
M. Winckler, H. Johnson, and P. Palanque (Eds.): TAMODIA 2007, LNCS 4849, pp. 84 – 97, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Survey of Model Driven Engineering Tools for User
Interface Design

Jorge-Luis Pérez-Medina, Sophie Dupuy-Chessa, and Agnès Front

Laboratory of Informatics of Grenoble
385 rue de la bibliothèque, B.P. 53
38041 Grenoble Cedex 9, France

{Firstname.Lastname}@imag.fr

Abstract. The introduction of new technologies leads to a more and more
complex interactive systems design. In order to describe the future interactive
system, the human computer interaction (HCI) domain uses specific models and
tools. In another way, the Model Driven Engineering (MDE) approach has been
proposed in software engineering domain in order to provide techniques and
tools for dealing with models in an automated way. MDE approach is based on
models, meta-models, models transformation and models weaving and aims to
produce productive models, i.e. models concentrated on their generative power.
Considering these two domains and the already existing HCI works in MDE,
the goal of this paper is to understand actual HCI design needs and to study how
MDE tools can support HCI needs. As a first response, it proposes a survey of
existing MDE tools in regards to HCI model management.

Keywords: HCI, MDE, model, meta-model, transformation, MDE tools, User
Interface Design.

1 Introduction

Model-based approaches aim at helping developers understand user needs and design
solutions in an effective way. In the HCI domain, models can be declarative in order
to describe the future interactive system, but also generative to (semi-) automate the
code generation. If the quality of the generated interfaces can be disappointing [22],
models remain interesting for their declarative power. As a matter of fact, interactive
systems are more and more complex: they can use everyday life objects to propose
tangible interfaces; they can couple the virtual and the physical worlds in augmented
reality systems; they can adapt themselves to the user context, etc. They are
increasingly difficult to design. So new models appear to represent augmented reality
systems [11, 27] or the user context (with a user model, a platform model and an
environment model [28]).

In terms of tools, the HCI community uses different tools to support the design of
interactive systems, e.g. CTTE [21], GUIDE-ME [32] K-MADe [4], and Teresa [5].
These tools mainly give support to model editing for task models (CTTE, Teresa and
K-MADe) or specific models such as ASUR models (GUIDE-ME). In addition, some

 A Survey of Model Driven Engineering Tools for User Interface Design 85

of them [33, 4] allow model simulation. However, many others operations are
possible on models, in particular to increase their generative power.

Model management aims at providing techniques and tools for dealing with models
in more automated ways. It has been studied independently for years by several
research communities in the context of databases, document management and
software engineering. Nowadays, a federative approach emerges: model driven
engineering (MDE [14]). At the origins of the movement, the Object Management
Group proposes the Model Driven Architecture for object-oriented technologies. But
this dependence on a technology and the absence of clear concept definitions lead to a
more general approach, MDE. In MDE, any kind of models can be taken into account.
So MDE is spreading quickly, in particular in the HCI domain as can be seen by the
recurring workshop “Model Driven Development of Advanced User Interfaces” at
one of the main conferences about MDE, MoDELS.

Based on related work on MDE for HCI, this paper tries to understand the HCI
actual design needs related to MDE and proposes a survey of MDE tools for HCI. Our
goal is not to identify the best tool for HCI design but to find criteria that could help
HCI designers in the choice of a MDE tool.

The paper is organized as follows. Section 2 provides the basic definitions of MDE
concepts. Section 3 describes the existing HCI works related to MDE. Section 4
provides a survey of MDE tools for HCI in terms of metamodeling, model
transformation and others operations. Finally, conclusions are presented.

2 MDE Concepts

2.1 Models and Meta-models

MDE is a recent paradigm where code is not considered as the central element of
software. Code is an element, a model produced by merging different modeling
elements. So in MDE, everything can be considered a model. Minsky [20] defines
that “To an observer B, an object M* is a model of an object M to the extent that B
can use M* to answer questions that interest him about M”. This definition shows a
model is an object intended to represent a particular behavior, dependent on a
particular disciplinary context. In the context of MDE, interesting models are those
that can be formalized to make them productive. Some authors integrate this
limitation directly into the definition of the notion of model: a model is a description
of (part of) a system written in a well-defined language [18]. This definition makes an
explicit reference to the notion of well-defined language. In MDE, such a language is
described by a meta-model. A meta-model is a specification model that defines the
language for expressing a model. It defines the concepts that can be used in the
models, which conform to it. In this way, a meta-model allows designers to specify
their own domain-specific languages. Models and meta-models are the first main
concepts in MDE.

