
A Model-Driven Engineering Approach for
the Usability of Plastic User Interfaces

Jean-Sébastien Sottet, Gaëlle Calvary, Joëlle Coutaz, Jean-Marie Favre

Université Joseph Fourier, 385 rue de la Bibliothèque, BP 53, 38041 Grenoble Cedex France
{Jean-Sebastien.Sottet, Gaelle.Calvary, Joelle.Coutaz, Jean-Marie.Favre}@imag.fr

Abstract. Ubiquitous computing has amplified the need for interactive systems
to be able to adapt to their context of use (<User, Platform, Environment>)
while preserving usability. This property is called plasticity. Until now, efforts
have been put on the functional aspect of adaptation, neglecting the usability
part of the definition. This paper investigates MDE mappings for embedding
both the description and control of usability. A User Interface (UI) is a graph of
models describing the UI from different perspectives ranging from user’s tasks
to the UI deployment on the context of use. Mappings link together these
perspectives making explicit both the UI design rationale and the extent to
which properties are preserved at runtime when the UI is transformed to target a
new context of use. This paper provides a general definition and meta-model of
mapping that are not devoted to Human-Computer Interaction (HCI). A
mapping describes a transformation that preserves properties. A transformation
is performed by a set of transformation functions that can be described either by
a function and/or an execution trace. Mappings properties provide the designer
with a means for both selecting the most appropriate transformation functions
and previewing the resulting design. When applied to HCI, mappings are
appropriate for both describing and controlling ergonomic criteria either at
design time and/or at runtime.

Keywords: Adaptation, Context of use, Mapping, Meta-model, Model, Model
transformation, Plasticity, Usability.

1   Introduction

In Human-Computer Interaction (HCI), plasticity refers to the ability of User
Interfaces (UI) to withstand variations of context of use while preserving usability.
Context of use refers to a set of observables that characterize the conditions in which
a particular system is running. It covers three information spaces: the user model, the
platform model, and the physical and social environment model. UI adaptation has
been addressed using many approaches over the years, including Machine Learning
[20], Model-Driven Engineering (MDE) [32], and Component-oriented services [29].
Regardless of the approach, the tendency has been to focus on functional aspects of
adaptation. Usability has generally been regarded as a natural by-product of whatever



approach was being used. In this article, we propose to promote usability as a first
class entity using a model-based approach.
The article is structured in the following way. Sections 2 and 3 motivate MDE for
addressing plasticity and describe our principled approach. Section 4 introduces a
running basic case study to serve as illustration. Sections 5 and 6 illustrate mappings
on the case study and elaborate a general definition and meta-model of mapping that
are then applied to HCI for supporting plasticity. Section 7 opens the work on many
general and HCI perspectives.

2   Motivations for an MDE Approach

Although promising, the model-based approach to the development of UIs has not
met wide acceptance: developers have to learn a new specification language, the
connection between the specification and the resulting code is hard to understand and
control, and the kinds of UI’s that can be built are constrained by the underlying
conventional toolkit [18]. However, this early work has established the foundations
for transforming high-level specifications into executable code. In particular, the
following steps now serve as references for designing and developing UIs: from the
domain-dependent Concepts and Task models, an Abstract UI (AUI) is derived which
in turn is transformed into a Concrete UI (CUI), followed by the Final UI (Figure 1)
[35]. As discussed in [7], transformations can be combined and applied to any of
these models to support UI adaptation. For example, VAQUITA [5] and
WebRevEnge [22] reverse engineers HTML source files into more abstract
descriptions (respectively AUI and task levels), and from there, depending on the tool,
either retarget and generate the UI or are combined with retargeting and/or forward
engineering tools (Figure 1). This means that developers can produce the models they
are familiar with – including source code for fine-tuned elegant UIs, and then use the
tools that support the appropriate transformations to retarget the UI to a different
context of use. Transformations and models are at the heart of MDE.

Fig. 1. A model-based framework [7] for characterizing tools.

