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ABSTRACT

Designing complex interactive systems requires the collabora-
tion of actors with very different background. As a result, sev-
eral languages and tools are used in a single project with no
hope for interoperability. In this article, we examine whether a
universal language is a realistic approach to UI specification by
looking for answers into the domain of Linguistics while find-
ing analogies in software engineering. Then, we explore one
particular avenue from main-stream software engineering: that
of Model Driven Engineering where the notion of transforma-
tion is key to the definition of bridges between languages and
tools. Building upon these two analyses, we then show how
model-driven engineering can be successfully exploited in the
development and execution of plastic multimodal UIs illustrated
with a variety of complementary tools.
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1. INTRODUCTION

Many scenarios for ambient computing praise the power that
will result from the interaction between “mixed-reality” and “em-
bodied-virtuality” [1]. End-users will be able to construct new
personalized mixed objects by assembling digital entities with
physical objects [2]. As shown in Fig. 1, they will dynam-
ically assign roles to everyday objects using natural, reality-
based knowledge and skills [3]. They will distribute portions
of User Interfaces (UIs) across interaction resources of many
sorts (walls, tables, ear plugs) whose availability will vary dy-
namically as users move in an augmented world [4]. As demon-
strated by the increasing success of mash-ups, new services will
be obtained from the fusion of multiple data sources.

However, with this power arise new requirements. Among
these requirements is the capacity for UIs to be plastic [5], that
is, to be able to adapt dynamically to the context of use (e.g.,
to users, platforms, as well as to social and physical environ-
ments). In the future, this adaptation will be radically poly-
morphic along a continuous scale, from centralized extra-small

Figure 1: Town architects, Bob and Jane, assigning roles to ev-
eryday objects as they are discussing the design of a town infor-
mally in a Café. Here, lump of sugars and spoons are used to
represent buildings and streets respectively.

graphical UIs for motes, to distributed, post-WIMP, multimodal
room-size interaction styles including “emo-robots” that will
recognize and evoke human emotions. To make this possible,
a unifying framework for next-generation UIs is needed. There
have been some attempts in this direction including Ullmer and
Ishii’s framework on tangible UIs [6], Fishkin’s et al. proposal
on embodied interfaces [7], or Nigay’s and Coutrix model for
mixed reality [8]. These contributions provide designers with
helpful analytic tools but they concentrate on classes of new UIs
rather than on the software aspects that support the morphing
between these classes.

In this paper, we concentrate on the problem of UI adap-
tation to the diversity of UI classes under dynamic and unpre-
dictable constraints. Our long-term goal is to provide software
designers, as well as end-users and the system itself, with the
appropriate tools and mechanisms to design, develop, and con-
figure plastic UIs. Our approach to the problem of UI plasticity
is based on the following two observations: (1) Not all situations
can be envisioned at design time. (2) A plethora of tools and lan-
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guages for designing and developing UIs have been created with
little care for interoperability.

• Observation 1: Not all situations can be envisioned at
design time. If contexts of use can be defined at design
time, then UI development can be structured as a step-by-
step process, from UI specifications to executable code.
In this case, the system can self-adapt to reference con-
texts of use. On the other hand, if the run-time con-
straints are dynamic and unpredictable, then it becomes
necessary for the system to reason about its own design
to adapt to situations that have not be considered by the
designers. This new requirement advocates making the
design rationale available at run time (unless we accept
that system adaptation is limited to low-level cosmetic
adjustments). This means that the models produced dur-
ing the development process should be exploitable at run
time by the system as well as by end-users [9].

• Observation 2: A plethora of tools and languages for de-
signing and developing UIs have been created with lit-
tle care for interoperability. To design and develop UIs,
practitioners have available a wide variety of specialized
tools and languages. For example, both CTT [10] and
KMAD [11] cover the specification of task models, but
they do not interoperate. The choice between these op-
tions depends primarily on the designer’s background
(skills and habits), rarely on objective criteria. In order
to support a “low threshold” in learning how to use a new
tool [12], designers and developers should be able to use
the tools with which they are familiar (unless “high ceil-
ing” can be expected about how much can be done with
the tool). Unfortunately, this constraint, which leads to
the production of models that do not interoperate, im-
pedes their cooperation at run time.

