
Coupling Interaction Resources and Technical Support

Nicolas Barralon, Joëlle Coutaz, Christophe Lachenal

Université Joseph Fourier, Grenoble
E-mail: {Nicolas.Barralon, Joelle.Coutaz}@imag.fr

Abstract. Coupling is the action of binding two entities so that they can operate
together to provide new functions. In this article, we propose a formal definition
for coupling and present a graph theoretic notation so that the side-effects of the
creation of a coupling can be analyzed in a formal and systematic way. We then
describe I-AM (Interaction Abstract Machine), a middleware that supports the
dynamic coupling of interaction resources such as screens, keyboards and mice,
to form a unified interactive space. Using our notation, we illustrate how
couplings are supported in I-AM.

Keywords: Multi-surface interaction, multi-instrument interaction, devices
assembly, ambient intelligence, ubiquitous computing, UI development tool.

1 Introduction

Technological advances in computing, sensing, and networking, are rapidly leading to
the capacity for individuals to create and mould their own interactive spaces. As
envisioned by Weiser [18], interactive spaces will be assembled opportunistically by
coupling private devices with interaction resources from public hot spots to access
services within the global computing fabric. Interactive spaces will also take the form
of autonomous computing islands whose horizon will evolve, split and merge under
users’ control.

From the software perspective, this ultra-flexibility calls for multi-scale
infrastructures that act as a bridge between heterogeneous and dynamic sets of
hardware, operating systems, and interaction resources. Projects such as Aura [15],
Easyliving [3], Dynamo [10], Augmented Surfaces [11], and i-LAND [16] are early
attempts in this direction. The same holds for prototypes based on proximal
interaction and synchronous gestures [8, 9, 12], or on physical connection [7, 13, 17].
These projects address a particular aspect of the vision where distributed and
migratory user interfaces (UI) replace the conventional centralized paradigm.
However, all of these systems are based on software concepts that were proposed
twenty years ago when user interfaces were confined to a single computer equipped
with a single screen, a single keyboard and a single pointing device.

With the exception of e-Gadget [5] and Smoblet [14], no one seems to have called
into question whether such software concepts and tools are appropriate for the newly

emerging forms of interaction based on coupling interaction resources. For example,
one can couple two entities, such as a wallet and home keys, by shaking them together
[9]. As a result, an alarm can signal when one is separated from the other. But, what
should happen when the keys are coupled with a pair of shoes? Are then the shoes
coupled with the wallet?

In this article, we present a theoretic framework for reasoning about coupling [1]
followed by the description of I-AM (Interaction Abstract Machine), a middleware
that supports the dynamic coupling of interaction resources such as display screens
and keyboards to form a unified interactive space.

2 Coupling Entities: Definition

The word “coupling” may be used to denote an act, or the result of this act.
− As an act, coupling is the action of binding two entities so that they operate

conjointly to provide a set of functions that these entities cannot provide
individually.

− As the result of an act, a coupling is an assembly of the source entities, that is, a
new compound entity that provides a new set of functions that the source entities,
alone, cannot provide.
In both cases, given two entities, the nature of the act determines the resulting set

of functions. For example, in Hinckley’s dynamic display tiling [8], users obtain
different functions depending on the way the tablets are bumped together: if one tablet
rests flat on a desk surface, and a second tablet is bumped into the base tablet, then
the resulting function is the creation of a larger display. Alternatively, if the two
tablets are bumped symmetrically, the same content is replicated on both displays to
support face-to-face collaboration.

We express the twofold acceptation of coupling (either as an act, or as an entity) in
the following formal way. Let:
− E be a non-empty finite set of entities and F, the set of functions that these entities

provide individually,
− func, the function that returns the set of functions f (f ⊂ F) that an entity e ∈ E

provides: f= func(e),
− A, a non-empty set of sequences of actions a,
− C, the set of couplings between entities belonging to E, using sequences of actions

a ∈ A,
− e ∈ E, the compound entity that results from binding e1 and e2 by the way of the

sequence of actions a ∈ A,
then, the coupling c (c ∈ C) is defined as the Cartesian product E x E x A in E:

c : E x E x A → E
and is denoted as:

c = (e1, e2, e) : ∀fi ≠ f1 ∧ fi ≠ f2 : (f1 ∩ fi = ∅) ∧ (f2 ∩ fi = ∅) (1)
where e1, e2 ∈ E, f1= func(e1), f2= func(e2), f=func(e)

or as:
c = (e1, e2, f) (2)

or as: (e1, c, e2) or (3) e1
c e2

In notation (1), the focus of attention is the new compound entity obtained by the

way of coupling. Notation (2) stresses the importance of the resulting set of functions
while maintaining an explicit reference to the source entities. Notations (3) make the
bond between the source entities explicit.

