
An Intelligent Editor for Multi-Presentation User Interfaces
Benoît Collignon, Jean Vanderdonckt

Louvain School of Management (LSM)
Université catholique de Louvain

Place des Doyens, 1
B-1348 Louvain-La-Neuve (Belgium)
Jean.vanderdonckt@uclouvain.be

Gaëlle Calvary
Laboratoire LIG

Université Joseph Fourier – Grenoble I
385, rue de la Bibliothèque BP 53

F-38041 Grenoble Cedex 9 (France)
Gaelle.Calvary@imag.fr

ABSTRACT
In ubiquitous computing, interactive applications are shipped
with different variations of its user interface depending on the
constraints imposed by the context in which they are running,
such as the user, the computing platform and environment. A
multi-presentation user interface is composed of a series of in-
terconnected user interfaces for the same task to be carried out in
different contexts of use. When access to software applications
must be guaranteed in more than one context of use, it is neces-
sary to automatically adapt the interface in order to preserve
their usability when context switching occurs, for instance, a
switch from a desktop to a pocket computer. To achieve this
goal, this paper proposes a model and a visualization technique
to express and manipulate the plasticity domains of a multi-
presentation user interface. The plasticity domain denotes the set
of contexts of use it is able to cover while preserving its usabil-
ity. This paper focuses primarily on one aspect of the context of
use: the computing platform and its screen size: when the di-
mensions of a graphical user interface change, the multi-
presentation interface automatically switches to the presentation
which is the most adapted to this screen. The model supports the
definition of this plasticity domain in terms of window size and
location. The visualization technique helps in both making ob-
servable the set of presentations that fit the available space, and
perceiving which operations could help in switching from one
presentation to another one. The model has been integrated into
a user interface description language and is supported by an in-
telligent editor, because it infers from plasticity domains all the
constraints and conditions required for context switching.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
User interfaces. H.1.2 [Information Systems]: Models And
Principles – User/Machine Systems. H.5.2 [Information Inter-
faces and Presentation]: User Interfaces – Graphical user in-
terfaces, Prototyping, User interface management systems
(UIMS).

Keywords
Adaptation, context of use, plasticity domain, plastic user inter-
face, user interface extensible markup language.

1. INTRODUCTION
One major issue in ubiquitous computing is the diversity of con-
texts of use in which a ubiquitous system may be executed [9],
in terms of user, computing platform, and environment [2]. Tra-
ditional case per case approaches are outdated because building
a User Interface (UI) for each possible context of use would lead
to prohibitive development and maintenance costs. Several solu-
tions have been proposed to this problem [1,12,15], each having
advantages and limitations. Our alternative is based on the con-
cept of plasticity of UIs [3,17], i.e. the capacity of a UI to with-
stand variations of contexts of use while predefined properties of
preserving usability [3]. This paper focuses on the plasticity of
Graphical User Interfaces (GUIs) that are made of a unique win-
dow but with multiple presentations, perhaps on different com-
puting platforms. The two other dimensions, i.e., the user and
the physical environment, could lead to a generalization of this
approach. A multi-presentation UI is defined as GUI composed
of a series of interconnected user interfaces for a same task to be
carried out in different contexts of use, here in different comput-
ing platforms, each platform being primarily characterized by its
screen resolution. Each individual presentation of the multi-
presentation is described with respect to its supported plasticity
domain, i.e. the set of contexts of use it is able to cover while
preserving its usability [17]. The next section reports on work
relate to multi-presentation GUIs. Section 3 presents a running
example in order to exemplify our alternative. Then, we moti-
vate a visualization technique (Section 4) and a model (Section
5) for dealing with multiple presentations. The Section 6 is de-
voted to tool support, including some perspectives for generali-
zation that are summarized in the conclusion (Section 7).

2. RELATED WORK
Our work falls in the category of interface builders. Four tool
categories exist: language based tools, application frameworks,
automatic generators based on models, and interactive tools.
In language based tools, the designer specifies the UI in a spe-
cial-purpose language, which can take many forms, including
context-free grammars, state-transition diagrams, declarative
languages, finite state machines [8], and event languages. The
language is typically used to specify the UI syntax of the UI.