The motivation for MDE is the integration of very different know-how and software
techniques. Over the years, the field of software engineering has evolved into the
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development of many paradigms and application domains leading to the emergence of
multiple Technological Spaces (TS). "A technological space is a working context with
a set of associated concepts, body of knowledge, tools, required skills, and
possibilities" [13]. Examples of technological spaces include documentware
concerned with digital documents using XML as the fundamental language to express
specific solutions, dataware related to data base systems, ontologyware, etc. In HCI, a
java-based control panel running on a PDA can be used to control a web-based
application running on a PC. Today, technological spaces can no longer evolve in
autarky. Most of them share challenges of increasing complexity, such as adaptation,
to which they can only offer partial solutions. Thus, we are in a situation where
concepts, approaches, skills, and solutions, need to be combined to address common
problems. MDE aims at achieving integration by defining gateways between
technological spaces. The hypothesis is that models, meta-models, models
transformations and mappings, offer the appropriate means.

A model is a representation of a thing (e.g., a system), with a specific purpose. It is
“able to answer specific questions in place of the actual” thing under study [4]. Thus,
a model, built to address one specific aspect of a problem, is by definition a
simplification of the actual thing under study. For example, a task model is a
simplified representation of some human activities (the actual thing under study), but
it provides answers about how “representative users” proceed to reach specific goals.
Things and models are systems. Model is a role of representation that a system plays
for another one. Models form oriented graphs (µ graphs) whose edges denote the µ
relation “is represented by” (Figure 2). Models may be contemplative (they cannot be
processed automatically by computers) or productive (they can be processed by
computers). Typically, scenarios developed in HCI [26] are contemplative models of
human experience in a specified setting. On the other hand, the task models exploited
in TERESA [3] are productive.

In order to be processed (by humans, and/or by computers), a model must comply
with some shared syntactic and semantic conventions: it must be a well-formed
expression of a language. This is true both for productive and contemplative models:
most contemplative models developed in HCI use a mix of drawings and natural
language. A TERESA [3] task model is compliant with CTT [24]. A language is the
set of all well-formed expressions that comply with a grammar (along with
semantics). In turn, a grammar is a model from which one can produce well-formed
expressions (or models). Because a grammar is a model of a set of models (ε relation
“is part of” on Figure 2), it is called a meta-model. CTT [24] is a meta-model for
expressing specific task models.

A meta-model is a model of a set of models that comply with it. It sets the rules for
producing models. It does not represent models. Models and meta-models form a χ
tree: a model complies to a single meta-model, whereas a meta-model may have
multiple compliant models. In the same way, a meta-meta-model is a model of a set of
meta-models that are compliant with it. It does not represent meta-models, but sets the
rules for producing distinct meta-models. The OMG Model-Driven Architecture
(MDA) initiative has introduced a four-layer modeling stack as a way to express the
integration of a large diversity of standards using MOF (Meta Object Facility) as the
unique meta-meta-model. This top level is called M3, giving rise to meta-models,
models and instances (respectively called M2, M1 and M0 levels). MDA is a specific



MDE deployment effort around industrial standards including MOF, UML, CWM,
QVT, etc. The µ  and χ relations, however, do not tell how models are produced
within a technological space nor how they relate to each other across distinct
technological spaces. The notions of transformation and mapping is the MDE answer
to these issues.

Fig. 2. Basic concepts and relations in MDE.

In the context of MDE, a transformation is the production of a set of target models
from a set of source models, according to a transformation definition. A
transformation definition is a set of transformation rules that together describe how
source models are transformed into target models [15]. Source and target models are
related by the τ relation “is transformed into”. Note that a set of transformation rules
is a model (a transformation model) that complies with a transformation meta-model.
τ expresses an overall dependency between source and target models. However,
experience shows that finer grain of correspondence needs to be expressed. Typically,
the incremental modification of one source element should be propagated easily into
the corresponding target element(s) and vice versa. The need for traceability between
source and target models is expressed as mappings between source and target
elements of these models. For example, each task of a task model and the concepts
involved to achieve the task, are rendered as a set of interactors in the CUI model.
Rendering is a transformation where tasks and their concepts are mapped into
workspaces which, in turn, are mapped into windows populated with widgets in case
of graphical UIs. The correspondence between the source task (and concepts) and its
target workspace, window and widgets, is maintained as mappings. Mappings will be
illustrated in Section 5 for the purpose of UI plasticity and generally meta-modeled in
Section 6.