2.2 Model Transformation

Another important concept in MDE is transformation. A transformation permits, from
given models, to produce any model [19]. The model produced by transformations can

86 J.-L. Pérez-Medina, S. Dupuy-Chessa, and A. Front

be code, test cases, graphical modeling models, etc. The goal of transformations is
double: on the one hand, they capitalize on know-how; on the other hand, they permit to
automate this know-how. So transformations provide the generative power of models.

There are several kinds of generation. Classically, code can be generated from
given models. But in reverse engineering, the models are produced from the code.
There are many examples of translation of a model to another model such as the
generation of UML models from formal specifications. In MDE, all these operations
on models are considered as transformations. This is one of the key ideas in MDE that
permits to consider all the generative operations in the same manner.

A difficulty remains in finding a language to express the transformations. Many
different kinds of transformation languages exist: graphical languages like TrML1;
XML XSLT-based2 languages; languages based on a programming language (for
instance, JMI3 expresses Java-like transformations); ad-hoc languages like MOLA
[17] and MTL [33]; and finally languages based on the OMG standard QVT4. QVT
principles have been implemented in several languages, of which ATL (ATLAS
Transformation Language [1]) that is currently most widely used.

2.3 Model Weaving

MDE is not limited to model transformations. [9] argues that transformations are not
sufficient to manage the generative power of models and proposes another operation
called model weaving. Model weaving [9, 10] is an operation on models that specifies
different kinds of links between model elements. In order to explain model weaving,
let us consider the simple information system for a library described in [10]. In this
context, an example of transformation of one relational database R1 into its equivalent
XML representation X1 is proposed (Figure 1). A model weaving operation is
specified to capture the links between both schemas with all the information
semantically relevant.

These links are represented in the R1_X1 mapping as illustrated in figure 1. In this
example, both schemas represent the same information but distinct data structures are
used. For instance, whereas the subjects have a Name in R1, they are called Descr in
X1. The equality between these elements can be represented by the Equals links in the
weaving. Moreover, one must also take into account the structure of both schemas:
the foreign key constraints and the nested elements are respectively represented by
FK and Nested links.

This example shows that a weaving is specific to a domain. The weaving
relationships, e.g. “Equals” or “Nested”, depend on the concepts of the models to be
manipulated. Thus, a weaving, like any model, must be in accordance with a meta-
model. It allows afterward to define transformations from the mapping.

Model management is not limited to model transformation or weaving. Other kinds
of operations can be applied to models. Models can be simulated, consistency can be
checked between them, etc. If these operations are important to make models more

1 TrML. Transformation modelling language, http://www2.lifl.fr/west/trml/
2 W3C. World Wide Web Consortium, http://www.w3.org/TR/2007/REC-xslt20-20070123/
3 JMI. Java Metadata Interface, http://java.sun.com/products/jmi/
4 Query/View/Transformation. OMG Specification, http://www.omg.org/docs/ptc/05-11-01.pdf

 A Survey of Model Driven Engineering Tools for User Interface Design 87

Fig. 1. Links between a relational and an XML schema of a library

useful, they are generally not presented as part of MDE for MDE concentrates on the
generative power of models. We can note that it is important that MDE tools can be
easily connected to other tools that will provide other operations on models.

3 Existing HCI Works in MDE

Model-based Systems for User Interfaces Design (UIDE) have been addressed using
many approaches over the years. Early works on UIDE such as Foley [15] established
the foundations for transforming high-level specifications into executable code. Later,
various approaches have been developed in the field of model-based design of
interactive applications [24]. More recently, works in UI design are using partially the
MDE principles. This section describes the existing works in order to identify needs
related to MDE tools.

3.1 Models and Meta-models in HCI

Historically, MDA and consequently MDE approaches have been “inspired” by
concepts of the UML meta-model and the MOF meta-meta-model. MOF is a model of
the meta-models proposed by the OMG. In particular, it is the meta-model of the most
used meta-model, the UML one. MDE uses UML class diagrams as notation for the
representation of models and meta-models.

In HCI, UML models are not widely used because they are not adequate but also
because the HCI domain has developed its own notations such as task models, ASUR
models, etc. Several meta-models have been proposed for context-adaptive user
interfaces [28, 6, 7]. Generally, they include a meta-model for the task model, but also
models related to the user context such as a platform model. For example, Fig. 2
represents a task meta-model proposed in [28]. In this meta-model, the tasks are
linked by operators. Logical and temporary operators are considered as binary,
whereas the decorations on the tasks are supplied by unary operators.