Application frameworks support important parts of an applica-
tion, such as the main windows and the commands. The devel-
oper specializes these classes to provide the application-specific
details, such as what is actually drawn in the windows and
which commands are provided, like in CodeWarrior PowerPlant
[11]. GADGET [4] consists of a toolkit specially designed to
support the exploration of optimization as an approach to inter-
face generation. A potential problem with the aforementioned

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.
Copyright © 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

kinds is that the developer must specify a great deal about the
placement, format, and design of the UIs.
Automatic Generation Tools help solve this problem by adopt-
ing a model-based approach: one or many models of the UI are
exploited to automatically generate its corresponding code.
TERESA [12] basically uses a task model, while SUPPLE [5] use
a device and a user model. Early work on model-based ap-
proaches for automated UI generation includes ITS [21], Hu-
manoïd and UIDE which merged into MASTERMIND [16], TRI-
DENT [18], and MOBI-D [14]. They all generate a single UI based
on an initial set of models. Later on, Teallach [6] allowed the
developer to initiate the development process from the task
model, the data model or the presentation model and to complete
the other aspects in any order. TERESA [12] generates one or
multiple UIs for different platforms based on a task model that is
subsequently refined into abstract presentations and UIs [2].

Interface tools allow the developer to select from a predefined
library (toolkit) of widgets and place them on the screen to cre-
ate dialog boxes, menus and windows. Some generate a UI de-
scription in a language that can be read at run-time. For exam-
ple, GrafiXML [20] generates a UsiXML description [10] that
can be later interpreted by a rendering engine. These tools pro-
vide little guidance on creating usable UIs and they cannot han-
dle widgets that change dynamically. For instance, if the con-
tents of a menu or the layout of a dialog box changes based on
program state, this must be programmed by writing code.

Our solution can be located primarily in the Interactive Tools
category since it helps the developer to define plasticity domains
that are linked to specified presentations. However, some prop-
erties allow it to do more than a simple interactive tool. The
main difference between our alternative and preliminary model-
based tools is that all UIs corresponding to different platforms
(here, different screen resolutions) are built and interconnected
so that they are embedded in one running application instead on
multiple ones. For instance, one can specify a UI model in
UIML [1] and generate a UI for Java, HTML, or WML, but
these UIs are separated. In our alternative, the context is sensed
to determine which UI is the most appropriate for and then this
UI is selected to be used. If the context of uses changes, that is if
the screen resolution of the platform changes, another UI will be
selected instead that is adequate to this resolution.

3. RUNNING EXAMPLE
In order to exemplify the development life cycle of a multi-
presentation GUI, let us consider FlexClock [7], a multi-presen-
tation GUI displaying the current time and date with various
levels of details according to the screen size of the window. Six-
teen presentations have been designed, some being reproduced
in Figure 1: one presentation is displayed at a time depending on
the screen resolution of the platform. For instance, W2 will be
displayed on a watch UI, W12 on a mobile phone. If the screen
size is expanded or reduced, another presentation is selected and
displayed so as to best fit the actual screen. This application is
implemented on top of the Mozart environment [13], itself based
on Tcl/Tk which is available for Windows, Linux, and Mac plat-
forms. When the user resizes the window and the window size
oversteps the plasticity domain of the current presentation, then
another presentation is selected and displayed. The model and
the visualization technique presented in this paper aim at sup-
porting this choice of reaction when the context of use changes.

Figure 1. FlexClock - Some possible presentations.