As suggested by the wallet, keys and shoes example, coupling two interaction
resources may generate new couplings. In the following section, we present a
theoretic notation to reason about causal and consequent couplings.

3 Causal Couplings and their Consequents: a Formal Analysis

As in chemistry, couplings may have causal relationships: coupling an entity with a
compound entity may entail a chain of reactions. Some bonds may be destroyed,
possibly giving rise to multiple entities. Alternatively, additional couplings may be
created. A coupling is causal when its creation implies, as a side effect, the creation
of additional couplings. These additional couplings are called consequent couplings or
simply, consequents.

3.1 Formal Analysis with a Graph Theoretic Notation

We represent couplings using a graph notation where nodes denote entities, and where
edges express the existence of couplings. Symbols "*" and "=" denote causal and
consequent couplings respectively. The "?" symbol denotes the couplings that are
under evaluation (i.e. keeping them as consequents or rejecting them has not been
decided yet). To express their transitory state, causal couplings, as well as
consequents and undecided couplings are represented as dotted edges. Let:

 EDGE be the set of edges of the graph under consideration.
 r1(c) (resp. r2(c)) be the first (resp. the second) interaction resource involved in

the coupling (r1, c, r2).
 F(r1, r2) be the function that results from (r1, c, r2).
 Compatible(f1, f2, f3) returns TRUE if the functions f1 and f2 allow the existence

of the function f3. To be TRUE, Compatible(f1, f2, f3) may require the
suppression of existing couplings. Although important (and challenging), this
possibility is not addressed in this article.

The principle of our algorithm is the following: consider every new edge that
results from the transitive closure with paths of length 2 that contain both r1(c) and
r2(c). If this new edge corresponds to the creation of a coupling whose function is
compatible with the functions provided by its neighboring edges, then it is created. In
turn, the coupling that this edge denotes becomes a causal coupling and the algorithm
is applied again.

More formally:

For every causal coupling c
 Build the set of nodes Nc such that :
 n∈Nc ⇔ n∈path ∧ length(path)= 2
 ∧ r1(c)∈path ∧ r2(c) ∈path

 For all n ∈ Nc and n≠r1(c) and n≠r2(c)
 if edge(n,r1(c)) ∈ EDGE
 if compatible(F(c, F(n,r1(c), F(n,r2(c))) then
 EDGE = EDGE ∪ new edge(r2(c), n)
 else
 if compatible(F(c), F(n, r2(c)), F(n, r1(c))) then
 EDGE = EDGE ∪ new edge(r1(c), s)

3.2 Illustration

To illustrate the algorithm, let’s consider the initial configuration of couplings
represented in Fig. 1. On the left, Screen1 is coupled with Mouse1 and Keyboard1,
and Mouse1 is coupled with Keyboard1 to provide Keyboard1 with the input focus
function. This configuration corresponds to a private workstation. On the right, a
public Screen2 is coupled with a public pointing device Mouse2. Because Screen1
and Screen2 are compatible by design (resulting in the enlarge display function), c5 is
performed (for example, by a proximity detection service).

Fig. 1. Initial configuration. On the left, a private workstation; on the right, a public
configuration.

Fig. 2. Final configuration where the couplings c6, c7 and c8 are the consequents of the causal
coupling c5.

The final configuration that results from the causal coupling c5 is shown in Fig. 2:
The owner of the private workstation can manipulate digital information displayed on
Screen2 and Screen1 using the private interaction resources Mouse1 and Keyboard1.
In addition, information can be designated on both screens with Mouse2, but for
privacy reason, Mouse2 cannot be coupled to Keyboard1. In a different situation
where the workstations were owned by two distinct users who wanted to collaborate

via a unified space, the compatibility functions would be different resulting in a
distinct final configuration.

Fig. 3. Evaluation steps resulting from the causal coupling c5.