Transformations can be characterized within a four-dimension space: The
transformation may be automated (it can be performed by a computer autonomously),
it may be semi-automated (requiring some human intervention), or it may be
manually performed by a human. For example, given our current level of knowledge,
the transformation of a “value-centered model” into a “usability model” can only be
performed manually. On the other hand, UI generators such as CTTE [17] produce
UIs automatically from a task model. A transformation is vertical when the source
and target models reside at different levels of abstraction (Figure 1). Traditional UI
generation is a vertical top down transformation from high-level descriptions (such as



a task model) to code generation. Reverse engineering is also a vertical transformation
but it proceeds bottom up, typically from executable code to some high-level
representation by the way of abstraction. A transformation is horizontal when the
source and target models reside at the same level of abstraction (Figure 1). For
example, translating a Java source code into C code preserves the original level of
abstraction. Transformations are endogenous when the source and target models are
expressed in the same language (i.e., are compliant to the same meta-model).
Transformations are exogenous when sources and targets are expressed in different
languages while belonging to the same technological space. When crossing
technological spaces (e.g., transforming a Java source code into a JavaML document),
then additional tools (called exporters and importers) are needed to bridge the gap
between the spaces. Inter-technological transformations are key to knowledge and
technical integration.

As discussed next, our approach to the problem of plastic UI is to fully exploit the
MDE theoretic framework opening the way to the explicit expression of usability to
drive the adaptation process.

3.   MDE for UI Plasticity

Early work in the automatic generation of UIs [31] as well as more recent work in UI
adaptation adhere only partially to the MDE principles. Our approach differs from
previous work according to the following five principles.

Principle#1: An interactive system is a graph of M1-level models that expresses
and maintains multiple perspectives on the system both at design time and runtime
(Fig. 3). As opposed to previous work, an interactive system is not limited to a set of
linked pieces of code. The models developed at design-time, which convey high-level
design decision, are still available at runtime. A UI may include a task model, a
concept model, a workspace (i.e. an AUI) model, and an interactor (i.e. a CUI) model
linked by mappings. In turn, the UI components are mapped to items of the
Functional Core of the interactive system, whereas the CUI elements (the interactors)
are mapped to input and output (I/O) devices of the platform. Mappings between
interactors and I/O devices support the explicit expression of centralized versus
distributed UIs. The whole graph (Fig. 3) forms an ecosystem: a set of entities that
interact to form an organized and self-regulated unit until some threshold is reached.
When the threshold is reached, Principles #3 and #5 come into play.

Principle #2: Transformations and mappings are models. In the conventional
model-driven approach to UI generation, transformation rules are diluted within the
tool. Consequently, “the connection between specification and final result can be
quite difficult to control and to understand” [18]. In our approach, transformations are
promoted as models. As any model, they can be modified both at design-time and
runtime at different degrees of automation. The same holds for mappings. In
particular, mappings are decorated with properties to convey usability requirements.
This aspect will be discussed in detail in Sections 5 and 6.
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Fig. 3. A UI is a graph of models. Mappings define both the rationale of each UI element and
the UI deployment on the functional core and the context of use.

Principle #3: Design-time tools are runtime services. The idea of creating UIs by
dynamically linking software components was first proposed in the mid-eighties for
the Andrew Toolkit [23], followed by OpenDoc, Active X, and Java Beans. However,
these technical solutions suffer from three limitations: they are code centric, the
assembly of components is specified by the programmer, and the components are
supposed to belong to the same technological space. In our approach, any piece of
code is “encapsulated” as a service. Some of them implement portions of the UI. We
call them UI services. Others, the UI transformers, interpret the models that constitute
the interactive system. In other words, the model interpreters used at design-time are
also services at runtime. As a result, if no UI service can be found to satisfy a new
context of use, a new one can be produced on the fly by UI transformers. In particular,
the availability of a task model at runtime makes it possible to perform deep UI
adaptation based on high-level abstractions.