The conflicting requirements from observations 1 and 2 may
be solved in two ways: either a universal language is defined to
cover all aspects of UI specifications, or we accept the diversity
of tools and languages but we find a way to define bridges be-
tween them. This article explores these two options. First, we
examine whether a universal language is a realistic approach to
UI specification by looking for answers into the domain of Lin-
guistics while finding analogies in software engineering. Then,
we explore one particular avenue from main-stream software en-
gineering: that of Model Driven Engineering (MDE) where the
notion of transformation is key to the definition of bridges be-
tween languages. Building upon these two analyses, we then
show how MDE can be successfully exploited in the develop-
ment and execution of plastic multimodal UIs illustrated with a
variety of complementary tools.

2. LINGUISTICS AND SOFTWARE

Linguistics is the scientific discipline of the study of languages
[13]. Among other things, it provides answers to the following
two questions: “what are the functions of languages?” and “why
are there so many languages?”

2.1. The functions of languages

According to linguistics, the two most important functions of
a language is to enable us (1) to reason about things, and (2)
to communicate with each other [14][13]. Software languages
have the same functions except that they can be interpreted by
computers, not by human actors only.

How humans think about something. Written or graphi-
cal languages help us in reasoning about complex problems.

“Thinking aloud” about an interface design or drawing a task
diagram on a napkin corresponds to the same function of a lan-
guage: thinking or reasoning about a UI to be built. Note that
this scenario does not require the language to be well defined:
the actor “understands himself” anyway.

How humans communicate. As communication involves
multiple actors, there is a strong need for an explicit language
description or at least some common level of agreement between
the actors. In the simplest case, the actors speak the same lan-
guage. This is the situation where two Human-Computer In-
teraction (HCI) designers communicate to merge their task dia-
grams. But there are situations where communication involves
actors who speak different languages or dialects. Various sce-
narios are possible. The first one is to use a vehicular language
to communicate. In Europe, this role has been played by Latin
and French. Unified Modeling Language (UML) plays a sim-
ilar role in the software engineering landscape when software
engineers use the core of UML (i.e. a subset of class diagrams).
Some actors may use their own dialects within their own com-
munity (also known as vernacular languages), and switch to the
vehicular language when going outside. Diglossy is the ability
for an actor to switch from one language to another depending
on the situation: a requirements engineer may elaborate use case
diagrams when speaking with clients, and then switch to task
diagrams when talking to HCI designers. Summing up, humans
need to communicate with each other, and this implies the exis-
tence of bridges between existing languages and communities.

2.2. The Multiplicity of Languages

There are, at least, three reasons for having so many languages
and dialects: languages are specific to communities, language is
power, and a language has a purpose.

Languages and Communities. According to Linguistics, “lan-
guages are the cements of our societies” [13]. There are many
languages because there are many communities, and there are
many communities because there are many languages. Speak-
ing a language is what makes the difference between those that
are in the community, and the “foreigners”, that are not. In an-
cient Greece, Barbarian was the name given to all people who
did not speak Greek. Similarly, in the software world, software
languages can lead to a strong feeling of identity as people can
define themselves as C++ programmers, Haskell programmers,
UML modelers, and so on.

Language is Power. Communities are always fighting to ex-
tend their power and have greater influence over other commu-
nities. Imposing a language over another one is a way to remove
the boundaries between two communities and integrate the dom-
inated culture. The war of languages is a well-established con-
cept in Linguistics [14] [13]. It is important to recognize that the
development of languages is not linked to their intrinsic proper-
ties but to external and political factors. In the software world
too, the most used software languages are not necessarily the
“best” ones (according to a given set of requirements). Lan-
guage expansion always requires some resources and efforts.
For example, Ada has benefited from the support of governmen-
tal institutions in America and Europe. It has been designed by
the USA’ Department of Defense (DoD) to take over the 500
different languages used at that time by the DoD. In the context
of modeling languages, Object Management Group (OMG) has
done a similar job in promoting UML. The universal language
is however a recurrent myth and the history of languages has
always been based on converging as well as on divergent pro-
cesses.

Languages and Purposes. As seen above, many factors ex-
plain the babelization of the software landscape, but separation
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of concerns is one of the key aspects. For many years, computer
science has dealt only with programming languages. Since then,
many other kinds of languages have emerged: specification lan-
guages (e.g. Z, VDM), modeling languages (e.g. SADT, UML),
architectural description languages (e.g. Wright, ACME), and
so on. This fragmentation of software languages helps in deal-
ing with different levels of abstraction. In principles, they are
independent from application domains, although an application-
driven approach is emerging with the notion of Domain Specific
Languages (DSL). In the area of Linguistics this corresponds to
Jargons, Special Purpose Languages and Restricted Languages
[13].

