
T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 225 – 237, 2008.
© Springer-Verlag Berlin Heidelberg 2008

COMET(s), A Software Architecture Style and an
Interactors Toolkit for Plastic User Interfaces

Alexandre Demeure1, Gaëlle Calvary2, and Karin Coninx1

1 Hasselt University - tUL - IBBT
Expertise Centre for Digital Media

Wetenschapspark 2, B-3590 Diepenbeek, Belgium
{alexandre.demeure, karin.coninx}@uhasselt.be

2 Laboratoire LIG, 385, rue de la Bibliothèque - B.P. 53 –
38041 Grenoble Cedex 9, France
Gaelle.Calvary@imag.fr

Abstract. Plasticity of User Interfaces (UIs) refers to the ability of UIs to with-
stand variations of context of use (<User, Platform, Environment>) while pre-
serving usability. This paper presents COMET, a software architecture style for
building task-based plastic interactors. COMET bridges the gap between two
main approaches in plasticity: model-driven engineering and interactors tool-
kits. Interactors that are compliant to the COMET style are called COMETs.
These COMETs are multi-rendering multi-technological interactors (WIMP and
post-WIMP, Web and non Web as well as vocal). COMETs are extensible and
controllable by the user (up until now the designer, in the future the end-user).
The COMET architecture and the use of COMETs are illustrated on an execu-
table prototype: a slide viewer called CamNote++.

Keywords: Adaptation, context of use, plasticity, design alternatives, explora-
tion, style sheets, tailored UIs, interactors.

1 Introduction

In the vision of ubiquitous computing users live in dynamic environments that change
over time. Interactional, computational as well as communicational resources may
arrive and disappear opportunistically. As these changes cannot always be foreseen at
design time, there is a need for User Interfaces (UIs) to dynamically adapt to the ac-
tual context of use (<User, Platform, Environment>) while preserving usability. We
use the term Plasticity [17] to denote this UI property. In this paper, we provide the
designer (in the future the end-user) with tools for building plastic UIs and for explor-
ing alternative renderings at design time as well as at runtime. The corner stone is a
software architecture style called COMET (COntext Mouldable widgET) [3].
COMET compliant interactors are called COMETs.

COMETs are task-based interactors. They group together presentations that sup-
port a particular user’s task. For instance, a set of radio buttons, a combo-box, a list
and a pie menu (Fig. 1-A-1) support the user to “select one option among N”. As a
result, they are gathered in one and the same COMET which purpose is to select one

226 A. Demeure, G. Calvary, and K. Coninx

option among N. In the same way, COMETs based on task operators are defined. For
instance, the interleaving COMET groups together several presentations for rendering
interleaving. This can be done by putting the interleaved subtasks side by side in a
certain window (Fig. 1-A-1), by using multiple windows (Fig. 1-A-2) or a navigation
interactor such as a menu (Fig. 1-B). These two kinds of COMETs rely on the same
architectural style: COMET.

Fig. 1. Functionally equivalent interactors that vary from different points of view: navigation
(A versus B), number of windows (A1 and B versus A2) and interactors presentations

COMET,the proposed architectural style, is fashioned for supporting polymor-
phism (i.e. multiple presentations) where presentations can belong to different render-
ing technological spaces (e.g. HTML, OpenGL, vocal). The goal of COMET(s) is to
sustain the following four requirements:

• Sustaining UI adaptation at any level of abstraction: tasks and concepts, abstract,
concrete and final UI as elicited in model-based approaches [2].

• The ability of UIs to be simultaneously rendered in several technologies including
web and non web, WIMP and non WIMP, and also textual input and voice output.

• The ability of UIs to be dynamically transformed including enrichments with ex-
ternal and tailored UIs.

• The ability for the user (designer and/or end-user) to explore design alternatives by
substituting presentations of COMETs at design time as well as at runtime.