4. DESIGN PROCESS
By nature, plasticity can be modeled as a Finite State Machine
(FSM). A FSM is defined by a model of computation consisting
of a set of states, a start state, an input and output alphabet, and
a transition function that maps input symbols and current states
to a next state. Computation begins in the start state with an in-
put string. It changes to new states depending on the transition
function. There are many variants, for instance, machines having
actions (outputs) associated with transitions (Mealy machine) or
states (Moore machine), multiple start states, more than one
transition for a given symbol and state (nondeterministic finite
state machine), one or more states designated as accepting states
(recognizer) [8]. When applied to plasticity, the corresponding
alphabets for FSM are, on one hand, the events triggering the
changes of the context of use, i.e. the six window resizing opera-
tions in FlexClock (Figure 2) and on the other hand, the avail-
able presentations. In the two following subsections, we investi-
gate Moore Machines and Mealy Machines as visualization
techniques for specifying plasticity domains. Their application
to FlexClock motivates a proposition that is further addressed.

Figure 2. Windows resizing operations.

4.1 Moore Machines
Finite State Machines (FSMs) have been used for specifying the
dialog, the navigation of a UI. A FSM is defined as a model of
computation consisting of a set of states, a start state, an input
alphabet, and a transition function that maps input symbols and
current states to a next state. In UI design, the Moore machine
has been used almost everywhere with its associated shortcom-
ings. In Moore machines, states typically represent UI parts and
transitions denote navigation between these parts. In our usage,
states represent one presentation at a time and transitions depict
the presentation resizing operations that may trigger a change of
context of use. For instance, Figure 3 shows how FlexClock
changes when the window is vertically shrunk. Only four states
are considered: {W2; W4; W8; W12}. The input alphabet is lim-
ited to the vertical shrinkage: { }. Figure 3 shows that W12
can be shrunk into W8; W8 can be shrunk into W4 that can give
rise to W2. Figure 4 represent all the transitions possible be-
tween all presentations: it is unreadable when the number of

states (only sixteen windows here) or transitions (only six opera-
tions here) increases. As a result, another visualization technique
has to be investigated. Next section deals with Mealy Machines,
which have never been used for UI design before.

Figure 3. A Moore Machine-based representation illustrated

on the vertical shrinking.

Figure 4. The Moore Machine representation for the full

running example FlexClock (16 presentations, 6 operations).

4.2 Mealy Machines
In Mealy Machines, states are resizing operations and transitions
are composed of a GUI source and destination (denoted
source/destination in figure 5). In Figure 5, the states are the ver-
tical shrinkage , plus the start state . The input and output
alphabets are made of the four considered presentations: {W2;
W4; W8; W12}. At launch, W2 is the current presentation. It
can be shrink into itself (W2 / W2). W8 can be shrink into W2
(W2; W8 / W2) or W4 (W8 / W2; W4). W12 can be shrink into
W8, W4 and W2 (W12 / W8; W4; W2). Figure 6 shows the
complete Mealy machine of FlexClock. The transition condi-
tions are mentioned on the arrow in case of simple expressions
(Ws/Wd). Otherwise (complex or multiple expressions), the ar-

rows are decorated by two numbers: the number of transition
conditions and a reference to Figure 7. For instance, there are
eleven possible transitions between the vertical and horizontal
shrinkages. They are elicited in the sixth area of Figure 7.

Figure 5. A Mealy Machine-based representation illustrated

on the vertical shrinking.

Figure 6. The Mealy Machine for FlexClock.

Compared to the Moore machine representation, one major ad-
vantage of Mealy machines is the factoring out decreases the
number of transitions between states. But there are two draw-
backs: the representation is less natural for a human legibility
than in Moore machines and it is not self-contained (Figure 7 is
necessary for describing the transition). We can see here that the
Mealy machine corresponding to the same dialog is definitely
more compact than the Moore machine, but requires some abil-
ity to switch from one representation. Therefore, we address this
problem by introducing a new visualization technique.

4.3 Towards a new visualization technique
We propose a 2D representation for the plasticity domain of a
GUI. Each window is positioned at the origin and its plasticity
domain is represented as a colored area. In Figure 8, FlexClock
is resized from (100, 50) to (250,150). In general, the plasticity

domain of a window is a quarter of plan but it could be defined
as any shape. In Figure 8, it is a rectangle: the window size can
not exceed (250,150). Figure 9 represents the plasticity domains
of {W2; W4; W8; W12}. Thanks to this presentation, starting
with W12, a switch to W8, then W4, then W2 is required when
vertically shrinking the window. It is also obvious that a 2D-
enlarging is necessary to achieve W8 starting with W2.