DSLs are expected to be much more effective than general-
purpose languages. Obviously, the more specialized a language
is, the smaller its audience is. One way to cope with the commu-
nication problem is to adapt the level of specialization according
to the interlocutors. In practice, various specialized jargons are
organized around a common language. Language customization
has been recognized as an important aspect of UML. Since its
version 2.0, UML is no longer seen as a “unified” language,
but rather as a language family. Various dialects can be de-
fined to handle special requirements leading to UML profiles
for databases, for C++ development, for real-time system mod-
eling, etc.

Summing up, many different factors explain the “babeliza-
tion” in the software community. At the time of writing this
paper, there are more than 8000 programming languages refer-
enced in HOPL [15]. If the DSL trend is successful, then this
number is expected to grow dramatically. One single language
does not fit all needs. Even if this were the case, there would still
be a multiplicity of languages and variants due to political and
social pressure. Thus, we must live with this diversity. MDE
presented next is intended to support and address this diversity.

3. MODEL DRIVEN ENGINEERING

In this section, we introduce the key concepts and principles
necessary to understand the essence of MDE: technological spa-
ces, models, metamodels, transformations and mappings.

3.1. Technological spaces

As discussed above, the field of software engineering has evolved
into the development of many paradigms and application do-
mains leading to the emergence of multiple Technological Spaces
(TS). “A technological space is a working context with a set of
associated concepts, body of knowledge, tools, required skills,
and possibilities” [16]. Examples of technological spaces in-
clude documentware concerned with digital documents using
XML as the fundamental language to express specific solutions,
dataware related to data base systems, ontologyware, etc.

In HCI, a java-based control panel running on a PDA can
be used to control a web-based application running on a PC.
Today, technological spaces can no longer evolve in autarky.
Most of them share challenges of increasing complexity, such
as adaptation, to which they can only offer partial solutions.
Thus, we are in a situation where concepts, approaches, skills,
and solutions, need to be combined to address common prob-
lems. MDE aims at achieving integration by defining gateways
between technological spaces. The hypothesis is that models,
meta-models, model transformations, and mappings, offer the
appropriate means.

3.2. Models

A model is a representation of a thing (e.g., a system), with
a specific purpose. It is “able to answer specific questions in
place of the actual thing under study” [17]. Thus, a model, built
to address one specific aspect of a problem, is by definition a
simplification of the actual thing. For example, a task model is
a simplified representation of some human activities (the actual
thing under study), but it provides answers about how “represen-
tative users” proceed to reach specific goals. Things and models
are systems.

The model is a role of representation that a system plays
for another one. Models form oriented graphs ( graphs) whose
edges denote the relation “is represented by” (Fig. 2). Models
may be contemplative (they cannot be processed automatically
by computers) or productive (they can be processed by comput-
ers). Typically, scenarios developed in HCI [18] are contem-
plative models of human experience in a specified setting. As
discussed in Section 2, they support human thinking as well as
human-to-human communication. On the other hand, task mod-
els exploited in TERESA [19] are productive.

In order to be processed (by humans, and/or by computers),
a model must comply with some shared syntactic and semantic
conventions: it must be a well-formed expression of a language.
This is true both for productive and contemplative models: most
contemplative models developed in HCI use a mix of drawings
and natural language. A TERESA [19] task model is compliant
with CTT [10]. A language is the set of all well-formed expres-
sions that comply with a grammar (along with its semantics). In
turn, a grammar is a model from which one can produce well-
formed expressions (or models). Because a grammar is a model
of a set of models ( relation “is part of” on Fig. 2), it is called a
meta-model. CTT [10] is a meta-model for expressing specific
task models.

3.3. Metamodels

A metamodel is a model of a set of models that comply with
it. It sets the rules for producing models. It does not represent
models. Models and meta-models form a tree: a model com-
plies to a single metamodel, whereas a metamodel may have
multiple compliant models. In the same way, a meta-metamodel
is a model of a set of metamodels that are compliant with it. It
does not represent metamodels, but sets the rules for producing
distinct metamodels.