Fig. 2 provides an overview of the global approach. The principles are threefold:
(1) a UI is fully defined as a graph of COMETs, (2) the graph can be tuned through
transformations, (3) transformations can take benefit from a semantic network [8] to
retrieve components (COMETs as well as presentations of COMETs) and update the
graph of COMETs accordingly.

This paper focuses on the graph of COMETs. The transformations are not de-
scribed because of space. The semantic network is described in [8]. Section 2 presents
the related work. Section 3 describes an executable demonstrator implemented with
COMETs. Section 4 is devoted to the COMET architectural style. Finally, section 5 is
about development using COMETs.

1) One window 2) Multiple win-

A) No navigation B) With navigation

 COMET(s), A Software Architecture Style and an Interactors Toolkit 227

Fig. 2. An overview of the COMET-based approach

2 Related Work

In plasticity, the state of the art can be roughly categorized into three main ap-
proaches: Model Driven Engineering (MDE), window managers and widget toolkits.

MDE is probably the area [239] that recently received the most attention. Separa-
tion of concerns is the core principle. A UI is described from different perspectives
(task, concepts, abstract UI (AUI), concrete UI (CUI), final UI (FUI)), each of them
giving rise to a specific model. In the same way, the functional core and the context of
use can be described along a set of models. Models are linked together through map-
pings. Mappings convey the widgets rationale (the tasks they support) as well as the
UI deployment among the set of available platforms [4]. So far, MDE has been
widely explored for the forward generation of standardized UIs.

Façade [16] investigates another approach: the adaptation is performed at the win-
dows manager level. Adaptation is fully driven by the end-user who can dynamically
copy/paste/replace parts of the UI. Façade is limited to graphical UIs. It relies on the
widgets toolkit for the introspection mechanisms and the set of available widgets. As
in practice none of these toolkits reaches the task level, adaptation can not be per-
formed at a high level of abstraction (task or dialog).

Table 1. Analysis of the state of the art with regard to our four requirements

Levels of
abstraction

Technological
coverage

Extensibility Controllability

MDE [14] All Multiple Hard Depends on the
underlying

infrastructure
Windows
manager [16]

CUI/FUI Graphics Irrelevant End-user

ACE [11] ~Task C++ toolkit Easy Designer
WAHID [10] CUI MFC Hard System
XFORMS ~Task/AUI Web Impossible System with the

help of the designer
FRUIT [12] ~Task Depend on

shells
Impossible System

Multimodal
Widgets [6]

~Task Java/SWING ? System with the
help of the designer

Ubiquitous
interactor [14]

~Task Depends on
interpreters

Impossible System and
designer

User Interface: a
Graph of COMETs

UIs broker : a
Semantic network

Transformation/
Style rules

instantiates

applies on

instantiates
uses

228 A. Demeure, G. Calvary, and K. Coninx

Widget toolkits have already extensively been explored. They tackle specific plas-
ticity issues such as multimodality [6,12], polymorphism [10,11,14], or post-WIMP
UIs [13]. None of these covers the tasks operators: sequence, interleaving, or opera-
tor, and so on. As a result, all the transformations changing the way the navigation is
rendered are lost (Fig.1) (e.g., switching from a menu to hyperlinks, tabbed panes,
blanks or separators). In addition, only some approaches [11] support extensibility
easily. Presentations are mostly mono-technological, and adaptation is neither fore-
seeable nor controllable.

Table 1 summarizes the state of the art with regard to the four abovementioned re-
quirements. It shows that mixing MDE and widget toolkits may be promising for
meeting all the requirements. This is the core principle of COMET(s).

3 CamNote++, A Running Demonstrator of COMET(s)

CamNote++ is a presentation software (like PowerPoint) that can be used by two
kinds of users: speakers and spectators. CamNote++ is capable of adaptating to the
screen size and takes into account hardware capabilities such as graphical hardware
acceleration. Therefore, CamNote++ can be considered plastic with regard to the
platform dimension of the context of use. CamNote++ is built with COMETs imple-
mented in TCL. It can be rendered using several technologies according to the user’s
platform. For instance, if the user accesses CamNote++ via a web browser then
AJAX/HTML is used. Both WIMP (e.g. form-based UIs) and/or post-WIMP UIs (e.g.
multiple interaction points and speech UIs) can be used to render the application and
interact with it. WIMP UIs rely on standard widgets available on the platform
whereas post-WIMP UIs make use of toolkits such as OpenGL or Microsoft SAPI
when available. WIMP and post-WIMP renderings can be used simultaneously.