Figure 7. Mealy machine represented in a textual format.

Figure 8. A 2D representation illustrated on one window.

Figure 9. The visualization technique on FlexClock.

Figure 10. The proposed visualization technique illustrated

on the full example of FlexClock.
Figure 10 illustrates the full running example: the sixteen plas-
ticity domains are represented, each region being attached to a
given UI. The figure remains more readable. The technique can
be tuned to take into account other properties or attributes. For
instance, Figure 11 focuses on the user task experience. It shows
that the light grey window is appropriate for an experience rang-
ing from two to four. In practice, the presentations can be com-
bined to express the relevant dimensions of the context of use.
An attention must be paid in order to preserve a 2D-
representation. Next section presents the underlying model.

Figure 11. A 1D-representation for the task user experience.

Figure 12. An extension of the UsiXML Context Model in order to incorporate the plasticity domain (in orange).

5. THE MODEL
This section is twofold: in a first part, it proposes a model of the
plasticity domain; in a second one, it deals with the switch be-
tween presentations. Both of them extend UsiXML [7], an XML
language based on the CAMELEON Reference Framework [2]. In
UsiXML, the final user interface (FUI) refers to the actual UI,
which is rendered on a given computing platform either by in-
terpretation (e.g., HTML) or by code compilation (e.g., Java).
The concrete user interface (CUI) abstracts the FUI into a defini-
tion that is independent of any programming or markup lan-
guage of any computing platform: it contains a detailed UI de-
scription in terms of widgets (concrete interaction objects in
UsiXML), layout, navigation and behavior. Concrete interaction
objects (e.g., list box, check box, drawing canvas, radio button)
are defined with abstract properties and could be arranged to
produce a UI. For this purpose, the GrafiXML editor has been
developed, it can be downloaded from www.usixml.org. The
UsiXML semantics and the syntax can be found on the web site.

5.1 Plasticity Domain
Since right now UsiXML does not support specifying multi-
presentation UIs or UI with adaptivity, there is a need to expand
this specification language with appropriate concepts. The plas-
ticity domain of an interactive system (PlasticityDomainSet) is
defined as the union of the plasticity domains (PlasticityDo-
main) of its presentations. A PlasticityDomain is related to a
range of contexts of use, e.g. PDA as defined in USiXML. The
PlasticityDomain sets some attributes (aspects) of the platform,
user and/or environment (e.g., the screen size). Figure 12 shows
how USiXML (the bright classes on the left side) has been ex-
tended to take into account the plasticity domains. In this figure,
the reference to the range of contexts of use is done through the
contextId attribute in the PlasticityDomain class; the cardinality
x makes reference to the number of aspects that can be set. Fig-
ure 12 focus on the screen size aspects:

• The allowedOperations mention the resizing operations that
are allowed on the plasticity domain. The available values
are: vertical, horizontal, 2-D shrinkage and vertical, horizon-

tal, 2-D enlargement. For instance, {vertical shrinkage; hori-
zontal shrinkage; 2-D enlargement}.

• The corners are the set of points in pixels that define the
boundary of the plasticity domain. For instance, {(100,200);
(150,200); (150,550); (100,550)} for a rectangle. A disc is
defined as the pair {(centerX,centerY); radius}. An ellipse is
defined by a quadruplet {large axes (coord.); short axes (co-
ord.)}. The keywords ScreenSizeXLimit and ScreenSizeY-
Limit can be used for non-limited shapes.

• The shape is the geometrical shape of the plasticity domain.
In practice, the allowed values are: {(right-angled) triangle,
(convex/concave) quadrilateral, rectangle, disc, ellipse, (con-
vex/concave) polygon}. A formalization could be done using
for instance, the Complex Theory for concave shapes. But ac-
tually, we favor a pragmatic trade-off.