The OMG Model-Driven Architecture (MDA) initiative has
introduced a four-layer modeling stack as a way to express the
integration of a large diversity of standards using MOF (Meta
Object Facility) as the unique meta-metamodel. This top level
is called M3, giving rise to metamodels, models and instances
(respectively called M2, M1 and M0 levels). MDA is a specific
MDE deployment effort around industrial standards including
MOF, UML, CWM, QVT, etc. The and relations, however, do
not tell how models are produced within a technological space,
nor how they relate to each other across distinct technologi-
cal spaces. The notions of transformation and mapping are the
MDE answers to these issues.

3.4. Transformations

In the context of MDE, a transformation is the production of a
set of target models from a set of source models, according to a
transformation definition. A transformation definition is a set of
transformation rules that together describe how source models
are transformed into target models [20]. Source and target mod-
els are related by the relation “is transformed into”. Note that a
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Figure 2: Basic concepts and relations in MDE.

set of transformation rules is a model (a transformation model)
that complies with a transformation metamodel.

Transformations can be characterized within a four - dimen-
sion space: A transformation may be automated (it can be per-
formed by a computer autonomously), it may be semi-automated
(requiring some human intervention), or it may be manually
performed by a human. A transformation is vertical when the
source and target models reside at different levels of abstraction.
Traditional UI generation is a vertical top down transformation
from high-level descriptions (such as a task model) to code gen-
eration. Reverse engineering is also a vertical transformation,
but it proceeds bottom up, typically from executable code to
some high-level representation by the way of abstraction. A
transformation is horizontal when the source and target models
reside at the same level of abstraction. For example, translating
a Java source code into C code preserves the original level of ab-
straction. Transformations are endogenous when the source and
target models are expressed in the same language (i.e. are com-
pliant to the same metamodel). Transformations are exogenous
when sources and targets are expressed in different languages
while belonging to the same technological space. When cross-
ing technological spaces (e.g., transforming a Java source code
into a JavaML document), then additional tools (called exporters
and importers) are needed to bridge the gap between the spaces.
Inter-technological transformations are key to knowledge and
technical integration.

Relation expresses an overall dependency between source
and target models. However, experience shows that finer grain
of correspondence needs to be expressed. Typically, the incre-
mental modification of one source element should be propagated
easily into the corresponding target element(s) and vice versa.

3.5. Mappings

The need for traceability between source and target models is
expressed as mappings between source and target elements of
these models. For example, each task of a task model and the
concepts involved to achieve the task, are rendered as a set of
interactors in the running UI. The correspondence between the
source task (and concepts) and their target widgets is maintained
as mappings. In summary, we must live with the “babelization”
of the software landscape. Fortunately MDE is an approach to
cope with this diversity. As discussed next, it can be usefully
exploited for the many faces of plastic multimodal UIs.

4. THE MANY FACES OF PLASTIC MULTIMODAL
UIS

Designing and developing UIs involve multiple stakeholders such
as computer scientists and human factor specialists, whose back-
ground, priorities and role in the development process are quite

different. As discussed in Section 2, they belong to distinct com-
munities, and thus use different languages and approaches. Al-
though practices differ between HCI and software communities,
we have observed a number of recurring steps that now serve as
references for designing and developing plastic multimodal UIs.
This reference framework is presented in sub-section 4.2 illus-
trated with a simple example: a Home Heating Control System
(HHCS).

4.1. Case Study: HHCS

HHCS enables end users to control the temperature of their home
using different devices. Examples include a dedicated wall-
mounted display, a Web browser running on a PDA, or a Java-
enabled watch. As shown in Fig. 3, each UI solution depends on
the device screen size, as well as on the set of usability proper-
ties that HCI designers have elicited as key.

From a functional perspective, the four UI’s of Fig. 3 are
equivalent: they support the same set of tasks, providing access
to the same set of rooms (the living room, the cellar and the
kitchen) where the room temperature may be set between 15C
and 18C.

From a non-functional perspective, these UI’s do not satisfy
the same set of usability properties. In particular, according to C.
Bastien and D. Scapin’s ergonomic framework [21], prompting
(a factor for guidance) and protection (a factor for error control)
are not equally supported. In Fig. 3-a), the unit of measure (i.e.
Celsius versus Fahrenheit) is not displayed. The same holds
for the room temperature whose range of values is not made
observable. As a result, prompting is not supported, and the risk
for input error is high. In Fig. 3-b), the lack of prompting is
repaired but the user is still not prevented from entering wrong
values. Solution in Fig. 3-c satisfies both criteria.

Figure 4: A hand-made mock-up similar to Fig. 3-d where a
clickable map of the house improves Compatibility.