From the end-user’s perspective, CamNote++ first requires the user to log in (Iden-
tify task). The following tasks depend on the user’s role: either speaker or spectator.
In both cases, the current slide is rendered to the user. Two modes are available: pres-
entation mode and question mode. The question mode corresponds to the case where
the speaker is interrupted by someone for asking a question. In the presentation mode,
only the speaker can control the viewer. In the question mode, spectators can also
browse the slides using a dedicated controller. This is useful for supporting questions
such as “In slide N, what do you mean by …?”.

Fig. 3-1 shows CamNote++ in action for a speaker using a PC. The rendering is
post-WIMP. At the beginning (A), CamNote++ is not operating in full screen mode:
two windows are displayed to show both the current slide and the slides controller.
When the speaker activates the full screen mode, the slide controller smoothly merges
with the current slide (B) until being completely embedded in the slide (C). A picture
of a keyboard is faded in and out (C) to make the user aware that he/she can now
control the slide viewer using the physical keyboard (D). The keyboard controller is
retrieved in the semantic network (a description of this approach is beyond the pur-
pose of this paper).

Fig. 3-2 shows the web version of CamNote++ for a remote watcher. The current
slide is updated using AJAX. In A, no style sheet is applied: the slide controller (in the
upper part of the window) is composed of buttons and a dropdown menu for setting the

 COMET(s), A Software Architecture Style and an Interactors Toolkit 229

current slide number. The current slide is displayed just beneath. An input field is placed
at the bottom of the window to support taking notes. In B, a style sheet (specified by the
designer) is applied for both improving the grouping (black boxes are added to better
delimit workspaces) and for expanding the text area. In C, a tailored presentation is
preferred for the slide controller: its container is a moveable translucent window. In D,
the user’s tasks (controlling the slides, perceiving the current slide and taking notes) are
not directly observable in this case: they are browsable through tabbed panes. Style
sheets (i.e., transformations) are not described in detail in this paper.

Fig. 3. 1) The OpenGL-based post-WIMP version of CamNote++ for the speaker. 2) The
AJAX/HTML versions of CamNote++ for a spectator.

The next section describes the cornerstone of the toolkit: the COMET architectural
style.

4 The COMET Style

COMET is driven by three principles: (1) Separation of concerns, (2) Reuse of exist-
ing toolkits (e.g., AJAX/HTML, TK, vocal, OpenGL), and (3) Recursivity so that a
COMET can recursively be composed of COMETs.

This section describes the architectural style: first, the structure, then the event
propagation. Finally we show how engineering interactive systems takes place when
using COMET.

4.1 Structure

A COMET is composed of three facets. Each of them is responsible of one specific
concern (Separation of concerns principle):

• A Logical Consistency (LC) represents the user’s task (e.g., control the slides) or
the task operator (e.g., interleaving) that the COMET supports. It denotes the seman-
tics of the service that the COMET provides. The semantics gives rise to a specific
API, called semantic API (e.g., next slide, previous slide...). The LC is associated to
one or many Logical Models (LM). If many, LC is in charge of maintaining consis-
tency between these LMs.

A D

1)

2)

A B C D

C B

230 A. Demeure, G. Calvary, and K. Coninx

• A Logical Model (LM) is in charge of a specific concern related to the realization
of the semantics. Usually, a distinction is made between the presentation and the
abstraction (i.e., functional core). Whatever the concern is, each LM has to implement
the semantic API of the corresponding LC (e.g., next slide...): this semantic API is the
language that LC and LM share. The API can be extended to take into account spe-
cific concerns (e.g., blurring the slide). In turn, a LM is associated to one or many
Physical Models (PM). If many, LM is in charge of maintaining consistency between
these PMs. It also provides PM factories for instantiating PMs on the fly.