Fig. 3 shows the successive steps that lead to the final configuration of Fig. 2. Fig.
3 (top left) corresponds to the generation of c6 and c7 that result from the transitive
closure with paths c5–c1 and c5–c2 respectively. Fig. 3 (top right) shows the generation
of c8 that results from the transitive closure with path c5–c4. Because the function that
results from c6 is compatible with that of c1 and c5, c6 is created. The same holds for c7
and c8 whose resulting functions are compatible with that of c5 and c2, and c5 and c4
respectively. c6, c7 and c8 are now causal couplings. Fig. 3 (bottom left) corresponds
to the application of the algorithm to c6 with the evaluation of c’6 that results from the
transitive closure with paths c6–c4. The function that results from c’6 is not compatible
with that of c6 and c4 (coupling a private mouse with a public mouse to access any
display area is considered as inappropriate for this particular situation). The same
holds for c’7 and c’8 that result from the transitive closure with paths c4–c7 and c8–c2
respectively. For this particular situation, Mouse2 cannot serve as input focus for
Keyboard1 (Fig. 3, bottom center and bottom right). In short, the causal coupling c5
has three consequents: c6, c7, and c8.

I-AM, presented next, offers a technical support for dynamically coupling
interaction resources including causal and consequent couplings.

4 I-AM: Overview

I-AM is a technical instantiation of the ontology described in [4] where a computer
platform is modeled as an actor characterized by a dynamic set of interaction
resources. An interaction resource is a real-world physical object (with its own
attributes such as shape, size and location in space) that plays a role such as that of a
surface or of an instrument. Typically, a display screen is an interaction resource that
plays the role of a surface whereas the keyboard plays the role of an instrument.

In I-AM, the interaction resources may be distributed across multiple machines
running distinct operating systems. In this space, users can distribute and migrate user
interfaces as if they were handled by a single computer. This illusion of a unified

space is provided at no extra cost for the developer who can re-use the conventional
GUI programming paradigm.

4.1 Technical Principles of I-AM

Fig. 4 illustrates the technical principles of I-AM where the interactive space is
composed of three machines that run different operating systems. Each machine
handles a screen and possibly a mouse and a keyboard. Each screen is assigned the
role of a surface and each mouse and keyboard has the role of pointing and input text
instruments, respectively. Screens are equipped with link points.

Fig. 4. Technical principles of I-AM

A link point is a reference point located at the edge of a screen. It can take the form
of a physical sensor (e.g., infrared sensors, accelerometers as in Hinckley’s example
of synchronous gestures [8]). It can be a painted dot tracked by a computer vision
system, or any conventional identifiable spot on the edge of a screen, or IR sensors or
software interaction techniques [2]. Bringing two link points together, from two
different screens, results in coupling the two screens. Because link points are
geometric points, the screens are automatically related by geometric relations.

The bottom of the figure shows the distribution of the user interface across three
screens. Some interactors such as the top left window of the developer’s view, are
fully rendered within a single screen whereas other interactors, such as the right most
window of the developer’s view, are split across two screens. In the latter case, the
logical interactor of the developer’s view is mapped into two effective interactors
whose rendering is tightly coupled to entertain the illusion of a single surface: as the
user moves one of the effective interactors using any pointing instrument of the

interactive space, the other “twin” effective interactor is moved and transformed as if
the twins were one single piece.

4.2 The Programmer’s View

I-AM preserves the conventional GUI programming paradigm. As shown below, the
programmer creates a window interactor, specifies its size and location, fills it with a
picture, and asks I-AM to manage the window. The window is then mapped by I-AM
on the physical configuration of the screens. With I-AM, the programmer gets UI
distribution and migration between multiple surfaces for free, as well as the
management of multiple instruments and cursors.

// My program is an IAMApp
IAMApp myiamapp = new IAMApp ();

// Create mywindow, and assign
IAMWindow mywindow = new IAMWindow();
mywindow.setCenterLocation (300, 300);
mywindow.setSize (300, 200);
…
// Ask I-AM to manage mywindow
myiamapp.addInteractor (mywindow);

4.3 The End-User’s View

Fig. 5 and Fig. 6 show early examples of interaction techniques that allow users to
mould their interactive space. Fig. 5-a corresponds to the situation where two
applications are running on two independent workstations. A closed blue border
outlines the screens to denote the absence of coupling. In Fig. 5-b, the screens are
now coupled to provide the “single display area” function. An halo outlines the
display area and a gateway shows where interactors can transit between the coupled
screens.