Principle #4: Humans are kept in the loop. HCI design methods produce a large
body of contemplative models such as scenarios, drawings, storyboards, and mock-
ups. These models are useful reference material during the design process. On the
other hand, because they are contemplative, they can only be transformed manually
into productive models. Manual transformation supports creative inspiration, but is
prone to wrong interpretation and to loss of key information. On the other hand,
experience shows that automatic generation is limited to very conventional UIs. To
address this problem, we accept to support a mix of automated, semi-automated, and
manually performed transformations. Semi-automated and manual transformations
may be performed by designers and/or end-users. For example, given our current
level of knowledge, the transformation of a “value-centered model” [8] into a
“usability model” such as that of [2], can only be performed manually by designers.
Semi-automation allows designers (or end-users) to adjust the target models that
result from transformations. For example, a designer may decide to map a subset of
an AUI with UI services developed with the latest post-WIMP toolkit. The only
constraint is that the hand-coded executable piece is modeled according to an explicit



meta-model and is encapsulated as a service. This service can then be dynamically
retrieved and linked to the models of the interactive system by the way of mappings.
With productive models at multiple levels of abstraction, the system can reason at
run-time about its own design. In a nutshell, the components of a particular system at
runtime can be a mix of generated and hand-coded highly tuned pieces of UI. By the
way of a meta-UI [10], end-users can dynamically inform the adaptation process of
their preferences.

Principle #5: Close and open adaptiveness are complementary. Designers cannot
envision all of the contexts of use in which the future interactive system will be
executed. As a result, there will be situations for which the system will not be able to
adapt. To alleviate this problem, we suggest a mix of open and close adaptiveness. A
system is close-adaptive when adaptation is self-contained. It supports the “innate”
adjustments planned at the design stage as well as new adjustments produced by its
own internal learning mechanisms. The system is open-adaptive “if new adaptation
plans can be introduced during runtime” [21]. Applying the notion of close and open
adaptiveness to UI plasticity, we say that an interactive system is close-adaptive for
the contexts of use that fall within its domain of plasticity [6], that is the changes of
contexts of use for which this system can adapt on its own. By design, an interactive
system has an innate domain of plasticity. If it is able to learn adjustments for
additional contexts of use, then the domain of plasticity extends dynamically, but this
extension relies only on the internal computing capabilities of the system. In
ubiquitous computing, unplanned contexts of use are unavoidable, forcing the system
to go beyond its domain of plasticity. If continuity must be guaranteed, then the
interactive system must call upon a tier infrastructure that takes over the adaptation
process. The role of this infrastructure is to compute the best possible solution by
applying new transformations and mappings on the system models and/or by looking
for the appropriate services sitting somewhere in the global computing fabric. The
interactive system, which relies on a tier infrastructure to perform adaptation, is open-
adaptive for the contexts of use that do not fall within its domain of plasticity. The
advantage of close-adaptation is that it is perfectly tuned to the interactive system for
which it has been designed. Open adaptation may be less efficient, but has the
potential to apply consistent adaptation principles to all of the interactive systems
running in the interactive space. The balance between close and open adaptiveness is
an open research issue.
To summarize, our approach to the problem of UI plasticity brings together MDE
(Model Driven Engineering) and SOA (Service Oriented Approach) within a unified
framework that covers both the development stage and the runtime phase of
interactive systems. In this paper, we investigate how usability can be described and
controlled by the way of mappings given that an interactive system is a graph of
models. We use a simple case study as an illustrative example before going into a
more formal definition of the notion of mapping and its relation with that of
transformation.