Fig. 2. A task meta-model [28]

88 J.-L. Pérez-Medina, S. Dupuy-Chessa, and A. Front

The use of MDE and meta-models is not limited to the adaptation of the user
interface to its context. Other domains of HCI also define meta-models for specific
notations such as ASUR, a graphical notation for augmented reality systems [12] or
for specific tools like in [16].

All these meta-models are independent, but they are instances of the same meta-
meta-model (i.e. MOF). They are defined from scratch without being the extension of
well-known meta-models. Another approach could be to extend an existing meta-
model. In particular, UML proposes profiles to extend the UML meta-model to a
specific domain. So the meta-models defined as UML profiles take advantage of the
already existing semantics of UML and must conform to its semantics. For instance,
some extensions have been proposed for HCI through UMLi [25] and for context-
sensitive user interfaces [31].

The study of these existing works leads us to conclude that user interfaces design
needs MDE tools, which support domain-specific meta-models and models. Unlike
for software engineering (SE), there is no consensus on the models for HCI. In
addition, even different notations are proposed for task modeling. So the HCI domain
must manage several meta-models for task models. This diversity brings the need to
use MDE tools that permit designers to create their own meta-model or to modify an
existing one.

Finally if designers want to create links between HCI and SE models, all the meta-
models must be instance of the same meta-model. As SE and MDE communities use
the MOF as the meta-meta-model reference, it is important that the HCI domain
conforms to this practice. So the HCI meta-models must be instance of the MOF and
they must be represented by an UML class diagram.

3.2 Model Weaving in HCI

Establishing links between model elements can provide numerous application
scenarios, such as model comparison, traceability, matching or interoperability. To
our current knowledge, model weaving has been used in the HCI domain on the
notion of mapping [29]. In this approach, a UI is described as a graph of models and
mappings both at the design time and run-time.

The mappings are specified manually in a semi-formal way by the designer, or are
created automatically by the system as the result of a transformation function. At
design time, the mappings convey some properties that help the designer in selecting
the most appropriate transformation function (e.g. the concepts manipulated within a
task are grouped together). Either the target element of the mapping is generated
using a transformation function. At run-time, mappings are keys for reasoning on
usability (e.g. select the appropriate usability framework in the generation of UIs).
Mappings models are more than a simple traceability link; they can embed
transformation in order to manage models consistency.

The use of model weaving is currently limited in HCI. It is more complex than the
direct transformations or comparisons as it requires the creation of a weaving meta-
model. But it increases the traceability of model manipulations by explicitly
representing links between models. Then transformations or model comparisons can
be more easily executed from the weaving links. So the need of weaving models in
HCI is important.

 A Survey of Model Driven Engineering Tools for User Interface Design 89

3.3 Model Transformations in HCI

More than weaving, transformation operations represent the heart of the MDE.
Section 2.2 showed that there are several kinds of transformations and that many
languages have been proposed to represent them. In this section, we study how the
HCI community uses transformations for user interface design.

3.3.1 Transformation Languages Chosen in HCI
Many transformations languages are currently proposed and still developed in the
MDE domain. An important decision consists in selecting a suitable language for
transformations. Our study of existing works suggests that transformation languages
are currently underused by the HCI community. Most of the work studied does not
refer to any transformation language, which suggests that transformations are
currently done in an ad-hoc manner or not formalized at all. Nevertheless, there are
exceptions. In the domain of web interfaces, the transformation language is XSLT. In
other domains, several papers [28, 7, 16] refer to ATL.

So it may be too early to clearly specify the HCI needs in terms of transformation
languages. The HCI community seems to follow the standard of use. Nevertheless, the
choice of a transformation language requires it to be easy to understand and to use,
especially for non-MDE specialists as can be HCI designers. So it is important to note
for each MDE tool which kind of language it supports.

3.3.2 Transformations Proposed in HCI
In section 2.2, we identified the needs to generate code from models, models from
code or models from models. Even if reverse engineering exists in HCI [3], we did
not find any examples of model generation from code using MDE approach.

The idea of transforming one model into another is proposed mainly to bridge the
gap between HCI and SE models. [23, 8] propose some informal transformations
between activity diagrams and task model. But transformations are more commonly
used to produce code. A good example of model transformation can be found in [29].
It describes a complete approach based on transformations with the generation of
models from models and of code from models. Because of space limitations, we will
comment only one transformation that generates one model from another. The rules
are expressed in the same way to generate code.

Based on a case study of a Home Heating Control System (HHCS), this example
shows that a final UI can be defined by a set of model transformations that follows the
following steps: from the domain-dependent concepts and task models, an abstract UI
(Workspace) is derived; this abstract UI is then transformed into a concrete UI (CUI),
which is transformed into the final UI. To give a more precise example, we shall
concentrate on the transformation from tasks into workspaces. In this example, the
tasks are transformed into workspaces; the operators between tasks into chains
between workspaces.

