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Abstract. Coupling is the action of binding two entities so that they can operate 
together to provide new functions. In this article, we propose a formal definition 
for coupling and present a graph theoretic notation so that the side-effects of the 
creation of a coupling can be analyzed in a formal and systematic way. We then 
describe I-AM (Interaction Abstract Machine), a middleware that supports the 
dynamic coupling of interaction resources such as screens, keyboards and mice, 
to form a unified interactive space. Using our notation, we illustrate how 
couplings are supported in I-AM. 

Keywords: Multi-surface interaction, multi-instrument interaction, devices 
assembly, ambient intelligence, ubiquitous computing, UI development tool. 

1 Introduction 

Technological advances in computing, sensing, and networking, are rapidly leading to 
the capacity for individuals to create and mould their own interactive spaces. As 
envisioned by Weiser [18], interactive spaces will be assembled opportunistically by 
coupling private devices with interaction resources from public hot spots to access 
services within the global computing fabric. Interactive spaces will also take the form 
of autonomous computing islands whose horizon will evolve, split and merge under 
users’ control.  

From the software perspective, this ultra-flexibility calls for multi-scale 
infrastructures that act as a bridge between heterogeneous and dynamic sets of 
hardware, operating systems, and interaction resources. Projects such as Aura [15], 
Easyliving [3], Dynamo [10], Augmented Surfaces [11], and i-LAND [16] are early 
attempts in this direction. The same holds for prototypes based on proximal 
interaction and synchronous gestures [8, 9, 12], or on physical connection [7, 13, 17]. 
These projects address a particular aspect of the vision where distributed and 
migratory user interfaces (UI) replace the conventional centralized paradigm. 
However, all of these systems are based on software concepts that were proposed 
twenty years ago when user interfaces were confined to a single computer equipped 
with a single screen, a single keyboard and a single pointing device.  

With the exception of e-Gadget [5] and Smoblet [14], no one seems to have called 
into question whether such software concepts and tools are appropriate for the newly 



emerging forms of interaction based on coupling interaction resources. For example, 
one can couple two entities, such as a wallet and home keys, by shaking them together 
[9]. As a result, an alarm can signal when one is separated from the other. But, what 
should happen when the keys are coupled with a pair of shoes? Are then the shoes 
coupled with the wallet?  

In this article, we present a theoretic framework for reasoning about coupling [1] 
followed by the description of I-AM (Interaction Abstract Machine), a middleware 
that supports the dynamic coupling of interaction resources such as display screens 
and keyboards to form a unified interactive space. 

2 Coupling Entities: Definition 

The word “coupling” may be used to denote an act, or the result of this act.  
− As an act, coupling is the action of binding two entities so that they operate 

conjointly to provide a set of functions that these entities cannot provide 
individually.  

− As the result of an act, a coupling is an assembly of the source entities, that is, a 
new compound entity that provides a new set of functions that the source entities, 
alone, cannot provide. 
In both cases, given two entities, the nature of the act determines the resulting set 

of functions. For example, in Hinckley’s dynamic display tiling [8], users obtain 
different functions depending on the way the tablets are bumped together: if one tablet 
rests flat on a desk surface, and a second tablet is bumped into the base tablet, then 
the resulting function is the creation of a larger display. Alternatively, if the two 
tablets are bumped symmetrically, the same content is replicated on both displays to 
support face-to-face collaboration.  

We express the twofold acceptation of coupling (either as an act, or as an entity) in 
the following formal way. Let:  
− E be a non-empty finite set of entities and F, the set of functions that these entities 

provide individually,  
− func, the function that returns the set of functions f (f ⊂ F) that an entity e ∈ E 

provides: f= func(e), 
− A, a non-empty set of sequences of actions a, 
− C, the set of couplings between entities belonging to E, using sequences of actions 

a ∈ A, 
− e ∈ E, the compound entity that results from binding e1 and e2 by the way of the 

sequence of actions a ∈ A, 
then, the coupling c (c ∈ C) is defined as the Cartesian product E x E x A in E: 

c : E x E x A → E 
and is denoted as:  

c = (e1, e2, e) : ∀fi ≠ f1 ∧ fi ≠ f2  :  (f1 ∩ fi = ∅) ∧ ( f2 ∩  fi = ∅)               (1) 
where e1, e2 ∈ E,  f1= func(e1), f2= func(e2), f=func(e) 

or as: 
c = (e1, e2, f)                        (2) 

or as:    (e1, c, e2) or           (3) e1    
c    e2 



                      
In notation (1), the focus of attention is the new compound entity obtained by the 

way of coupling. Notation (2) stresses the importance of the resulting set of functions 
while maintaining an explicit reference to the source entities. Notations (3) make the 
bond between the source entities explicit.  