4.   The Home Heating Control System: Overall Description

Our Home Heating Control System (HHCS) makes it possible for users to control the
temperature of their home using different devices. Examples include a dedicated wall-
mounted display, a Web browser running on a PDA, or a Java-enabled watch. As
shown in Fig. 4, many variants of UIs are possible, depending on the device screen
size, as well as the set of usability properties that HCI designers have elicited as key:

• From a functional perspective, the four UI’s of Fig. 4 are equivalent: they
support the same set of tasks, giving access to the same set of rooms (the
living room, the cellar and the kitchen) where the room temperature may be
set between 15°C and 18°C;

• From a non-functional perspective, these UI’s do not satisfy the same set of
usability properties. In particular, according to C. Bastien and D. Scapin’s
ergonomic framework [2], prompting (a factor for guidance), prevention
against errors (a factor for error management), and minimal actions (a
factor for workload) are not equally supported by the four UI solutions. In
Fig. 4-a), the unit of measure (i.e. Celsius versus Fahrenheit) is not
displayed. The same holds for the room temperature whose range of values is
not made observable. As a result, prompting is not fully supported. In Fig. 4-
b), the lack of prompting is repaired but the user is still not prevented from
entering wrong values. Solutions in Fig. 4-c) and Fig. 4-d) satisfy both
criteria. Moreover, Fig. 4-d) improves the minimal actions recommendation
(a factor for workload) by eliminating the articulatory task consisting in
selecting the room of interest. Other criteria such as task compatibility or
homogeneity-consistency could be called upon as well to respectively praise
the capacity of the UI to sustain the user’s task, and the use of a same type of
interactor (here links) to support the selection of a room (Fig. 4a to c).

(a) The unit of measure and the valid
temperature values are not observable

(b) The unit of measure and the valid
temperature values are both observable

(c) The user is prevented from making errors (d) The user is prevented from navigation tasks

Fig. 4. Four functionally-equivalent UIs that differ from the set of usability criteria used to
produce them.

The purpose of this paper is to show how mappings are appropriate for conveying
usability properties. Whatever the UI is (Fig.4-a, b, c or d), HHCS is a graph of
models, each of them depicting a specific perspective. Each model (M1-level) is



compliant to a meta-model (M2-level). Fig. 5 shows a subset of the HHCS graph of
models. The deployment on the functional core and the context of use is not depicted.
Here, we use UML as a meta-meta-model (M3-level model).

Fig.5 A subset of the graph of M1-models for HHCS. Each model is compliant to a meta-model
(M2-level).

Fig. 6 shows a basic meta-UI for making observable and controllable a part of the
graph of models to the user (either the designer and/or the end-user). In this first
prototype, the meta-UI is limited to the task and platform models. By ‘simply’
selecting a task on the task model and selecting the platform(s) on which the user
would appreciate to get the task, then the UI is re-computed and redistributed on the
fly, thus ensuring UI consistency. On Fig. 6, two platforms are available (a PC HTML
and a PC XUL). When the user deselects the PC XUL platform for the task “Select
room” then the XUL UI is updated accordingly whilst the HTML UI is not changed.
From an implementationnal perspective, the meta-UI is an OSGI service as well as
the UI transformers (an embedded ATL transformation engine).

This first meta-UI demonstrates the existence of mappings only. In this first
prototype, the properties of the mappings are neither observable nor controllable. This
is the next implementationnal step for fully demonstrating the conceptual advances
that are presented in the next sections. Section 5 is about the mappings in HHCS
whilst section 6 makes a generalization providing a meta-model of mappings.
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Fig.6 A basic meta-UI making it possible to the user to redistribute the UI by ‘simply’
manipulating the graph of models through the mappings between the tasks and the platform.

5.   Mappings in HHCS

In the context of this work, we use Bastien and Scapin’s framework as an example
of a usability framework. For legibility, we limit our analysis to four of the eight
criteria:

• Task compatibility;
• Guidance in its sub-criteria Prompting and Grouping/Distinction of items;
• Error Management in terms of Error prevention;
• Workload with regard to the Minimal actions it advocates.

Traditionally, criteria motivate the way abstract models are vertically transformed
into more concrete models. Typically, the Grouping/Distinction of items (factor of
Guidance) clearly motivates the structuration of the UI in terms of workspaces for
grouping together the concepts that are manipulated in a same task and as a result
making a distinction with the other tasks. Our approach promotes the elicitation of the
usability properties on the mappings to support plasticity at runtime. Either the target
element of the mapping is generated according to a transformation function that has
been selected by the designer, or the link is made and described manually by the
designer. For legibility, Fig. 7 focuses on three perspectives: the task model, the



concept model and the CUI. The AUI is not depicted. Workspaces are discussed at the
CUI level, based on their representation.