Figure 3 presents the meta-models used in the transformation of the tasks into
workspaces. In this figure, we see that every task is associated with a workspace and
that the binary operator gives rise to chains between workspaces.

90 J.-L. Pérez-Medina, S. Dupuy-Chessa, and A. Front

Fig. 3. Meta-models used in the transformation from task to workspace [29]

In the current implementation of HHCS, the mappings between the task model, the
workspace and the CUI are expressed in ATL; an example is illustrated in figure 4.
The first rule illustrates the generation of a task into a workspace; it consists in
creating a space for every task with the assignment of the name of the task. The
second rule illustrates the transformation of a binary operator into a chain; it considers
only the operator "Or" and is written in two parts: the first one consists in the
selection of the binary operators of type "or"; the second describes the access given by
the space representing the mother task to spaces representing their two daughters.

Fig. 4. Example of the transformation Task to Workspace in ATL [28]

In MDE, there is no distinction between transformations: a transformation always
generates one model from another. It is assumed that the code or program is also a
model. Nevertheless, in the perspective of using MDE tools, one important aspect is
to guarantee that the transformation result can be expressed in a recoverable format
that is useful for another tool. This implies that the format of the transformation result
is important. It is needed to know if the result is a text file that can be compiled or
interpreted or if it is a structured file (in XML for instance) that can be manipulated
by design tools.

In the perspective of comparing MDE tools according to HCI needs, we note that
the existing works in HCI reflects a clear need to realize transformations of HCI
models. To go further, the HCI community could define libraries of classic
transformations that could be integrated and manipulated by MDE tools. So it is
important that MDE tools propose a transformation repository or at least the load of
existing transformations. This brings the need to a common language to express
transformations but also this adds constraints on the format to permit interoperability
between tools. We note that the format of the transformation result is also important

 A Survey of Model Driven Engineering Tools for User Interface Design 91

to know in order to determine the future operations that can be realized on the
resulting model.

4 Survey of MDE Tools for HCI

4.1 Diversity of Tools

Both at the commercial and research levels, several tools for MDE are either available
or in development. These tools are designed as frameworks [2] or as plug-in [1].
Several classification works [13, 26] and tool comparisons [30] were proposed.
However, no classification estimates the functional criteria that we defined towards
our needs, in particular in terms of specific models used in HCI domain.

Table 1 shows a list of tools that we have considered realizing our survey. This list
is focused on the MDE tools which could be used in the HCI domain as the
manipulated models are not limited to UML models.

Table 1. Survey of MDE Tools

Tool Version Description
ACCELEO
GPL - Open source

2.0.0 Eclipse and EMF template-based system for MDA generation.
http://www.acceleo.org/pages/accueil/fr

AndroMDA
Open source

3.2 An extensible generator framework. Models from UML tools will be transformed
into deployable components for your favorite platform (J2EE, Spring, .NET).
http://galaxy.andromda.org/index.php?option=com_frontpage &Itemid=48

ADT
Open source

2.0 ATL Development Tools are a suite of Eclipse plugins including an ATL engine
(compiler and virtual machine) as well as an IDE. http://www.sciences.univ-
nantes.fr/lina/atl/atldemo/adt

AToM3
Open source

2.2 A Tool for Multi-formalism and Meta-Modelling supporting modelling of
complex systems. http://atom3.cs.mcgill.ca/index_html

DSL Tools (Visual
Studio 2005 SDK)

4.0

DSL Tools enable the construction of custom graphical designers and the
generation of source code using domain-specific diagrammatic notations in Visual
Studio 2005. http://msdn2.microsoft.com/en-us/vstudio/aa718368.aspx

Kermeta 0.4.1 A metamodeling language which allows describing both the structure and the
behaviour of models. http://www.kermeta.org/

ModFact
GPL - Open source

1.0.1 A tool that provides a framework for building application. http://modfact.lip6.fr/

Merlin
Open source

0.5.0 A software modelling tool based on model transformation and code generation.
http://merlingenerator.sourceforge.net/merlin/index.php

MDA Workbench
Open source

3.0 The MDA Workbench is a MDA tool implemented as an Eclipse plug-in based on
modelling and code generation. http://sourceforge.net/projects/mda-workbench

MOFLON
Open source

1.1.0 A meta modelling framework built as plug-in for the graph transformation tool
Fujaba. http://www.moflon.org/

OptimalJ Professional
Edition

3.0 Generator of J2EE applications using patterns to translate business models into
working applications. http://www.compuware.com/ products/optimalj/