PlasticityDomainSets are not mandatory (it’s still possible to
build non plastic UIs). For instance, the resolution change has
an effect on presentation but the user’s task experience is not
modified.

5.2 Mapping between plasticity domains and
presentations
In order to associate a plasticity domain to a presentation, we de-
fine a new kind of USiXML inter-model relationship: isShaped-
For (Figure 13). isShapedFor is defined by a source (a GUI) and
a destination (a plasticity domain). It is essential to clearly make
the distinction between the relationships isAdaptedInto and is-
ShapedFor. Hence, isAdaptedInto enables to provide a trace of
the adaptation of one component in another. So, isAdaptedInto
expresses the switch between presentations while isShapedFor
only associates a plasticity domain to a presentation. Thanks to
the transformation mechanism that is part of GrafiXML envi-
ronment, it is possible to save the various adaptations applied to
a starting UI and to specify all adaptations in a declarative way
instead of developing them all by hand. In this way, the adaptiv-
ity mechanism is specified in the UI that could render an appro-
priate presentation depending on the constraints imposed by the
screen of the computing platform. Next section presents our
tool, called PlastiXML.

 Figure 13. An extension of the USiXML Mapping Model to

associate plasticity domains to presentations.

6. TOOL SUPPORT

6.1 PlastiXML
PlastiXML is a GrafiXML plug-in [20] for dealing with plastic-
ity domains. Actually, it is limited to the platform screen size.
Figure 14 presents the plug-in’s UI. The designer defines the
plasticity domains of the presentations he has prefabricated us-
ing GrafiXML. The definition is done by direct manipulation us-
ing the visualization technique described in the previous section.
PlastiXML generates a UsiXML-compliant code defining the
plasticity domain of each presentation: the blue region corre-
sponds to one plasticity domain attached to one presentation and
the orange region corresponds to another presentation.

GrafiXML is developed in Java 1.5 and currently consists of
about 110,000 lines of code, including the classes dealing with
the UsiXML language that are used by PlastiXML. Since it is a
plug-in, it is also developed in the same environment. The de-
signer can download the plug-in on demand from the GrafiXML
plug-in manager. Two examples are provided in the next section.

Figure 14. The PlastiXML editor.

6.2 Examples
The first example we consider is the subset of FlexClock limited
to {W2; W4}. Figure 15 presents the generated code limited to
the Context Model and the Mapping Model of UsiXML. In this
first example, we can notice that all the plasticity domains refer
to the same context of use as defined in USiXML (a PC).

<contextModel id="test-contextModel_14"
 name="test-contextModel">
 <contextRessource contextId="cont1">
 <Environment id="envir1" name="envir1" … />
 <userStereotype id="ustr1" stereotypeName="ustr1" … />
 <Platform id="plat1" name="plat1">
 <HardwarePlatform …screenSize="640x480"/>
 <SoftwarePlatform … />
 <NetworkCharacteristics … />
 <WapCharacteristics … />
 <BrowserUA … />
 </Platform>
 </contextRessource>
 <PlasticityDomainSet id="plasts1">
 <PlasticityDomain id="plast1" contextId="cont1">
 <PlatformPlasticityDomain id="platp1" PlatformId="plat1">
 <ScreenSizeAspect id="scrd1" shape="rectangle"
 corners="{(80,10);(80,30);(ScreenSizeXLimit,10);
 (ScreenSizeXLimit,30)}"
 allowedOperations="{vertical shrinkage}"/>
 </PlatformPlasticityDomain>
 </PlasticityDomain>
 <PlasticityDomain id="plast2" contextId="cont1">
 <PlatformPlasticityDomain id="platp2" PlatformId="plat1">
 <ScreenSizeAspect id="scrd2" shape="polygon"
 corners="{(80,30);(ScreenSizeXLimit,30);
 (ScreenSizeXLimit,60);(100,60);
 (100,ScreenSizeYLimit);
 (80,ScreenSizeYLimit)}"
 allowedOperations="{vertical shrinkage}"/>
 </PlatformPlasticityDomain>
 </PlasticityDomain>
 </PlasticityDomainSet>
</contextModel>
<mappingModel id="map1" name="map1" …>
 <isShapedFor id="adp1" name="adp1">
 <source sourceId="W2"/>
 <target targetId="plast1"/>
 </isShapedFor>
 <isShapedFor id="adp2" name="adp2">
 <source sourceId="W4"/>
 <target targetId="plast2"/>
 </isShapedFor>
 <source sourceId="W12"/>
 <target targetId="plast4"/>
 </isShapedFor>
</mappingModel>
Figure 15. Example 1 – The code generated by PlastiXML on