(a)

(b)

Fig. 7 Examples of mappings on the HHCS case study.

Fig. 7-a) makes explicit four properties. Compatibility (property P1) and
Grouping/Distinction of items (property P2) deal with a set of mappings that link
together tasks and workspaces. The UI fully supports the user’s task and is well-
structured. Prompting (property P3) and Protection against error (property P4) are
related to the way concepts and tasks are represented in terms of interactors. Fig. 7-a)
praises the fact that the temperature unit and the minimal/maximal values are



displayed, as a result favoring the prompting. This is not the case in Fig. 4-a).
Prompting and drop lists prevent the user from errors.

Fig. 7-b) is limited to the mappings that discriminate the two UIs. In Fig. 7-b), the
task “Select a room” becomes mental at the CUI level, as a result providing an
incompatibility with the task model as is. On the other hand, it reduces the workload
by eliminating the selection task. If workload is a key property, then the task model
can be revised for ensuring consistency: either the “Select a room” task is transformed
into a mental task, or it is ‘distributed’ on the “Set room temperature” task giving rise
to “Set Kitchen temperature”, “Set Living room temperature” and “Set Cellar
temperature”. Clearly, the loose of the concepts factorization suffers from non
scalability. But above all, such transformations can damage the initial task model that
has been produced by ergonomics. Keeping trace of all the transformations could help
in making a separation of concerns between pure user-centered task models and
others that have been tuned for engineering purpose.

In summary, mappings may be seen as rubber bands that link together different
perspectives of a same UI. Their tensions reflect the extent to which usability is
preserved. They break down when the UI goes outside its plasticity domain.

Next section presents our meta-model of mapping. This meta-model is general,
applicable to HCI for reasoning on usability driven transformations.

6.   Formal Definition of Mapping

In MDE, the term “mapping” is far from being clear. It is clearly related to the
notion of transformation, but the distinction is not so clear. We first clarify the notion
of transformation. Then, we propose a meta-model of mapping that involves this
notion of transformation.

Figure 6 introduces three terms: transformation model, transformation function and
transformation instance. They are illustrated on the mathematical domain. “f(x)=x+2”
is a transformation model that is compliant to a mathematical meta-model. A
transformation model describes (µ relation) a transformation function in a predictive
way: here the set {(1,3),(2,4),(3,5)…} for “f” when applied to integers. A
transformation function is the set of all the transformation instances inside the
variation domain (here, the integers). A transformation instance is a subset (ε relation)
of the transformation function. It is the execution trace of the function (“f”).

In Fig. 8, the µ relation is refined into µp and µd. These relations respectively stand
for predictive and descriptive representations. Predictive means that there is no
ambiguity: the transformation model (e.g., “f(x)=x+2”) fully specifies the
transformation function. Descriptive refers to a qualifier (e.g., “growing”). This
qualifier is not sufficient for specifying the transformation function, but it is a means
for providing additional information. Fig. 8 illustrates two kinds of descriptive
representations: one deals with a transformation model (“f(x)>x”) whilst the other one
deals with transformation instances (“growing”). In the first case, the description is
made a priori whilst it is made a posteriori in the second case. A posteriori
descriptions are subject to incompleteness and/or errors due to too few samples.
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Fig. 8. Clarification of the notions of transformation model, transformation function and
transformation instance.

Transformations are key for specifying mappings. The mapping meta-model
provided in Fig. 9 is a general purpose mapping meta-model. The core entity is the
Mapping class. A mapping links together entities that are compliant to Meta-models
(e.g., Task and Interactor). A mapping can specify Transformation functions (e.g.,
{(Select the living room, Living room), (Select the kitchen, Kitchen), (Select the
cellar, Cellar), …}) by patterns. A Pattern is a transformation model (e.g., (Select a
concept, Concept), (Critical task, OK button), …). It links together source and target
elements (ModelElement) to provide a predictive description of the transformation
function. In addition, a mapping can describe the execution trace of the
transformation function. The trace is made of a set of Links between Instances of
ModelElements. The couple (Select the living room, Living room) is an example of
Link.