• A Physical Model (PM) is a specific means for realizing a LM. A presentation PM
encapsulates the code of primitive toolkits such as OpenGL, HTML, SAPI, etc. (Re-
use principle). A functional PM would encapsulate network protocols (e.g., AIM,
MSN, YAHOO, IRC, etc.) in case of a Chat COMET. Encapsulated codes are called
technological primitives. A PM has to implement its LM semantic API: this API is the
shared language. A PM also describes the context of use it requires (e.g. JAVA,
screen size, etc.).

LC, LM and PM are called nodes. Nodes can be tagged with decorations. For in-
stance, a LC can be tagged as being frequent or critic according to the task decora-
tions in the task model. A LM can be tagged with the concern it is in charge of (e.g.,
presentation). A PM can be tagged with the interaction path length it requires for
achieving the task. Fig. 4 depicts the COMET architecture style as an UML class
diagram (A) and in a dedicated graphical representation (B).

Constraints ensure that a node can only be plugged with compatible ones: LCs
with LCs, LMs with LMs, PMs with technological compatible PMs (e.g. HTML
presentations).

LC
LM

L_fact : list of PM factories PM

* nested_leaf

* nested

* nested_root
* childs

* parents

NODE
nb_max_daughters : integer
nb_max_mothers : integer
L_tags : list of strings

1 * 1 *

LC : Logical Consistency.
LM : Logical Model.
PM : Physical Model.

LC

LM LM

A) B)

PM

ContextOfUse
ptf_soft : PTF_SOFT
ptf_hard : PTF_HARD

…

1 1

PTF_SOFT: Software platform description
PTF_HARD: Hardware platform description

Fig. 4. The COMET architectural style: A) A UML class diagram. B) A dedicated graphical
representation.

In the following we take the CamNote++ “Remote Controller” COMET as an ex-

ample. Several presentations can be envisioned (Fig. 5-A) using different technolo-
gies: vocal, web, post WIMP, etc. Each presentation gives rise to a specific presenta-
tion PM. From a functional point of view, the controller can convey commands using
different network protocols (Fig. 5-B).

 COMET(s), A Software Architecture Style and an Interactors Toolkit 231

A) B)

Controller

IP
Bluetooth
Infra-red

vocal
web
OpenGL

Abstraction Presentation

PMs LM LC PMs LM

Fig. 5. A) Few presentations for the Remote Controller COMET. B) A graphical representation
of the Remote Controller COMET.

Consistency among the different facets is ensured by a communication mechanism
based on event propagation.

4.2 Events Propagation Inside a COMET

Events may be fired by two sources: either by a program that calls a COMET’s func-
tion (e.g. set the current slide number) via its LC (Fig. 6-A) or by the user interacting
with a PM (e.g. via the OpenGL presentation of the CamNote++ slides controller)
thus triggering an event (Fig. 6-B). Each time an event is triggered, it is propagated
along the COMET to the other facets in order to ensure consistency (Fig. 6). Ensuring
consistency among presentation PMs can be seen as a multimodality issue if presenta-
tion PMs are seen as interaction modalities and multimodality as a combination of
modalities.

The CARE properties [239] provide a framework for reasoning about the combina-
tion of modalities. Only Redundancy and Equivalence are addressed yet in COMET.
Assignment is out of scope of our work presented in this paper. Complementarity as
defined in the “put that there” paradigm [1] goes far beyond our work. Only basic
forms of complementarity are covered up until now: (1) Input complementarity of
modalities is used to achieve an elementary task. For instance, the task “Specify text”
is achieved by alternatively using a keyboard-based and a voice-based PM. COMET
supports this by design. (2) Input complementarity of modalities to achieve composed
tasks (e.g. typing text and changing its colour). It is possible to use different modali-
ties for the different sub-tasks. Again, COMET supports this by design. (3) Finally,
output complementarity is achieved by using several PMs for a presentation LM.