As suggested by the wallet, keys and shoes example, coupling two interaction 
resources may generate new couplings. In the following section, we present a 
theoretic notation to reason about causal and consequent couplings. 

3 Causal Couplings and their Consequents: a Formal Analysis 

As in chemistry, couplings may have causal relationships: coupling an entity with a 
compound entity may entail a chain of reactions. Some bonds may be destroyed, 
possibly giving rise to multiple entities. Alternatively, additional couplings may be 
created. A coupling is causal when its creation implies, as a side effect, the creation 
of additional couplings. These additional couplings are called consequent couplings or 
simply, consequents. 

3.1 Formal Analysis with a Graph Theoretic Notation  

We represent couplings using a graph notation where nodes denote entities, and where 
edges express the existence of couplings. Symbols "*" and "=" denote causal and 
consequent couplings respectively. The "?" symbol denotes the couplings that are 
under evaluation (i.e. keeping them as consequents or rejecting them has not been 
decided yet). To express their transitory state, causal couplings, as well as 
consequents and undecided couplings are represented as dotted edges. Let:  

 EDGE be the set of edges of the graph under consideration. 
 r1(c) (resp. r2(c)) be the first (resp. the second) interaction resource involved in 

the coupling (r1, c, r2). 
 F(r1, r2)  be the function that results from (r1, c, r2). 
 Compatible(f1, f2, f3) returns TRUE if the functions f1 and f2 allow the existence 

of the function f3. To be TRUE, Compatible(f1, f2, f3) may require the 
suppression of existing couplings. Although important (and challenging), this 
possibility is not addressed in this article.   

The principle of our algorithm is the following: consider every new edge that 
results from the transitive closure with paths of length 2 that contain both r1(c) and 
r2(c). If this new edge corresponds to the creation of a coupling whose function is 
compatible with the functions provided by its neighboring edges, then it is created. In 
turn, the coupling that this edge denotes becomes a causal coupling and the algorithm 
is applied again.  

More formally: 
 
 
 



 
For every causal coupling c 
 Build the set of nodes Nc such that :  
  n∈Nc ⇔  n∈path ∧ length(path)= 2  
     ∧ r1(c)∈path ∧ r2(c) ∈path 
  
 For all n ∈ Nc and n≠r1(c) and n≠r2(c) 
  if edge(n,r1(c)) ∈ EDGE  
   if compatible(F(c, F(n,r1(c), F(n,r2(c))) then  
     EDGE = EDGE ∪ new edge(r2(c), n) 
   else  
    if compatible(F(c), F(n, r2(c)), F(n, r1(c))) then 
     EDGE = EDGE ∪ new edge(r1(c), s)    

3.2 Illustration 

To illustrate the algorithm, let’s consider the initial configuration of couplings 
represented in Fig. 1. On the left, Screen1 is coupled with Mouse1 and Keyboard1, 
and Mouse1 is coupled with Keyboard1 to provide Keyboard1 with the input focus 
function. This configuration corresponds to a private workstation. On the right, a 
public Screen2 is coupled with a public pointing device Mouse2. Because Screen1 
and Screen2 are compatible by design (resulting in the enlarge display function), c5 is 
performed (for example, by a proximity detection service).  

 
Fig. 1. Initial configuration. On the left, a private workstation; on the right, a public 
configuration. 

 

Fig. 2. Final configuration where the couplings c6, c7 and c8 are the consequents of the causal 
coupling c5. 

The final configuration that results from the causal coupling c5 is shown in Fig. 2: 
The owner of the private workstation can manipulate digital information displayed on 
Screen2 and Screen1 using the private interaction resources Mouse1 and Keyboard1. 
In addition, information can be designated on both screens with Mouse2, but for 
privacy reason, Mouse2 cannot be coupled to Keyboard1. In a different situation 
where the workstations were owned by two distinct users who wanted to collaborate 



via a unified space, the compatibility functions would be different resulting in a 
distinct final configuration. 

 

Fig. 3. Evaluation steps resulting from the causal coupling c5. 