QVT Partners
BSD like license

0.1 Tools based on QVT for transformation models to models and code generator.
http://qvtp.org/downloads/qvtp-eclipse/

SmartQVT
Open source

0.1.4 A model transformation tool based on QVT-Operational language.
http://smartqvt.elibel.tm.fr/

UMLX
Open source

0.0.2 An experimental concrete syntax for a transformation language.
http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/UMLX/

These tools will be studied according to the needs listed in the previous sections.
These needs are general to the HCI domain. Any HCI designer must refine them to
choose his MDE tool. So we do not intend to find the best tool but rather to provide
relevant information to choose a MDE tool. We will present our survey in terms of

92 J.-L. Pérez-Medina, S. Dupuy-Chessa, and A. Front

the MDE important concepts: models and meta-models, operations on models and
other functionalities.

4.2 Tools in Terms of Meta-models and Models Expression

Regarding models and meta-models, the HCI community needs tools that do not just
consider UML models, but also specific models. Our list of tools being limited to this
kind of tools, any tool in the list can be suitable for HCI in terms of model and meta-
model support. Nevertheless, to refine our comparison, we introduce a criterion about
the way of expressing models and meta-models: models and meta-models can be
represented either textually or graphically. We also note if constraints can be added to
complete models and meta-models. Constraints are written in OCL, the constraint
language for UML.

Table 2. MDE tools in terms of meta-models and models expression

Expression (Meta-models) Expression (Models)
Tools Graphical (G) or

Textual (T)
Constraints Graphical (G) or

Textual (T)
Constraints

ACCELEO G, T OCL G, T OCL
AndroMDA T OCL G, T OCL
ADT T OCL T OCL
AToM3 G - G -
DSL tools G, T - G, T -
Kermeta G,T OCL G, T OCL
ModFact G - G -
Merlin G,T OCL G, T OCL
MDA Workbench G, T OCL G, T OCL
MOFLON G, T OCL G, T OCL
OptimalJ G OCL G OCL
QVT Partners G, T OCL T OCL
SmartQVT T OCL T OCL
UMLX G, T OCL G, T OCL

From the previous table, we would recommend that a user interface designer
should better choose a tool allowing a graphical expression of models and meta-
models, because graphical representations are of course easier to use than textual
representations for non specialists.

4.3 Tools in Terms of Model Transformation and Weaving

As mentioned in section 3, HCI needs in terms of operations on models are not
limited to transformations. Table 3 lists all the model manipulations proposed by the
tools and shows that only ADT provides some part of the infrastructure for the
manual creation of weaving models, what is a real advantage on other tools.

Then for transformations, even if there is a standard specification for
transformations (QVT), there is no standard language. The majority of MDE tools
support QVT so that, in principle, the use of QVT guarantees that the result of a
transformation is compatible with another tool that uses QVT. But in practise, the

 A Survey of Model Driven Engineering Tools for User Interface Design 93

implementations of QVT are different and the compatibility between tools is not
guaranteed. We also showed in section 3.3 that XSLT and ATL were nowadays the
only two languages used by the HCI community. So to support the creation of
transformations libraries for HCI, the tools ADT and UMLX, which support XSLT
and ATL, should be preferred in the HCI domain. Moreover ATL is already widely
used in the SE domain. So ATL is a good candidate to facilitate links between HCI
and SE models.

Moreover it is important to identify the form (text or model) of the generated
models in order to identify which kind of tools can manipulate them. In table 3, the
word "Text" is used when the result of a transformation is textual. Generally the result
is some code written in a programming language (java, C, C++, Cobol, Fortran,
VB.net, etc.) that can be compiled or interpreted. The term XMI is used when the
result of the transformation is a model in the XMI form (XML Metadata Interchange),
which can be loaded in many design tools. Here again ATL and UMLX (with other
tools) have an advantage as they provide the XMI and the textual format.

Considering model operations, two tools are good candidates for the HCI domain:
ATL that is the solution for works in the SE spirit and UMLX which is more adapted
for works with web technologies.

Table 3. MDE tools in terms of models transformation and weaving

Transformation
Generated model

Tool Language Graphical (G) or

Textual (T) Expression XMI Text

Weaving

ACCELEO QVT, JMI T - Yes -
AndroMDA ATL, MofScript T Yes Yes -
ADT ATL T Yes Yes Yes
AToM3 Multi formalism (python) G Yes -
DSL tools Notation XML T Yes Yes -
Kermeta QVT T - Yes -
ModFact QVT T - Yes -
Merlin QVT, JET T - Yes -
MDA Workbench QVT T - Yes -
MOFLON JMI G - Yes -
OptimalJ QVT T - Yes -
QVT Partners QVT T Yes Yes -
SmartQVT QVT T Yes Yes -
UMLX XSLT, QVT T Yes Yes -

4.4 Tools in Terms of Other Operations

The studied MDE tools offer good solutions for meta-modeling and transformations.
But one may want to reuse models, meta-models or transformations into another tool,
so it is very important to know the capacity of a tool to interoperate with other tools.