To support Redundancy (R) and Equivalence (E), we have defined a domain spe-
cific language: COMET/RE (R for Redundancy and E for Equivalence). The idea is to
associate a COMET/RE sentence to each function of the semantic API of a presenta-
tion LM. These sentences specify the way events must be processed. For instance,
“R(E(gfx), E(vocal))” associated to the function F (e.g. switch to diaporama mode)
means that the call of F has to be propagated to the LC if and only if one graphical
PM (gfx) and one vocal PM (vocal) at least (E) are used in a redundant way (R). In
case of redundancy, the propagation to the LC is conditioned by the activation of the
corresponding PMs. In case of equivalence, the propagation to the LC is done as soon
as an equivalent PM is activated. Fig. 6-B illustrates the COMET/RE sentence “E(*)”:
it means that all PMs (*) are equivalent (E) for F.

The next subsection elaborates on interactive systems as graphs of COMETs.

232 A. Demeure, G. Calvary, and K. Coninx

1

2
3

3 3

3

3 3

3

3

3

3

2

3

4
5

5 5

5

5 5

5

5

5

1

2

A) B)

4

5

Fig. 6. Propagation of events (arrows) inside a COMET. Numbers represent the calls ordering.
A) Propagation starting from the LC. B) Propagation starting from a PM. The propagation from
2 to 3 depends on the evaluation of the associated COMET/RE sentence.

4.3 Graphs of COMETs

Using COMETs, an interactive system is a graph of COMETs. More precisely, there
are three types of interconnected graphs: a graph of LCs, a graph of presentation LMs
and a set of graphs of presentation PMs, one per PM rendering technology (TK,
OpenGL, etc.) as for instance a TK PM can only be rendered inside another TK PM.
In all the graphs, the “parent-child” relation has the same meaning: the child
expresses itself with regard to its parent (e.g. a PM child is rendered in the PM
parent).

Consider CamNote++ for example. Fig. 7-A depicts the graph of COMETs for
the spectator’s UI: a text specifyer (to take notes), a slide controller and a slide
viewer are interleaved. All the LCs are linked together in a graph. All the presenta-
tion LMs are linked together in another graph. All the presentation PMs are linked
together in mono-technological graphs (one for TK, one for vocal, etc.). COMET
ensures the interconnection between these graphs. For readability, only the graph of
LCs is depicted in Fig. 7-A. Fig. 7-B shows the rendering of the AJAX/HTML-
based graph of PMs.

Fig. 7. A) Graph of COMETs for a spectator. B) A corresponding AJAX/HTML UI

Each node that contains a graph of COMETs (Recursivity principle) is said to be
composite by opposition with atomic nodes (which do not contain a graph). Fig. 8
illustrates how recursivity is used in the CamNote++ COMET. The LC part of the
COMET is composed of COMETs that correspond to the different roles (speaker or
spectator) of CamNote++ users. All the COMETs (speaker or spectator) share a same
COMET slides viewer, thus ensuring the slides synchronisation among users. Besides
the recursivity in the LC, there is a recursivity of presentation PMs. Each PM of

Interleaving

Text
Specifyer

Slides Con-
troller

Slides
Viewer

A) B)

 COMET(s), A Software Architecture Style and an Interactors Toolkit 233

CamNote++

CN_Speaker

CN_Viewer

CN_Spect. CN_Spect.
…

Sequence

Log Container

Associated
role Activator

(deconnect)

Fig. 8. The CamNote++ COMET. The composite PM is in charge of log in the user to the right
role (speaker or spectator). The composite LC manages the different roles (modeled with dedi-
cated COMETs). All the roles share a same COMET slides viewer.

CamNote++ is in charge of identifying the user and setting his/her role. In practice,
each time a user accesses CamNote++ by mean of a new UI (e.g. when opening a web
browser), he/she is asked to identify his/herself so that CamNote++ can display the
right UI (speaker or spectator).