the FlexClock example limited to two presentations.
The next example concerns didactic contents for students in
medicine. The scenario to be supported is the following: stu-
dents can attend courses in auditorium and continue reviewing
the course contents afterwards or during the practical experi-
ments related to a course. For this purpose, a multimedia appli-
cation has been developed for a PC platform that provides stu-
dents with explanations of how to conduct a diagnosis on differ-
ent systems of the human body (e.g., cerebral system, digestive
system, respiratory system). This desktop system is only avail-
able in computer pools, but not in experiment rooms. Therefore,
a PDA version has been developed that offers multiple presenta-
tions of the same contents depending on the screen resolution.
Our example therefore involves two contexts of use: a PC and a
PDA. In the PC version (Context 1), the user has the ability to
study her course and get some help by the use of two windows.
In the PDA version (Context 2), three windows present the same
information but distributed in another way (Figure 16).

Figure 16. A GUI defined in two specifics context of use.

Figure 17. Schematic version of the GUI defined in two spe-

cific contexts of use.
Figure 17 depicts two gateways between the two contexts of use:
on one hand, the transition between W0 and W2, and on the
other hand, the transition between W1 and W3. These gateways
must not be confused with dialog transitions [19]. For instance,
the accomplishment of the user task presented in W0 triggers the
presentation W1. As a result, there are two clusters of presenta-
tion: on one hand, W0 and W2; on the other hand, W1 and W3.
Figure 18 presents the two corresponding graphics making ob-
servable the possible transitions inside a cluster. Arbitrary
height and width have been attributed to windows (W0:[800x
600]; W1:[480x320]; W2:[240x320]; W3:[240x320]), as well as
the allowed resizing operations.

Figure 18. Example 2 – An example involving two contexts of

use as defined in USiXML.
<cuiModel id="test-cui_14" name="test-cui">
 <window id="window_component_0" name="window_compo-
nent_0" width="800" height="600"> … </window>
 <window id="window_component_1" name="window_compo-
nent_1" width="480" height="320"> … </window>
 <window id="window_component_2" name="window_compo-
nent_2" width="240" height="320"> … </window>
 <window id="window_component_3" name="window_compo-
nent_3" width="240" height="320"> … </window>
 <window id="window_component_4" name="window_compo-
nent_4" width="240" height="320"> … </window>
 …
</cuiModel>
<contextModel id="test-contextModel_14" name="test-
contextModel">
 <contextRessource contextId="cont1">
 <Environment id="envir1" name="envir1" …/>
 <userStereotype id="uster1" stereotypeName="uster1" …/>
 <Platform id="plat1" name="plat1">
 <HardwarePlatform … screenSize="1024x768"/>
 <SoftwarePlatform … />
 <NetworkCharacteristics … />
 <WapCharacteristics … />
 <BrowserUA … />
 </Platform>
 </contextRessource>
 <contextRessource contextId="cont2">
 <Environment id="envir2" name="envir2" …/>
 <userStereotype id="uster2" stereotypeName="uster2" …/>
 <Platform id="plat2" name="plat2">
 <HardwarePlatform … screenSize="240x320"/>
 …
 </Platform>
 </contextRessource>
<PlasticityDomainSet id="plasts1">
 <PlasticityDomain id="plast1" contextId="cont1">
 <PlatformPlasticityDomain id="platp1" PlatformId="plat1">
 <ScreenSizeAspect id="scrd1" shape="rectangle"
 corners=
"{(800,600);(800,ScreenSizeYLimit);(ScreenSizeXLimit,600);
 (ScreenSizeXLimit,ScreenSizeYLimit)}"
 allowedOperations="{vertical shrinkage ; horizontal
shrinkage ; 2-D enlargement}"/>
 </PlatformPlasticityDomain>