In sections 3.1 and 3.3, we noted the importance of the format to exchange models
and meta-models and to bridge the gap with the SE domain. A great part of the tools
is centred on the MOF specification. So they can cover the modelling needs of
different domains and especially of HCI. Several implemented formats have been
proposed for the MOF: ECore, MDR (Metadata Repository), KM3 (Kernel Meta-

94 J.-L. Pérez-Medina, S. Dupuy-Chessa, and A. Front

Meta Model), DSL (Domain Specific Language) and CWM (Common Warehouse
Meta-model). Nevertheless, DSL does not conform to MOF's implementation. That’s
why KM3 was created: KM3 is a specialized language to specify meta-models and is
used as a bridge between MOF and DSL. The most used format is ECore, which is a
simplified version of the MOF. Moreover MDE tools provide many libraries of
predefined models and meta-models in ECore. So the choice of a ECore compliant
tool is important to guarantee the development and the exchange of reusable models
and meta-models.

Regarding model transformation, XMI is proposed for transformations but it is not so
widely chosen. As a matter of fact, many other tools prefer textual transformations, in
particular for QVT tools. In terms of interoperability, Eclipse proposes de facto methods
for the storage and the recovery of models based on XMI. So the great majority of MDE
tools is based on Eclipse and can interoperate with other Eclipse tools.

Finally, what is more important in the HCI domain is the interoperability of MDE
tools with existing HCI design tools. Generally HCI design tools do not have a known
meta-model. However the models produced with them can be saved in an XML
format. The interoperability between MDE and HCI design tools can be easily
guaranteed by transforming every XML file in a ECore compatible format, so that it
could be recovered by the MDE tools that support this format. A longer term solution
is that HCI tools incorporate the MDE standards and create mechanisms to import or
export information based on the XMI format.

Table 4. MDE tools in terms of other operations

Tool Repository Interoperability
with others tools

 Metamodeling Model transformation Constraints
ACCELEO DSL, MDR, ECORE - XMI Eclipse, Netbeans
AndroMDA MOF, DSL - XMI Eclipse
ADT DSL, KM3, MDR, ECORE Text (ATL) XMI Eclipse, Netbeans
AToM3 Proprietary graphical multi - formalism -
DSL tools DSL - Proprietary notation XML / XMI - Eclipse, Netbeans
Kermeta ECORE Text (QVT) XMI Eclipse
ModFact ECORE XMI XMI Eclipse
Merlin ECORE Text (QVT) XMI Eclipse
MDA
Workbench

ECORE XMI XMI Eclipse

MOFLON ECORE - XMI Eclipse
OptimalJ CWM, ECORE XMI XMI Eclipse
QVT
Partners

ECORE Text (QVT) XMI Eclipse

SmartQVT ECORE Text (QVT) XMI Eclipse
UMLX ECORE XMI, XSLT XMI, XSLT Eclipse

5 Conclusion

The goal of this paper is to propose a survey of MDE tools in order to help the HCI
community in the choice of a MDE tool. Considering existing works in the HCI
domain, we think that the HCI domain shows a clear need for the MDE approach and

 A Survey of Model Driven Engineering Tools for User Interface Design 95

tools. First, considering models and meta-models, HCI designers use a lot of domain-
specific models such as task models, ASUR models, etc. that conform to specific
meta-models. Transformation models and weaving models are also needed in HCI
domain. In particular, model weaving has been used on the notion of mapping where
a user interface is described as a graph of models and mappings both at design time at
run-time. Moreover, transformations allow to generate code from models, but also to
produce new models from other ones. Two types of transformations are then needed,
those that generate code (more generally, a text file that can be compiled or
interpreted) and those that generate graphical models (more generally, a structured
file that can be manipulated by design tools).

Based on these needs, we draw a survey of several MDE existing tools. Several
conclusions can be drawn from this comparison. In terms of modeling, a great part of
the tools are centered on MOF and allow to model domain-specific models. In terms
of transformations, there is no standard language to use, but it is important to know
the language manipulated by the tools and to specify if they are graphical or textual.
Moreover, it is important to know the format (text or model) of the generated models
in order to identify the kind of tools that can then manipulate them. Our conclusion is
that MDE is able to answer the specific needs of the HCI community in terms of
models. Nevertheless, the HCI community has to incorporate the proposed standards
that MDE is nowadays using. We hope this comparison will be useful to any HCI
designer who wants to select a MDE tool based on functional needs in terms of
graphical (or textual) expression of domain specific models, models transformation,
models weaving and interoperability with specific HCI tools.