There is no straightforward rule to know when and how to use composite nodes.
It is up to the designer to decide about using this feature. However, we can say that
task decomposition is likely to be translated into a composite LC; workspaces or-
ganisation is likely to be translated into a composite presentation LM, and widgets
decomposition is likely to be translated into a composite presentation PM. As
shown in Fig. 8, a composite PM can also be used to manage access to a COMET
for different users.

In practice, designers only have to specify the graph of LCs. The presentation
LM graph (respectively PM graph) is automatically generated according to the LC
graph (respectively LM graph). The graph of PMs is built with respect to the con-
text of use: an AJAX/HTML PM is plugged into AJAX/HTML compatible PMs.
Note that graphs of presentation LMs and PMs are automatically generated. In-
deed, COMETs always contain presentation facets. This is not the case for other
facets such as abstraction.

5 Developing with COMETs

This section puts the COMET style in action. Three kinds of requirements are consid-
ered to show how COMET can be used for tuning CamNote++ and target additional
contexts of use.

5.1 Distributing the Slides Controller on a PDA

Imagine the designer decides to distribute CamNote++ (for the speaker role) on a PC
and a PDA: the Slides Viewer on the PC using OpenGL; the Slides Controller on the
PDA using HTML. To do this, the designer only needs to plug an OpenGL and an

234 A. Demeure, G. Calvary, and K. Coninx

Fig. 9. Graph of COMETs corresponding to CamNote++ rendered in OpenGL and HTML.
Links (arrows) between presentation PMs are automatically generated based on the LC links.

HTML PM to the COMET Root which expresses that the graph of COMETs will be
rendered using these two technologies (Fig. 9).

Once the graph (Fig. 9) is built, the designer configures the presentations to be ren-
dered. For instance, he/she specifies that the HTML Slides Controller has to fit the
web page. This can be done using a style/transformation rule that, if necessary, calls
the semantic network for retrieving presentations. Fig.10 provides an example without
any detail about the syntax. The example (A) asks for replacing the HTML slides
controller with a skinable version (B) to be retrieved in the semantic network.

Fig. 10. A) A transformation rule for substituting the HTML presentation of the Speaker’s
Slides Controller by the one shown in B

5.2 Requiring Redundancy for Switching the Presentation Mode

Imagine switching between full screen and window-based modes appears to be a critical
task. Requiring redundancy for changing the mode may be an option to prevent the user
from making errors,. In that case, the speaker has to ask for a switch using both the
HTML and OpenGL UIs. Such a modification can simply be done using a single trans-
formation rule (Fig. 11). This rule specifies that the mode activator COMET can only be
activated if both the OpenGL and HTML presentations are activated in the same tempo-
ral window of 2000 milliseconds.

Fig. 11. A transformation rule for requiring redundancy between OpenGL and HTML presenta-
tions when switching between full screen and window-based modes

#CN_Speaker(Activator.DIAPORAMA->_LM_LP) {
 COMET_RE_expr : activate R(2000,E(HTML),E(OpenGL)) ;
}

#CN_Speaker->PMs[soft_type == HTML](SlideController) {
 type : SlideController_CUI_skinnable;
 }

A) B)