Other criteria such as task compatibility, homogeneity-con-
sistency, and workload could be called upon as well. Fig. 4
shows an alternative to Fig. 3-d where a clickable map improves
compatibility. In terms of workload, the pull-down menus pro-
posed in Fig. 3-c are more appropriate than the input text fields
used in Fig 3-a and Fig. 3-b (since less actions are required).
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Figure 3: Four functionally-equivalent UI’s that differ from the set of usability criteria used to produce them.

The UIs of Fig. 3-a-b-c reflect the task decomposition: one
dialogue space has been defined per task. As such, they are task-
driven whereas the UIs shown in Fig. 3-d and Fig. 4 are concept-
driven (user’s tasks are now viewed as operations on concepts).
Here, the Grouping/Distinction among items has been consid-
ered as a key criterion. As a result, there is one dialogue space
per room in charge of supporting all the tasks that are applicable
to the concept.

Task driven UIs can also serve as a basis for re-distributing
UI portions across the interaction resources that are currently
available in the context of use. Fig. 5 shows an example where
the task Select a room has migrated to a PDA whereas the task
Set room Temperature has been kept on the PC. The redistri-
bution has triggered a remolding where hyperlinks have been
replaced with radio-buttons.

In this example, UI redistribution has been controlled by the
end-user through a meta-UI [22]: the end-user has selected the
task Select room from a representation of the task model (left
side of Fig. 6) followed by the specification of the platform onto
which the selected task should be executed (here, the PDA). De-
noting the target platform is performed by selecting the appro-
priate element of the platforms list (bottom right of Fig. 6). This
list serves as a representation of the platform model.

The Meta-UI also supports the modification of the tasks
type. For instance, the end-user can decide that the task Select a
room is of type “Input” rather than “Choice of one option among
N”. This would trigger a remolding of the UI that would replace
the combo boxes of Fig. 3-c with the input field of Fig. 3-a.

The design of a UI whether it is (meta- or not) follows the
reference framework described next.

4.2. Reference Framework for Plastic Multimodal User In-
terfaces

The framework shown in Fig. 7 is a canonical decomposition
that structures the development process for plastic multimodal
UIs [23]. It includes four models related by transformations that
each corresponds to a set of concerns (and stakeholders) so as
to distribute the development life cycle over several levels of

abstractions, thus coming up with multiple models [24]:

• The Tasks & Concepts (T & C) model describes the tasks
to be carried out by the end-users as well as the domain-
dependent concepts manipulated in the execution of these
tasks. This model is typically produced by human fac-
tors specialists. Fig. 6 shows a representation of the task
model for HHCS.

• The Abstract UI (AUI) model defines dialog spaces by
grouping subtasks according to criteria such as task model
structural patterns, cognitive workload, semantics rela-
tionships between domain-dependent concepts. Dialog
spaces are related by a navigation scheme that reflects
tasks relationships. They are populated with Abstract In-
teraction Objects (AIOs) [25]. AIOs represent domain-
dependent concepts in a modality - independent way . An
AUI is an abstraction of a Concrete UI (CUI) with respect
to modality. However, dialog spaces may be modality-
dependent as they can embed mechanisms for solving
references and ambiguities. This is typically the case
for natural speech-based UIs. For example, two dialogue
spaces have been defined for HHCS in Fig. 3-a-b-and c:
one for selecting the appropriate room, and a second one
for setting the temperature of the selected room. The AIO
Select I among N supports the navigation task between
the dialogue spaces. In Fig. 3-d, dialogue spaces have
been defined in a concept-oriented way resulting in the
absence of explicit navigation tasks.

• The Concrete UI (CUI) model makes an AUI concrete for
a given context of use where AIOs are replaced with Con-
crete Interaction Objects (CIOs) [25] related by layout
and navigation constraints. A CIO is modality-dependent.
In conventional GUI paradigm, it is called a widget. For
example, the AIO Select I among N has been replaced
with a combo box in Fig. 3-a-b-and c. Although a CUI
shows the final look & feel, it is still a mock-up that runs
within a particular environment. A CUI is a reification of
an AUI. It is also an abstraction of the FUI with respect
to the execution platform. In general, CUIs are produced
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Figure 5: A distributed version of HHCS: selecting a room is performed on the PDA while the temperature is specified on the PC.

Figure 6: How to ask for dynamic UI migration by assigning tasks from the task model to platforms of the platform model.
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by designers with the help of human factor specialists.