Acknowledgments. We would like to express our special thanks to Stéphanie Marsal-
Layat for her help in the tool survey. We are also grateful to the Federation IMAG,
the Foundation “Gran Mariscal de Ayacucho, the university UCLA-Venezuela” for
their financial support.

References

1. Allilaire, F., Idrissi, T.: ADT: Eclipse development tools for ATL. In: Proceedings of the
2nd European Workshop on Model Driven Architecture (MDA) with an emphasis on
Methodologies and Transformations (EWMDA-2), Canterbury, UK. England, pp. 171–
178. Computing Laboratory, University of Kent (September 2004)

2. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-Compliant
Metamodeling Framework with Graph Transformations. In: Rensink, A., Warmer, J. (eds.)
Model Driven Architecture - Foundations and Applications: 2nd European Conference.
LNCS, vol. 4066, pp. 361–375. Springer, Heidelberg (2006)

3. Bandelloni, R., Paternó, F., Santoro, C.: Reverse Engineering Cross-Modal User Interfaces
for Ubiquitous Environments. In: EIS 2007. Proceedings of the Engineering Interactive
Systems Conference. LNCS, Springer, Heidelberg (to appear, 2007)

4. Baron, M., Lucquiaud, V., Autard, D., Scapin, D.: K-MADe: un environement pour le
noyau du modéle de description de l’activité. In: Proceedings of 18th French-speaking
conference on Human-Computer Interaction (IHM 2006), pp. 287–288. ACM Press, New
York (2006)

96 J.-L. Pérez-Medina, S. Dupuy-Chessa, and A. Front

5. Berti, S., Correani, F., Mori, G., Paternó, F., Santoro, C.: TERESA: A Transformation-
Based Environment for Designing Multi-Device Interactive Applications. In: Proceedings
of CHI 2004, CHI 2004 extended abstracts on Human factors in Computing Systems, pp.
793–794. ACM Press, New York (2004)

6. Boedcher, A., Mukasa, K., Zuehlke, D.: Capturing Common and Variable Design Aspects
for Ubiquitous Computing with MB-UID. In: Proceedings of the International Workshop
on Model Driven Development of Advanced User Interfaces (MDDAUI 2005) organized
at MoDELS 2005, Jamaica, October. CEUR Workshop Proceedings vol. 159 (2005)

7. Botterweck, G.: A Model-Driven Approach to the Engineering of Multiple User Interfaces.
In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 106–115. Springer, Heidelberg
(2007)

8. Brüning, J., Dittmar, A., Forbrig, P., Reichart, D.: Getting SW Engineers on board: Task
Modelling with Activity Diagrams. In: EIS 2007. Proceedings of the Engineering
Interactive Systems Conference. LNCS, Springer, Heidelberg (to appear, 2007)

9. Didonet Del Fabro, M., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: a generic
model weaver. In: Gérard, S., Favre, J.-M., Muller, P.-A., Blanc, X. (eds.) Proceedings of
the 1ére Journée sur l’Ingénierie Dirigée par les Modéles (IDM 2005), Paris, France, pp.
105–114 (2005)

10. Didonet Del Fabro, M., Jouault, F.: Model Transformation and Weaving in the AMMA
Platform. In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp.
71–77. Springer, Heidelberg (2006)

11. Dubois, E., D., P., G., Nigay, L.: ASUR++: a Design Notation for Mobile Mixed Systems.
Interacting With Computers 15, 497–520 (2003)

12. Dupuy-Chessa, S., Dubois, E.: Requirements and Impacts of Model Driven Engineering on
Mixed Systems Design. In: Gérard, S., Favre, J.-M., Muller, P.-A., Blanc, X. (eds.)
Proceedings of the 1ére Journée sur l’Ingénierie Dirigée par les Modéles (IDM 2005),
Paris, France, pp. 43–54 (2005)

13. Eclipse Modeling Project. Official site (February 2007),
 http://www.eclipse.org/modeling/

14. Favre, J.-M.: Towards a basic theory to model driven engineering. 3er UML Workshop in
Software Model Engineering (WISME 2004) joint event with UML 2004 (October 2004),
Available online at: http://www.metamodel.com/wisme-2004/papers.html

