the Communication and Remote Sensing Laboratory
(TELE) of Université Catholique de Louvain on the development of
OpenInterface, an open source component-based platform.