Fig. 3 shows the successive steps that lead to the final configuration of Fig. 2. Fig. 
3 (top left) corresponds to the generation of c6 and c7 that result from the transitive 
closure with paths c5–c1 and c5–c2 respectively. Fig. 3 (top right) shows the generation 
of c8 that results from the transitive closure with path c5–c4. Because the function that 
results from c6 is compatible with that of c1 and c5, c6 is created. The same holds for c7 
and c8 whose resulting functions are compatible with that of c5 and c2, and c5 and c4 
respectively. c6, c7 and c8 are now causal couplings. Fig. 3 (bottom left) corresponds 
to the application of the algorithm to c6 with the evaluation of c’6 that results from the 
transitive closure with paths c6–c4. The function that results from c’6 is not compatible 
with that of c6 and c4 (coupling a private mouse with a public mouse to access any 
display area is considered as inappropriate for this particular situation). The same 
holds for c’7 and c’8 that result from the transitive closure with paths c4–c7 and c8–c2 
respectively. For this particular situation, Mouse2 cannot serve as input focus for 
Keyboard1 (Fig. 3, bottom center and bottom right). In short, the causal coupling c5 
has three consequents: c6, c7, and c8. 

I-AM, presented next, offers a technical support for dynamically coupling 
interaction resources including causal and consequent couplings. 

4 I-AM: Overview 

I-AM is a technical instantiation of the ontology described in [4] where a computer 
platform is modeled as an actor characterized by a dynamic set of interaction 
resources. An interaction resource is a real-world physical object (with its own 
attributes such as shape, size and location in space) that plays a role such as that of a 
surface or of an instrument. Typically, a display screen is an interaction resource that 
plays the role of a surface whereas the keyboard plays the role of an instrument.  

In I-AM, the interaction resources may be distributed across multiple machines 
running distinct operating systems. In this space, users can distribute and migrate user 
interfaces as if they were handled by a single computer. This illusion of a unified 



space is provided at no extra cost for the developer who can re-use the conventional 
GUI programming paradigm. 

4.1 Technical Principles of I-AM 

Fig. 4 illustrates the technical principles of I-AM where the interactive space is 
composed of three machines that run different operating systems. Each machine 
handles a screen and possibly a mouse and a keyboard. Each screen is assigned the 
role of a surface and each mouse and keyboard has the role of pointing and input text 
instruments, respectively. Screens are equipped with link points.  

 

 
Fig. 4.  Technical principles of I-AM 

A link point is a reference point located at the edge of a screen. It can take the form 
of a physical sensor (e.g., infrared sensors, accelerometers as in Hinckley’s example 
of synchronous gestures [8]). It can be a painted dot tracked by a computer vision 
system, or any conventional identifiable spot on the edge of a screen, or IR sensors or 
software interaction techniques [2]. Bringing two link points together, from two 
different screens, results in coupling the two screens. Because link points are 
geometric points, the screens are automatically related by geometric relations. 

The bottom of the figure shows the distribution of the user interface across three 
screens. Some interactors such as the top left window of the developer’s view, are 
fully rendered within a single screen whereas other interactors, such as the right most 
window of the developer’s view, are split across two screens. In the latter case, the 
logical interactor of the developer’s view is mapped into two effective interactors 
whose rendering is tightly coupled to entertain the illusion of a single surface: as the 
user moves one of the effective interactors using any pointing instrument of the 



interactive space, the other “twin” effective interactor is moved and transformed as if 
the twins were one single piece.  

4.2 The Programmer’s View 

I-AM preserves the conventional GUI programming paradigm. As shown below, the 
programmer creates a window interactor, specifies its size and location, fills it with a 
picture, and asks I-AM to manage the window. The window is then mapped by I-AM 
on the physical configuration of the screens. With I-AM, the programmer gets UI 
distribution and migration between multiple surfaces for free, as well as the 
management of multiple instruments and cursors.  

 
// My program is an IAMApp 
IAMApp myiamapp = new IAMApp (); 
 
// Create mywindow, and assign  
IAMWindow mywindow = new IAMWindow(); 
mywindow.setCenterLocation (300, 300); 
mywindow.setSize (300, 200); 
… 
// Ask I-AM to manage mywindow 
myiamapp.addInteractor (mywindow); 

4.3 The End-User’s View 

Fig. 5 and Fig. 6 show early examples of interaction techniques that allow users to 
mould their interactive space. Fig. 5-a corresponds to the situation where two 
applications are running on two independent workstations. A closed blue border 
outlines the screens to denote the absence of coupling. In Fig. 5-b, the screens are 
now coupled to provide the “single display area” function. An halo outlines the 
display area and a gateway shows where interactors can transit between the coupled 
screens.  
  