Root

OpenGL
HTML

OpenGL
HTMLCamNote++

 COMET(s), A Software Architecture Style and an Interactors Toolkit 235

5.3 Integrating the Pixels Mirror Feature into the OpenGL Slides Viewer

Imagine the designer decides to include a pixels mirror when possible (i.e., in case a
camera is connected to the PC). Using COMET, this is achieved either at design time
or at runtime by (1) encapsulating the OpenGL “Slides Viewer” presentation PM into
a composite PM, adding a Video COMET in charge of displaying the camera images,
and adding an integer Choice COMET to set the translucence level of the video (first
rule in Fig. 12-A, “Eval : U_encapsulator_PM $obj “Container(, \$core, Video(),
ChoiceN(set_range \"0 100\"))”;”). Then (2) the COMET choice is linked to the
video OpenGL presentation PM so that every time a new value is set, the translucence
level is updated accordingly (second rule of Fig. 12-A, an Event Condition Action is
defined by “ECA : set_current, true, set video [CSS++ “#CN_Speaker-
>PMs[type==OpenGL] CN_Viewer(Video)“] --- $video set_translucidity [expr
$value / 100.0];”). Finally, the last two rules express how the presentations are laid
out. Fig. 12-B graphically describes the COMET Slide Viewer before and after apply-
ing the rules.

PM
Viewer

CN_Viewer

Video

Container

Generated
LC

PM
Viewer Choice of

integer

CN_Viewer

PM encapsulator

#CN_Speaker->PMs[type==OpenGL] CN_Viewer {

 Eval : U_encapsulator_PM $obj “Container(, \$core, Video(), ChoiceN(set_range \"0 100\"))”;
}

#CN_Speaker->PMs[type==OpenGL] CN_Viewer(ChoiceN) {

 ECA : set_current, true
 , set video [CSS++ “#CN_Speaker->PMs[type==OpenGL] CN_Viewer(Video)“] ---

 $video set_translucidity [expr $value / 100.0];

}
#CN_Speaker->PMs[type==OpenGL] CN_Viewer(Container, Video) {

 Layout : Fit_parent;

}
#CN_Speaker->PMs[type==OpenGL] CN_Viewer(ChoiceN) {

 Type : Slider;
 Layout : Bottom;

}

B)

Encapsulation

A)

Fig. 12. Four transformation rules, a dozen of lines of code to integrate the pixels mirror feature
in CamNote++

6 Conclusion and Future Work

In this paper, we present COMET, a new software architecture style specially crafted
for plasticity. COMET bridges the gap between two main research areas in plasticity:

236 A. Demeure, G. Calvary, and K. Coninx

MDE and interactors toolkits. COMET meets four main requirements that had never
been simultaneously satisfied so far. The four levels of abstraction and the multi ren-
dering feature are ensured by design concepts: tasks-concepts, AUI, CUI and FUI are
respectively embodied in LCs, presentation LMs, PMs and technological primitives.
Technological primitives target different languages and toolkits in a non exclusive
way. Extensibility and controllability are satisfied with two additional tools (not de-
scribed in this paper): style sheets for specifying transformations, and a semantic
network for retrieving existing UI elements.

The COMET style has been implemented in TCL giving rise to a COMETs toolkit
that contains classical interactors (e.g., select one option among N) as well as more
innovative ones in charge of task operators (e.g., interleaving, sequence). Each interac-
tor can be polymorphic including exotic custom-made presentations. In turn, the COM-
ETs toolkit has been used for implementing CamNote++, an executable plastic presen-
tation software that illustrates the architecture and concepts proposed in this paper. We
show the powerful COMET capabilities for extending and tuning UIs, and for exploring
design alternatives. This can be done both at design time and at run time.

In the future, we aim at exploring UIs for visualizing and transforming COMETs at
runtime. We keep in mind the difficult issue of evaluating the architecture model and
the toolkit. Using the proposed approach in teaching situations could provide an initial
evaluation.

Videos are available at http://iihm.imag.fr/demeure/.

Acknowledgments. Part of the research has been funded by the SIMILAR European
network and ERDF (European Regional Development Fund), the Flemish
Government and the Flemish Interdisciplinary institute for BroadBand Technology
(IBBT).