 </PlasticityDomain>
 <PlasticityDomain id="plast2" contextId="cont2">
 <PlatformPlasticityDomain id="platp2" PlatformId="plat2">
 <ScreenSizeAspect id="scrd2" shape="rectangle"
 cor-
ners="{(240,320);(400,350);(240,ScreenSizeYLimit);(320,Scree
nSizeYLimit);
(800,600);(800,ScreenSizeYLimit);(ScreenSizeXLimit,600)}"
 allowedOperations="{vertical shrinkage ; horizontal
shrinkage ; 2-D enlargement}"/>
 </PlatformPlasticityDomain>
 </PlasticityDomain>
 </PlasticityDomainSet>
</contextModel>
Figure 19. Example 2 - The code generated by PlastiXML.

7. CONCLUSION
This paper deals with plasticity of user interfaces. It proposes a
model and a visualization technique for managing plasticity do-
mains. Both of them have been implemented in the PlastiXML
tool. It helps in defining the plasticity domains of presentation
and appreciating the appropriateness of transitions when the
context of use changes. Therefore, the following advantages of
our approach are not provided by any other tool or method so
far: (i) it supports designing multi-presentation UIs by specify-
ing the different presentations and a mechanism for switching
from one presentation to another depending on the screen size in
a logical way instead of programming everything by hand; (ii)
the tool automatically generate (X)HTML or Java (Swing) code
corresponding to these UsiXML specifications, which could be
reused in other tools of the UsiXML suite; (iii) the code gener-
ated intrinsically supports the adaptivity property; (iv) instead of
designing all presentations in isolation, it is possible to “copy/
paste” a presentation for one resolution to get a starting point for
another resolution, thus encouraging reusability; (v) the tool
provides the designer with a graphical mechanism to design
what kind of presentation is adapted to what kind of resolution.
PlastiXML is a plug-in developed for this purpose in the
GrafiXML environment and has been used to develop a multi-
presentation on-line course for teaching medical representatives
who are using very different platforms. Shortcomings identified
so far are: one presentation is viewed at a time thus preventing
the designer to easily compare two or more presentations; Mealy
machines have been proved more compact to use for specifying
all transitions between the presentations, but still remain abstract
to be usable in a graphical editor; if a new presentation is de-
fined, PlastiXML does not automatically produce a starting
point from a previously existing presentation that could be
adapted. Instead, it merely reuses what has been designed so far.
The work can be extended in many ways: by applying the model
at various granularities of widgets, by considering other media
types, by considering other aspects of the context of use.

8. ACKNOWLEDGMENTS
We gratefully acknowledge the support of this research by the MulPlex
project funded by First Europe Objectif 1 Initiative (DGTRE, Walloon
Region, Belgium). Principal Partners are: MOPSYS Company (Soig-
nies, Belgium, www.mopsys.com) and the IIHM Team of Laboratoire
LIG (Grenoble, France). We also thank the SIMILAR network of excel-
lence, supported by the 6th Framework Program of the European Com-
mission, under contract FP6-IST1-2003-507609 (www.similar.cc). We
also thank the anonymous reviewers for their constructive comments.

9. REFERENCES
[1] Ali M.F., Pérez-Quiñones M.A., and Abrams M. Building Multi-

Platform UIs with UIML. In [16], 95–118.
[2] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,

and Vanderdonckt, J. A Unifying Reference Framework for Multi-
Target User Interfaces. Interact. with Comp. 15,3 (2003) 289–308.

[3] Calvary, G., Coutaz, J., and Thevenin, D. Supporting Context
Changes for Plastic User Interfaces: a Process and a Mechanism.
In Proc. of Joint Conf. IHM-HCI’01 (Lille, Sept. 2001). Springer,
Berlin, 2001, 349–363.