Fig. 5. (a) The PC and the Macintosh are decoupled and run two applications. (b) The two
screens are coupled to form a single information space. Halos have been artificially enhanced
on the pictures to increase readability.

Within an interactive space, any instrument can be used to modify any interactor.
For example, in the configuration of Fig. 5-b, a PC mouse can be used to move a
window created on the Macintosh and migrate it to the PC. In addition, the two mice
can be used simultaneously. In Fig. 6, the user has selected the text field interactor

displayed on the Macintosh screen with the PC mouse. Text can now be entered with
the PC keyboard. If the text field is also selected with the Macintosh mouse, text can
be entered with the Macintosh keyboard as well.

We have designed (but not evaluated) several interaction techniques for coupling
screens. If the screens are equipped with infrared or if they are tracked by a computer
vision system, coupling can be performed by bringing the screens in close contact.
This sequence of actions a, is similar in spirit to Hinckley’s synchronous gestures
where devices are bumped against each other [8]. An alternative sequence of actions,
inspired from SyncTap [12] called “Click’n Couple” [1], consists in bringing the
cursors of the mice face to face, and then click the mouse buttons simultaneously (i.e.
within the same temporal window).

Fig. 6. Entering characters in a text field located on a Macintosh screen using a PC keyboard.
Meanwhile a window is transiting through the gateway.

Having presented the technical principles of I-AM as well as the views it offers to
the programmer and to the end-user, we now analyze I-AM more formally using our
theoretic framework.

4.4 I-AM and the Theoretic Framework

We will use Figures 5, 6 and 7 to illustrate how couplings are handled in I-AM. In
Fig. 5-a, two computers, a PC and a Macintosh, run independently. As for
conventional window managers, the mouse and the keyboard of a computer are
automatically coupled by I-AM to provide the “text input focus” function. The
situation of Fig. 5-a is represented as two independent graphs: c1-c2-c3 and c4-c5-c6
(see Fig. 7).

Fig. 7. The configuration that results from the causal coupling c7 between the two screens.

When the user performs any of the appropriate sequence of actions mentioned
previously, c7 is created between Screen1 and Screen2 (cf. Fig. 7), and a new
function f is now available: f is an affine transform that supports different screen
resolution and orientation, as well as bezels thickness so that windows and figures can
overlap multiple screens without any deformation. Has c7 consequent couplings?

By applying the algorithm presented in 3.1, the consequents c8, c9, c10, and c11
are created because coupling Mouse1 with Screen2 produces a pointing function that
is compatible with f. Similarly, coupling Keyboard1 with Screen2 produces a text
entry function that is compatible with f. The same holds for Mouse2 and Keyboard2
with regard to Screen1. The configuration shown in Fig. 7 expresses the capacity for
any interactor displayed on the unified surface to be coupled to the mouse-keyboard
of the Macintosh as well as to the mouse-keyboard of the PC. Then, as shown in Fig.
6, characters can be entered simultaneously from any keyboard.

5 Conclusion

In summary, we have developed I-AM, a middleware that supports the dynamic
coupling of interaction resources, possibly distributed across an heterogeneous set of
platforms. I-AM advances the state of the art by addressing the following problems:
1) Platforms heterogeneity (running a mix of MacOs X, Windows NT and Windows
XP); 2) Interaction resources heterogeneity (e.g., screens with different sizes,
resolutions); 3) Platforms and interaction resources discovery; 4) Multi-surface
interaction grounded on the dynamic coupling of hinged display surfaces whose
spatial relations are automatically modeled and maintained; 5) Multi-keyboard, multi-
pointer capabilities (so that a user can use the mouse of a PC to manipulate a window
displayed on a MacOS screen and drag the window across screens boundaries as if
there were a single screen).

Coupling interaction resources is not a new phenomenon. But in the GUI computer
world, most couplings are pre-packaged and immutable. As we move to ubiquitous
computing and ambient interactive spaces, the story is not as simple. In particular,
couplings may engender new couplings. We propose a formalism using a graph
theoretic notation to reason about the consequents of causal couplings in a systematic
way. We use the notion of compatibility between the function returned by a
consequent and the functions provided by its two neighbors. Other criteria could be
used as well such as that of observability, predictability, traceability, and
controllability. These issues are discussed in detail in [6] with the concept of meta-UI.
Meta-UI’s will allow users to build and control their own interactive spaces by
coupling entities of many forms.