 
Fig. 5. (a) The PC and the Macintosh are decoupled and run two applications. (b) The two 
screens are coupled to form a single information space. Halos have been artificially enhanced 
on the pictures to increase readability.  

Within an interactive space, any instrument can be used to modify any interactor. 
For example, in the configuration of Fig. 5-b, a PC mouse can be used to move a 
window created on the Macintosh and migrate it to the PC. In addition, the two mice 
can be used simultaneously. In Fig. 6, the user has selected the text field interactor 



displayed on the Macintosh screen with the PC mouse. Text can now be entered with 
the PC keyboard. If the text field is also selected with the Macintosh mouse, text can 
be entered with the Macintosh keyboard as well.  

We have designed (but not evaluated) several interaction techniques for coupling 
screens. If the screens are equipped with infrared or if they are tracked by a computer 
vision system, coupling can be performed by bringing the screens in close contact. 
This sequence of actions a, is similar in spirit to Hinckley’s synchronous gestures 
where devices are bumped against each other [8]. An alternative sequence of actions, 
inspired from SyncTap [12] called “Click’n Couple” [1], consists in bringing the 
cursors of the mice face to face, and then click the mouse buttons simultaneously (i.e. 
within the same temporal window). 

 

 
Fig. 6. Entering characters in a text field located on a Macintosh screen using a PC keyboard. 
Meanwhile a window is transiting through the gateway. 

Having presented the technical principles of I-AM as well as the views it offers to 
the programmer and to the end-user, we now analyze I-AM more formally using our 
theoretic framework. 

4.4 I-AM and the Theoretic Framework 

We will use Figures 5, 6 and 7 to illustrate how couplings are handled in I-AM. In  
Fig. 5-a, two computers, a PC and a Macintosh, run independently. As for 
conventional window managers, the mouse and the keyboard of a computer are 
automatically coupled by I-AM to provide the “text input focus” function. The 
situation of Fig. 5-a is represented as two independent graphs: c1-c2-c3 and c4-c5-c6 
(see  Fig. 7).  

 



Fig. 7. The configuration that results from the causal coupling c7 between the two screens. 

When the user performs any of the appropriate sequence of actions mentioned 
previously, c7 is created between Screen1 and Screen2 (cf. Fig. 7), and a new 
function f is now available: f is an affine transform that supports different screen 
resolution and orientation, as well as bezels thickness so that windows and figures can 
overlap multiple screens without any deformation. Has c7 consequent couplings?  

By applying the algorithm presented in 3.1, the consequents c8, c9, c10, and c11 
are created because coupling Mouse1 with Screen2 produces a pointing function that 
is compatible with f. Similarly, coupling Keyboard1 with Screen2 produces a text 
entry function that is compatible with f. The same holds for Mouse2 and Keyboard2 
with regard to Screen1. The configuration shown in Fig. 7 expresses the capacity for 
any interactor displayed on the unified surface to be coupled to the mouse-keyboard 
of the Macintosh as well as to the mouse-keyboard of the PC. Then, as shown in Fig. 
6, characters can be entered simultaneously from any keyboard. 

5 Conclusion 

In summary, we have developed I-AM, a middleware that supports the dynamic 
coupling of interaction resources, possibly distributed across an heterogeneous set of 
platforms. I-AM advances the state of the art by addressing the following problems: 
1) Platforms heterogeneity (running a mix of MacOs X, Windows NT and Windows 
XP); 2) Interaction resources heterogeneity (e.g., screens with different sizes, 
resolutions); 3) Platforms and interaction resources discovery; 4) Multi-surface 
interaction grounded on the dynamic coupling of hinged display surfaces whose 
spatial relations are automatically modeled and maintained; 5) Multi-keyboard, multi-
pointer capabilities (so that a user can use the mouse of a PC to manipulate a window 
displayed on a MacOS screen and drag the window across screens boundaries as if 
there were a single screen). 

Coupling interaction resources is not a new phenomenon. But in the GUI computer 
world, most couplings are pre-packaged and immutable. As we move to ubiquitous 
computing and ambient interactive spaces, the story is not as simple. In particular, 
couplings may engender new couplings. We propose a formalism using a graph 
theoretic notation to reason about the consequents of causal couplings in a systematic 
way. We use the notion of compatibility between the function returned by a 
consequent and the functions provided by its two neighbors. Other criteria could be 
used as well such as that of observability, predictability, traceability, and 
controllability. These issues are discussed in detail in [6] with the concept of meta-UI. 
Meta-UI’s will allow users to build and control their own interactive spaces by 
coupling entities of many forms. 
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