15. Foley, J., Sukaviriya, N.: History, Results, and Bibliography of the User Interface Design
Environment (UIDE), an Early Model-based for User Interface Design and Development.
In: Paternó, F. (ed.) Interactive Systems: Design, Specification, Verification, pp. 3–14.
Springer, Heidelberg (1994)

16. Ian Bull, R., Favre, J.M.: Visualization in the Context of Model Driven Engineering. In:
Ian Bull, R., Favre, J.M. (eds.) Proceedings of the International Workshop on Model
Driven Development of Advanced User Interfaces (MDDAUI 2005) organized at
MoDELS 2005, Jamaica (October 2005)

17. Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA. In:
Proceedings of Model-Driven Architecture: Foundations and Applications (MDAFA
2004), Linkoeping, Sweden, June 10-11, pp. 14–28 (2004)

18. Kleppe, A., Warmer, S., Bast, W.: MDA explained: The model-driven architecture:
Practice and promise, p. 192. Addison-Wesley, Reading (2003)

19. Mens, T., Van Gorp, P.: A Taxonomy of Model Transformation. Electronic Notes in
Theorical Computer Science 152, 125–142 (2006)

20. Minsky, M.: Matter, Minds, and Models. In: Proceedings of International Federation of
Information Processing Congress, New York, United States, vol. 1, pp. 45–49 (1965)

 A Survey of Model Driven Engineering Tools for User Interface Design 97

21. Mori, G., Paternó, F., Santoro, C.: CTTE: Support for Developing and Analyzing Task
Models for Interactive Systems Design. IEEE Transactions on Software Engineering 28(8),
797–813 (2002)

22. Myers, B., Hudson, S.E., Pausch, R.: Past, Present, and Future of User Interface Software
Tools. ACM Transactions on Computer-Human Interaction 7(1), 3–28 (2000)

23. Nóbrega, L., Jardim, N., Coelho, H.: Mapping ConcurTaskTrees into UML 2. In: Gilroy,
S.W., Harrison, M.D. (eds.) Interactive Systems. LNCS, vol. 3941, pp. 237–248. Springer,
Heidelberg (2006)

24. Paternó, F.: Model-Based Design and Evaluation of Interactive Application. Springer,
Heidelberg (1999)

25. Pinheiro da Silva, P., Paton, N.: User Interface Modeling in UMLi. IEEE Software 20(4),
62–69 (2003)

26. Planet MDE, Official site (September 2007),
 http://planet-mde.org/index.php?option=com_xcombuilder&cat=
 Tool&Itemid=47

27. Shaer, O., Leland, N., Calvillo, E.H., Jacob, R.J.K.: The TAC Paradigm: Specifying
Tangible User Interfaces. In Personal and Ubiquitous Computing 8(5), 359–369 (2004)

28. Sottet, J-S., Calvary, G., Favre, J-M., Coutaz, J., Demeure, A., Balme, L.: Towards Model
Driven Engineering of Plastic User Interfaces. In: Satellite Proceedings of the ACM/IEEE
8th International Conference on Models Driven Engineering Languages and Systems,
MoDELS/UML 2005. LNCS, pp. 191–200. Springer, Heidelberg (2005)

29. Sottet, J-S., Calvary, G., Coutaz, J., Favre, J.-M.: A Model-Driven Engineering Approach
for the Usability of Plastic User Interfaces. In: EIS 2007. Proc. of the Engineering
Interactive Systems Conference. LNCS, Springer, Heidelberg (to appear, 2007)

30. Tariq, N., Akhter, N.: Comparison of Model Driven Architecture (MDA) based tools
Karolinska University Hospital; A Thesis Document, Sockholm, Sweden, p. 74 (June
2005)

31. Van den Bergh, J., Coninx, K.: Using UML2.0 and Profiles for Modeling Context-
Sensitive User Interfaces. In: Proceedings of the International Workshop on Model Driven
Development of Advanced User Interfaces (MDDAUI 2005) organized at MoDELS 2005.
CEUR Workshop Proceedings, Jamaica, October 2005, vol. 159 (2005)

32. Viala, J., Dubois, E., Gray, P.: GUIDE-ME: Environement Graphique de Manipulation de
la Notation ASUR. In: Canals, G., Giboin, A., Nigay, L., Pinna, A.-M., Tigli, J.-Y. (eds.)
ACM Proceedings of the French conference: Mobilite et Ubiquite. 2004, Nice, France, pp.
74–78 (June 2004)

33. Vojtisek, D., Jzquel, J.-M.: MTL and Umlaut NG: Engine and Framework for Model
Transformation. ERCIM News, Nro. 58, Special Issue on Automated Software
Engineering , 42–45 (2004)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