Acknowledgments. This work has been partly supported by Project EMODE (ITEA-
if4046) and the NoE SIMILAR- FP6-507609.

References

1. Barralon, N., Couplage de resources d’interaction en informatique ambiante. Thèse de
l’Université Joseph Fourier, 2006.

2. Barralon, N., Nguyen, VT., Rey, G. Techniques de couplage de bureaux : Ambient-
Desktop comme illustration. In Proceedings UbiMob'05, Grenoble, 31 mai-3 juin 2005,
pp. 193-200.

3. Brumitt, B. and Shafer, S. Better Living Through Geometry. Personal and Ubiquitous
Computing, Vol 5(1), Springer Verlag, 2001.

4. Coutaz, J., Lachenal, C. and Dupuy-Chessa, S. Ontology for Multi-surface Interaction. In
Proc. Interact 2003, M. Rauterberg et al. Eds, IOS Press Publ., IFIP, 2003, pp. 447-454.

5. Christopoulou, E., Kameas, A. Using Ontologies to Address Key Issues in Ubiquitous
Computing Systems, in Proc. of EUSAI’04, Eindhoven, Netherlands, 2004, pp. 13-24.

6. Coutaz, J.: Meta-User Interface for Ambient Spaces, In TAMODIA’06, Hasselt, Belgium,
October 2006, Springer LNCS publ., p. 1-15.

7. Gorbet, G.M,. Orth, M., Ishii, H. Triangles: Tangible Interface for Manipulation and
Exploration of Digital Information Topography, in Proc. of CHI’98, Los Angeles, 1998,
pp. 49-56.

8. Hinckley, K. Synchronous gestures for multiple persons and computers. In Proc. UIST03,
ACM, 2003, pp. 149-158.

9. Holmquist, L.E., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., Gellersen, H.W.Smart-
Its Friends: A Technique for Users to Easily Establish Connections between Smart
Artefacts, in Proc. of Ubicomp 2001, Atlanta, Georgia, 2001, pp. 116-221.

10. Izadi, S., Brignull, H., Rodden, T., Rogers, Y. and Underwood, M. Dynamo: A public
interactive surface supporting the cooperative sharing and exchange of media. In Proc.
UIST 2003, ACM, 2003, pp. 159-168.

11. Rekimoto, J. and Masanori, S. Augmented Surfaces: A Spatially Continuous Workspace
for Hybrid Computing Environments. In Proc. CHI’99, ACM, 1999, pp. 378-385.

12. Rekimoto, J., Ayatsuka, Y. and Kohno, M. SyncTap: an Interaction Technique for Mobile
Networking. In Proc. Mobile HCI 2003, L. Chittaro Ed., Springer Publ., LNCS 2795,
2003, pp. 104-115.

13. Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella, V., Kramer, K., Silverman, B.
Digital Manipulatives: New Toys to Think With, in Proc. of CHI’98, Los Angeles, 1998,
pp. 281-287.

14. Siegemund, F., Krauer, T. Integrating Handhelds into Environments of Cooperating Smart
Everyday Objects, in Proc. of EUSAI’04, Eindhoven, Netherlands, 2004, pp. 160-171.

15. Sousa, J. and Garlan, D. Aura : an Architectural Framework for User Mobility in
Ubiquitous Computing Environments. In Proc. IEEE-IFIP Conf. on Software
Architecture, Montreal, 2002.

16. Streitz, N. et al. i-LAND: An interactive Landscape for Creativity and Innovation. In
Proc. CHI’99, ACM/SIGCHI, 1999, pp.120-127.

17. Tandler, P., Prante, T., Müller-Tomfelde, C., Streitz, N., Steinmetz, R. ConnecTables:
Dynamic Coupling of Displays for the Flexible Creation of Shared Workspaces, in Proc.
of UIST’01, Orlando, Florida, 2001, pp. 11-20.

18. Weiser, M.: The computer for the 21st century. Scientific American, September 1991, pp.
94–104.