• The Final UI (FUI) is the operational UI, i.e. a UI that
runs on a particular computing platform. It can be inter-
preted (e.g., by a Web browser) or executed (as the result
of code compilation). FUIs are produced by software de-
velopers.

Figure 7: The CAMELEON Reference Framework [23].

These models are related by transformations and mappings.
The framework shows two types of vertical transformations (ab-
straction and reification), as well as horizontal transformations
(translations). For example, for the GUI modality, rendering is
a transformation where tasks and concepts are transformed into
dialogue spaces, which, in turn, are transformed into windows
populated with graphical widgets.

Transformations can be combined and applied to any of
these models to support UI adaptation using any entry point in
the reference framework. We call this multi-path UI develop-
ment. As an example, using VAQUITA [26] and WebRevEnge
[27], one can reverse engineer HTML source files into more ab-
stract descriptions (respectively CUI and AUI, task), and from
there, either retarget and generate the UI or apply a combination
of retargeting and/or forward engineering tools. This means that
designers and developers can produce the models they are famil-
iar with - including source code for fine-tuned elegant UIs, and
then use the tools that support the appropriate transformations to
retarget the UI to a different context of use. In the next section,
we illustrate the exploitation of this flexibility with a set of tools
developed according to this framework.

5. TOOLS AND POWERFUL GATEWAYS FOR
PLASTIC MULTIMODAL USER INTERFACES

This section presents a short survey of tools that can be used
for the development and/or execution of multimodal plastic UIs.
As shown in 5.1, each tool is intended to solve a small set of
issues. As a result, tools must be interoperable in order to cover
the development and execution of plastic multimodal UIs ap-
propriately. The concept of gateway between tools is illustrated
in 5.2.

5.1. Representative Tools for Multimodal Plastic UIs

MONA (Mobile multimOdal Next generation Applications) is
an environment for producing Multimodal UIs. Although com-
plete, it addresses the specific case of Web-based applications. It
involves a presentation server for a wide range of mobile devices
using wireless LAN and mobile phone networks that transforms
a Multimodal Web UI (MWUI) specification into a graphical or

multimodal UI than can adapt to diverse devices dynamically:
WAP-phones, Symbian-based smart phones or PocketPCs and
PDAs. The application design process is based on use cases that
allow, for each device, the refinement and validation of the de-
sign of multimodal UI prototypes. These prototypes are then
submitted to a heuristics-based evaluation performed by evalua-
tors with design experience.

ICARE [28] is a component-based approach to the design
and development of multimodal UIs, composed of elementary
components. An elementary component supports a pure modal-
ity (e.g., speech only, graphics only). Components are assem-
bled according to the CARE properties [29]: complementarity,
redundancy, and equivalence using a graphics editor. An assem-
bly built with ICARE is then automatically transformed into ex-
ecutable code. However, at run-time, this code is unable to adapt
dynamically to the context of use. In addition, multimodality is
limited to inputs whereas MOST is limited to outputs.

MOST (Multimodal Output Specification Platform) [30] is
a platform that allows the design of output multimodal systems
(i.e. graphical, vocal and tactile modalities) based on a three-
step process: analysis, specification and simulation. In the anal-
ysis phase, the output interaction components (i.e., mode, modal-
ity and medium) are identified. The specification step formalizes
the results of the previous step based on a series of attributes
and criteria assigned to each specific output interaction compo-
nent. Depending on the current state of the interaction context,
a behavioral model allows the identification of the most suitable
output form that can be used in order to present each interaction
component. The behavioral model is a set of selection rules that
produces the appropriate multimodal presentation.

Figure 8: A global picture of the method, language and tools
used in MultimodaliXML. It shows a production chain of in-
teroperable tools based on a common underlying language:
UsiXML.

TERESA [19] automatically generates X+V MWUIs using
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the framework presented in Section 3: the initial task model for
the envisioned system is transformed into a system task model
that is specific to the target multimodal platform. The system
task model is in turn transformed into an abstract UI, a concrete
UI, then into the code of the final UI. However, the transforma-
tion process uses parameters that are not related into a coherent
and explicit set of design options. In addition, TERESA trans-
formations are hard coded and embedded into the code, whereas
they are made explicit, thus browsable and modifiable in Multi-
modaliXML [31] as well as in MARA [9].