A mapping conveys a set of Properties (e.g., “Guidance-Prompting”). A property
is described according to a given reference framework (Referential) (e.g.,
Bastien&Scapin [2]). Because moving to an unfamiliar set of tools would impose a
high threshold on HCI and software designers, we promote an open approach that
consists in choosing the appropriate usability framework, then generating and
evaluating UIs according to this framework. General frameworks are available such
as Shackel [28], Abowd et al., [1], Dix et al. [11], Nielsen [19], Preece [25], IFIP
Properties [12], Schneiderman [30], Constantine and Lockwood [9], Van Welie et al.
[38], as well as Seffah et al. [27] who propose QUIM, a unifying roadmap to
reconcile existing frameworks. More specific frameworks are proposed for web
engineering (Montero et al. [16]), or for specific domains (for instance, military
applications). Closely related to UI plasticity, Lopez-Jacquero et al.’s propose a
refinement of Bastien and Scapin’s framework, as a usability guide for UI adaptation
[14]. Whatever the framework is, the properties are descriptive. They qualify either
the global set of mappings or one specific element: a mapping, a pattern or a link.
Examples are provided in Fig. 7.



Fig. 9. A mapping meta-model for general purpose. The composition between Mapping and
Metamodel is due to the Eclipse Modeling Framework.

Associated transformations (see the UML association between the classes Mapping
and TransformationFunction) are in charge of maintaining the consistency of the
graph of models by propagating modifications that have an impact on other elements.
For instance, if replacing an interactor with another one decreases the UI
homogeneity-consistency (one of the eight Bastien and Scapin’s criteria), then the
same substitution should be applied to the other interactors of the same type. This is
the job of the associated functions which perform this adaptation locally.

Our mapping meta-model is general. The HCI specificities come from the nature of
the meta-models and the properties elicited in the framework. Currently in HCI, effort
is put on UI meta-modeling (see UsiXML [37] for instance) but the mapping meta-
model remains a key issue. Are the traditional usability frameworks still appropriate
for plasticity? Should new criteria (e.g., continuity [36]) be added? Which metrics
could be incorporated in order to make it possible for the system to self-evaluate?
Next section elaborates on perspectives for both HCI and MDE communities.

7   Conclusion and perspectives

In 2000, B. Myers stated that model-based approaches had not found a wide
acceptance in HCI. They were traditionally used for automatic generation and
appeared as disappointing because of a too poor quality of the produced UIs. He
envisioned a second life for models in HCI empowered by the need of device



independence. In our work, we promote the use, the description and the capitalization
of elementary transformations that target a specific issue.

A UI is described as a graph of models and mappings both at design time and
runtime. At design time, mappings convey properties that help the designer in
selecting the most appropriate transformation functions. Either the target element of
the mapping is generated according to the transformation function that has been
selected, or the link is made by the designer who then describes the mapping using a
transformation model. We envision adviser tools for making the designer aware of the
properties he/she is satisfying or neglecting.

At runtime, mappings are key for reasoning on usability. However, it is not easy as
(1) there is not a unique consensual reference framework; (2) ergonomic criteria may
be inconsistent and, as a result, require difficult tradeoffs. Thus, (1) the meta-model
will have to be refined according to these frameworks; (2) a meta-UI (i.e., the UI of
the adaptation process) may be relevant for negotiating tradeoffs with the end-user.

Beyond HCI, this work provides a general contribution to MDE. It defines a
mapping meta-model and clarifies the notions of mapping and transformation.
Mappings are more than a simple traceability link. They can be either predictive
(transformation specifications) or descriptive (the properties that are conveyed), as a
result covering both the automatic generation and the hand-made linking. Moreover
mapping models can embed transformation in order to manage models consistency.
This is new in MDE as most of the approaches currently focus on direct
transformation. Our mapping meta-model will be stored in the international Zoo of
meta-models: the ZOOOMM project [39].
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