[4] Fogarty, J. and Hudson, S.E. GADGET: A toolkit for optimization-
based approaches to interface and display generation. In Proc. of
UIST’03 (Vancouver, Nov. 2-5, 2003). ACM Press, New York,
2003, 125–134.

[5] Gajos, K. and Weld, D.S. SUPPLE: Automatically Generating
User Interfaces. In Proc. of IUI'04 (Funchal, January 13-16, 2004).
ACM Press, New York, 2004, 93–100.

[6] Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J., Kennedy,
J.B., Gray, P.D., Cooper, R., Goble, C.A., and Pinheiro da Silva, P.
Teallach: a model-based user interface development environment
for object databases. Interacting with Comp. 14,1 (2001) 31–68.

[7] Grolaux D., Van Roy P., and Vanderdonckt J. FlexClock: A Plas-
tic Clock Written in Oz with the QTk Toolkit. In Proc. of TAMO-
DIA’2002 (Bucharest, July 18-19, 2002). Academy of Economical
Studies of Bucharest, Bucharest, 2002, 135–142.

[8] Hopcroft, J.E. and Ullman, J.D. Introduction to automata theory,
languages, and computation. Addison-Wesley, Reading, 1979.

[9] Kray, C., Wasinger, R., and Kortuem, G. Concepts and issues in
interfaces for multiple users and multiple devices. In Proc. of
M3UI'04, 2004.

[10] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez,
V. USIXML: a Language Supporting Multi-Path Development of
User Interfaces. In Proc. of EHCI-DSVIS’2004 (Hamburg, July 11-
13, 2004). LNCS, Vol. 3425, Springer, Berlin, 2005, 200–220.

[11] Metrowerks, Inc., PowerPlant for CodeWarrior. Austin, 1996. Ac-
cessible at http://www.metrowerks.com/

[12] Mori, G., Paternò, F., and Santoro, C. Design and Development of
Multidevice User Interfaces through Multiple Logical Descrip-
tions. IEEE Trans. on Soft. Eng. 30,8 (August 2004), 507–520.

[13] Mozart Consortium, The Mozart Programming System (Oz 3). Ac-
cessible at http://www.mozart-oz.org/documentation.

[14] Puerta, A.R. A Model-Based Interface Development Environment.
IEEE Software 14,4 (July/August 1997) 41–47.

[15] Seffah, A. and Javahery, H. (eds.). Multiple User Interfaces:
Cross-Platform Applications and Context-Aware Interfaces. John
Wiley & Sons, Chichester, 2003.

[16] Szekely, P.A., Sukaviriya, P.N., Castells, P., Muthukumarasamy,
J., and Salcher, E. Declarative interface models for user interface
construction tools: the MASTERMIND approach. In Proc. of
EHCI’95. Chapman & Hall, London, 1996, 120–150.

[17] Thevenin, D. and Coutaz, J. Plasticity of User Interfaces: A
Framework and Research Agenda. In Proc. of INTERACT’99 (Edin-
burgh, Aug. 30-Sept. 3, 1999). IOS Press, 1999, 110–117.

[18] Vanderdonckt, J. and Bodart, F. Encapsulating Knowledge for In-
telligent Automatic Interaction Objects Selection. In Proc. of IN-
TERCHI’93. ACM Press, NY, 1993, 424–429.

[19] Vanderdonckt J., Limbourg Q., Florins, M. Deriving the Naviga-
tional Structure of a User Interface. In Proc. of INTERACT’2003
(Zurich, Sept. 1-5, 2003). IOS Press, 2003, 455–462.

[20] Vanderdonckt, J. A MDA-Compliant Environment for Developing
User Interfaces of Information Systems. In Proc. of CAiSE'05
(Porto, June 13-17, 2005). Vol. 3520. Springer, 2005, 16–31.

[21] Wiecha, Ch., Bennett, W., Boies, S.J., Gould, J.D., and Greene.
ITS: A Tool for Rapidly Developing Interactive Applications.
ACM Trans. Inf. Syst. 8,3 (1990) 204-236.