As opposed to the tools presented so far, MultimodaliXML
[31] brings together the following issues into an integrated de-
sign space: the use of models to produce multimodal interfaces
(e.g., [32]), languages for models specification (e.g., DISL [33],
D3ML [34], RIML [35], UIML [36], MXML http://www.
macromedia.com, XISL [37]), and explicit design options
for multimodal dialog (e.g., CARE properties [29], task-based
design of multimodal applications [19]).

MultimodaliXML design options for MWUIs [38] are struc-
tured according to three types of pure modalities (graphical,
vocal, tactile) and the combination of them. These design op-
tions provide designers with explicit guidance for their future
UI, and allow them to explore design alternatives. They have
been implemented as graph transformations performed on a UI
model. Thanks to a transformation engine, designers play with
different values for each design option to preview the results of
the transformation, and to obtain the corresponding code on de-
mand. The entry point of the process is the “Tasks & Concepts”
level. Transformations are reifications that take into considera-
tion tuned ergonomic criteria for MWUIs. These ergonomic cri-
teria were primarily defined for the evaluation of UIs [21]. Al-
though MultimodaliXML suggests certain coverage of the reifi-
cation process, the underlying hypothesis is that all of the mod-
els are expressed using one single User Interface Description
Language (UIDL): UsiXML, which stands for User Interface
eXtensible Marlup Language (http://www.usixml.org).

UsiXML covers the definition of UIs at any level of abstrac-
tion as well as the definition of transformation rules for address-
ing specific constraints. It is gradually enriched for the design of
MWUIs. In practice, UsiXML is supported by a suite of tools in-
cluding editors, generators, interpreters, and models managers.
These tools interoperate as they are based on the same language:
UsiXML. Fig. 9 shows the overall picture of the UsiXML tools.

Figure 9: An overview of the UsiXML suite of of tools.

The UsiXML-based tools are intended to cover the design
phase of UIs, not the running phase. For instance, SketchiXML
[39] (see Fig. 10) is a multi-agent interactive editor that enables
designers and end-users to sketch parts or all of the UIs with
different levels of details and support for different contexts of
use. SketchiXML is intended to convey informal specifications
of the UI presentation and dialogue. The behaviour of the ap-

plication can be tuned with a set of parameters. As an exam-
ple, the designer is free to define whether a recognized shape
should appear differently than an unrecognized shape, or to de-
fine the level of fidelity required. The sketch of a UI is then an-
alyzed to produce UI specifications independently of any con-
text, including user and platform (UsiXML or UIML). These
specifications are exploited to progressively produce one or sev-
eral UIs, for one or many users, platforms, and environments.
In any case, SketchiXML only provides the core properties of
these different components since this kind of low fidelity de-
sign tool is not supposed to capture detailed information. The
next step of the design process consists in importing the speci-
fications generated with SketchiXML into a high-fidelity editor
(GrafiXML for UsiXML and LiquidUI for UIML). With these
tools, the designer is then able to specify the attributes that could
not be specified during the sketching phase.

Figure 10: SketchiXML in action. The user (designer) can draw
(sketch) low-fidelity shapes (as in Peridot [40]) that can be rec-
ognized as widgets or left as is, depending on the designers’s
intent.

Reusability calls for tools that are able to support UI fu-
sion and fission. ComposiXML [41] has been designed to that
end. ComposiXML is a plug-in developed for the GrafiXML ed-
itor. Any individual or composite component of a graphical UI is
submitted to a series of operations for composing a new UI from
existing components and for decomposing an existing one into
smaller pieces that can be used in turn for another UI. The com-
position and decomposition operations are defined by the way
of the tree algebra. Two kinds of operators are supported: unary
operators such as selection and projection, and binary operators
such as union, intersection, and fusion (Fig. 11). Composition
and decomposition can be performed both at design time and
run time.

Most tools presented so far imply a dichotomy between the
design phase and the run time phase. Given that in ubiquitous
computing, not all situations can be envisioned at design time,
the design phase and the run-time phase must be more tightly
coupled. The MARA infrastructure [9] is intended to blur this
distinction. In MARA, all of the models (that cover the four lev-
els of the reference framework presented in Section 4) are alive
at run time, and linked together by the way of mappings. Map-
pings express ergonomic criteria that drive models transforma-
tions. Models (including mappings) are compliant with explicit
meta-models. As exemplified next, it is possible to transform
MARA meta-models into the UsiXML technological space so
as to take advantage of the UsiXML suite of tools.

8
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Figure 11: ComposiXML provides the designer with both unary and binary operators for composing and decomposing UIs.