References

1. Bolt, R.A.: “Put-That-There”: Voice and Gesture at the Graphics Interface. Computer
Graphics 14(3), 262–270 (1980)

2. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting With
Computers 15/3, 289–308 (2003)

3. Calvary, G., Coutaz, J., Dâassi, O., Balme, L., Demeure, A.: Towards a New Generation
of Widgets for Supporting Software Plasticity: The ”Comet”. In: Bastide, R., Palanque, P.,
Roth, J. (eds.) DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp. 306–324. Springer,
Heidelberg (2005)

4. Clerckx, T., Luyten, K., Coninx, K.: The mapping problem back and forth: customizing
dynamic models while preserving consistency. In: Proceedings of the 3rd Annual
Conference on Task Models and Diagrams, TAMODIA 2004, November 15 - 16, 2004,
vol. 86, pp. 33–42. ACM Press, New York (2004)

5. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.: Four Easy Pieces for
Assessing the Usability of Multimodal Interaction: The CARE properties. In: Arnesen,
S.A., Gilmore, D. (eds.) Proceedings of the INTERACT 1995 conference, June 1995, pp.
115–120. Chapman&Hall Publ., Lillehammer (1995)

 COMET(s), A Software Architecture Style and an Interactors Toolkit 237

6. Crease, M., Brewster, S.A., Gray, P.: Caring, sharing widgets: a toolkit of sensitive
widgets. In: 14th Annual Conference of the British HCI Group, Sunderland, England,
September 5-8, 2000. British Computer Society conference series, pp. 257–270 (2000)

7. da Silva, P.: User Interface Declarative Models and Development Environments: A
Survey. In: Palanque, P., Paternó, F. (eds.) DSV-IS 2000. LNCS, vol. 1946, pp. 207–226.
Springer, Heidelberg (2001)

8. Demeure, A., Calvary, G., Coutaz, J., Vanderdonckt, J.: The COMETs Inspector: Towards
Run Time Plasticity Control Based on a Semantic Network. In: Coninx, K., Luyten, K.,
Schneider, K.A. (eds.) TAMODIA 2006. LNCS, vol. 4385. Springer, Heidelberg (2007)

9. Gajos, K., Weld, D.: Preference elicitation for interface optimization. In: UIST 2005:
Proceedings of the 18th annual ACM symposium on User interface software and
technology, Seattle, WA, USA, pp. 173–182 (2005)

10. Jabarin, B., Graham, N.: Architectures for Widget-Based Plasticity. In: Jorge, J.A., Jardim
Nunes, N., Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 124–138.
Springer, Heidelberg (2003)

11. Johnson, J.: Selectors: going beyond user-interface widgets. In: CHI 1992: Proceedings of
the SIGCHI conference on Human factors in computing systems, pp. 273–279 (1992)

12. Kawai, S., Aida, H., Saito, T.: Designing interface toolkit with dynamic selectable modality.
In: Proceedings of the Second Annual ACM Conference on Assistive Technologies Assets
1996, April 11 - 12, 1996, pp. 72–79. ACM Press, New York (1996)

13. Lecolinet, E.: A molecular architecture for creating advanced GUIs. In: Proceedings of the
16th Annual ACM Symposium on User interface Software and Technology UIST 2003,
November 02 - 05, 2003, pp. 135–144. ACM Press, New York (2003)

14. Nylander, S., Bylund, M., Waern, A.: The Ubiquitous Interactor – Device Independent
Access to Mobile Services. In: Proc. of 5th Int. Conf. of Computer-Aided Design of User
Interfaces CADUI 2004, January 13-16, 2004, pp. 269–280. Kluwer Academics,
Dordrecht (2005)

15. Paterno’, F., Mancini, C., Meniconi, S.,, C.: A Diagrammatic Notation for Specifying Task
Models. In: Proceedings Interact 1997, Sydney, pp. 362–369. Chapman & Hall, Boca
Raton (1997)

16. Stuerzlinger, W., Chapuis, O., Phillips, D., Roussel., N.: User Interface Façades: Towards
Fully Adaptable User Interfaces. In: Proceedings of UIST 2006, October 2006, pp. 309–
318. ACM Press, New York (2006)

17. Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework and Research Agenda.
In: Edinburgh, A.S., Johnson, C. (eds.) Proc. Interact 1999, pp. 110–117. IFIP IOS Press
Publ., Amsterdam (1999)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