Figure 12: The MARA Model exporter. Here, the developer has selected to transform the current MARA task model to UsiXML.
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5.2. The Power of Gateways

To demonstrate the power of gateways, we show that it is possi-
ble to switch between the MARA infrastructure and the UsiXML-
based tools. From a technological perspective, these gateways
are implemented as transformations expressed in ATL [42]. The-
se transformations first convert the EMF MARA metamodels
into EMF UsiXML metamodels that in turn, are transformed
into XML (Fig. 13). These transformations apply at the “Tasks
& Concepts” level as well as at the AUI level. When applied
at the Task level (Fig. 13), they make it possible to transform a
MARA task model into a UsiXML task model and from there,
to invoke IdealXML to generate a VoiceXML UI. This facility
may prevent the MARA developer from defining specific ATL
transformations for targeting VoiceXML. Similarly, task-to-task
transformations have been developed to switch from MARA to
CTT [10], and from there, to call upon the Teresa environment
[19].

Figure 13: Calling the appropriate MARA exporter (gateway)
to transform a MARA task model into a UsiXML task model, to
exploit IdealXML. Alternatively, a MARA task model or a MARA
AUI can be transformed into a UsiXML AUI.

From our early experience with transformations, gateways
open the way to a diversity of improvements. First, gateways
make it possible for developers and designers to use their fa-
vorite tools in conformity with the low-threshold principle. Al-
ternatively, developers and designers may play with the func-
tional coverage of the tools for high ceiling output. This may
range from preferring CTTE to the simplistic MARA editor for
fine tuning task models, or using SketchiXML for drawing low-
fidelity UI’s, to switching to advanced tools. For example, switch-
ing to a tool that supports design by reuse (as in ComposiXML),
switching to a tool that covers modalities not supported by the
preferred tool (e.g., from MARA to IdealXML), or to a tool
that supports dynamic UI remolding and UI redistribution (as
in MARA).

6. CONCLUSION

One important lesson drawn from Linguistics is that “babeliza-
tion” is unavoidable. Two parallel processes are en route - diver-
gence and convergence - making it necessary for communities,
and their languages, to live together. Many Domain Specific
Languages are emerging while a significant amount of efforts is
put on standardization. This observation holds both for main-
stream software engineering and HCI. Software engineering has
developed MDA/MDE as a way to cope with the diversity of
languages and tools. As for HCI, a model-based approach to
UI generation has been promoted since the mid-eighties, thus
long before software engineering discovered MDA/MDE. On
the other hand, model-based tools have not found wide accep-
tance. We think that there are three reasons for this.

First, in conventional model-based approaches to UI gen-
eration, transformation rules are diluted within the tools. Con-
sequently, “the connection between specification and final re-
sult can be quite difficult to control and to understand” [12]. In
our approach, transformations are promoted as models. As any
model, they can be modified both at design-time and runtime.
The same holds for mappings. In particular, mappings are dec-
orated with properties to convey usability requirements.

Second, the conventional model-driven approach did not fo-
resee the benefits from blurring the distinction between the de-
sign phase and the run time phase. In particular, the possibility
for design tools to become run-time services that can reason at
the appropriate level of abstraction or that can be used by end-
users to control the rendering and distribution of the final UI,
provide new forms of flexibility that could not be imagined be-
fore [43]. In addition, the dynamic plug-in of hand-written code
makes it possible for designers and developers to recruit pieces
of UI that cannot be derived automatically (such as the UI shown
in Fig. 4) or that go beyond traditional UIs such as post-WIMP
and tangible UIs. By doing so, we alleviate the risk that gen-
erated UIs be not as good as those created with conventional
programming techniques.

Third, the existence of gateways between languages and
tools is a way to reconcile the requirements for tools with low-
threshold and high-ceiling: ideally, designers, developers, and
end-users can use the languages and tools they know about (low-
threshold), then switch to high-ceiling tools by the way of trans-
formations only when these show clear benefits.

To summarize, we claim that MDE coupled with blurring
the distinction between the design and run-time phases offers
a promising approach to the design, development and execu-
tion of plastic multimodal UIs. Metamodels and transforma-
tions are now at the heart of the solution space. As knowledge
improves with experience, the next step is to capitalize meta-
models and transformations into databases (cf. the ZOOOMM
project - http://www.zooomm.org) as well as designing
UIs for metamodelling and transformations editing, leading to
the notion of Mega-UI [44].
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