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Abstract. This paper addresses software plasticity, i.e. the ability of interactive 
systems to adapt to context of use while preserving user-centered properties. In 
plasticity, a classical approach consists in concentrating design efforts on a set 
of pre-defined contexts of use that deserve high quality User Interfaces (UIs), 
and switching from one to another according to variations of context of use at 
runtime. However, key contexts of use cannot be finely envisioned at design 
time, especially when dealing with the specific field of mobility. Thus, we 
propose a designer’s partner tool running on the end-user’s mobile device to 
probe key contexts of use in the wild. The underlying principles are data 
gathering, bayesian learning, and clustering techniques. Probing key contexts of 
use can save design efforts. 
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1   Introduction 

In ubiquitous computing [11], context-aware adaptation has been widely investigated 
to cope with the increasing number of platforms, users, and environments, i.e. the 
diversity of contexts of use. This paper addresses the notion of plasticity, i.e. the 
ability of interactive systems to withstand variations of context of use while 
preserving user-centered properties [10]. In plasticity, most of the works so far make 
the implicit hypothesis that the contexts of use to be considered are identified at 
design time. In practice, this is far from being easy. As known in human-computer 
interaction, laboratory tests make it possible to observe usability issues with the 
system [9] but are limited to understand usage and system’s impacts in a very few 
envisioned contexts of use such as home, street, work, etc. [5]. In the specific field of 
mobility, the number of contexts of use is unpredictable. Limiting them to predefined 
rough ones may result in not fully meeting the user’s expectations. As a result, there is 
a need for partner tools that help the designers in identifying the key contexts of use in 
the wild on mobile devices such as cell phones. 



Recent works in the field of end-user development underline the need for 
monitoring the end-user’s environment (task, place, time, etc.) in order to provide 
context-aware adaptivity [6]. In addition, experience shows that users tend to have 
distinct contexts of use when in mobility. In this paper, we propose a Windows 
Mobile embedded tool that collects objective data from user’s actions in the wild and 
provides algorithms for learning key contexts of use from these observations. The 
process is based on bayesian user modeling and clustering techniques. The tool aims 
at separating relevant contexts of use from marginal situations by asking the end-user 
through a dedicated User Interface (UI). Such a probing task has to be taken in the 
early phases of the development process to save design efforts. Some frequent or 
critic contexts may require specific prototyping for ensuring high quality UIs. 

2   EMMA: Embedded Manager for Mobile Adaptation 

EMMA (Embedded Manager for Mobile Adaptation) is our running system for 
probing key contexts of use on Windows Mobile devices. EMMA relies on a user 
model that learns from user’s actions gathered in mobility. The overall process is 
based on the functional decomposition given in Fig. 1. Three steps are identified. The 
system starts by collecting objective data from the observation of context of use and 
person-system interaction. Then these data are processed by the user model through 
learning algorithms. Finally, clustering techniques are performed to discover the best 
set of key contexts of use given knowledge inferred from the user model. 

 

Fig. 1. Overall process for the identification of key contexts of use. 



Key context identification may be placed under the end-user’s control through a 
dedicated UI (Fig. 2) that helps in reinforcing system’s perception as well as 
validating the correctness of data. When a new key context of use is detected, the end-
user is put in the loop: he/she can customize system’s propositions and set the name 
of the new context (Fig. 3). 

    

Fig. 2. Key context identification and change may be negotiated with the end-user. 

    

Fig. 3. When adding a new key context, system’s propositions may be customized by the end-
user. A key context is identified by its name. 



3   Bayesian User Modeling 

EMMA’s user model is based on a bayesian network. Bayesian networks are 
graphical models that consist in both a qualitative and a quantitative part. The 
qualitative part is the structure of the network: a directed acyclic graph where vertices 
are variables and edges denote influences between variables. The quantitative part 
provides the Conditional Probabilities Tables (CPTs), i.e. the parameters of the 
network. 

Bayesian networks are powerful tools provided with inference and learning 
algorithms. Inference relies on Bayes’ theorem for propagating knowledge along the 
network. Learning applies for both the structure and the parameters of the network. It 
can be done from either complete or incomplete raw data. Bayesian networks are 
usually used for diagnosis, prediction, modeling, and monitoring. A key point is their 
ability to deal with incompleteness, which argues for their use when dealing with 
imperfect context information [3]. Bayesian user modeling has been investigated in 
previous works [4]. On mobile phones, bayesian learning has been used to discover 
when and how a user changes his/her profile over time [1]. 

3.1   Structure Building 

In practice, bayesian models can be built from expert knowledge and/or automatically 
from data. As experts, we designed the structure of the user model for daily probing 
the user’s behaviour when interacting with a mobile device in the wild (Fig. 4). 

 

Fig. 4. EMMA’s bayesian user model: the impact of context of use (day, time, location) on 
user’s activity (tasks, preferences) is represented by causal links among nodes. User’s location 
is time-context dependent. 

In our model, we assumed that user’s tasks and preferences may vary according to 
the context of use. We probed two kinds of context changes: changes in time (day of 
the week, time of the day) and space (location). Probing might easily be enlarged to 
additional information. In addition, we assumed that context changes might give rise 
to repetitive tasks (e.g. switching to silent mode when joining a meeting). Thus, each 



node of the model was dedicated to a particular function. We distinguished two kinds 
of functions depending on whether the node was in charge of sensing and identifying 
the context of use (i.e. Day, Time, and Location nodes), or tracking user’s tasks and 
preferences (i.e. Task and Preference nodes). Extending the prototype to other context 
changes and tasks would be simply done by adding new nodes and causal links in the 
network. The structure defines the format of the gathered data. 

3.2   Data Gathering 

Data gathering in mobility has been investigated in previous works [2]. As motivated 
above, we need to collect two kinds of data to be processed by the user model: context 
and interaction data. As discussed, time and space contribute to the context 
identification when processed by the user model. Day and time changes are probed 
through the corresponding system states. We parse time into five intervals as 
following: night (0h-6h), early morning (6h-8h), morning (8h-12h), afternoon (12h-
18h), and evening (18h-24h). Alike in [7], we use the nearest GSM cell-tower to track 
changes in the user’s location. At any time, the mobile phone is connected to a 
particular cell-tower unless the user is not in a mobile phone receiving area. Each cell-
tower is identified by its Cell IDentifier (CID) and its Location Area Code (LAC). 
Both CID and LAC are integers. We use the Radio Interface Layer (RIL) provided 
with Windows Mobile powered devices to catch cell changes. We match each cell 
change with the day and time within which it occurs. 

We probe two kinds of interactions on mobile phones (Fig. 4): applicative tasks – 
Task node – (e.g., messaging, calls, games, etc.) and customization tasks – Preference 
node – (e.g., phone’s profile, look and feel, etc.). Every time the active application 
changes, the interaction observer reports the application the user is interacting with in 
the interaction history. Observations are matched with day, time, and location (see 
Table 1). User’s preferences are gathered in the same way. 

Table 1. Interaction history gathered in mobility. 

Location Day Time Application 
CID40506LAC4354 Thursday morning Settings 
CID40511LAC4354 Thursday morning Calendar 
CID40511LAC4354 Thursday morning Contacts 
CID58063LAC4354 Thursday morning Call History 
CID40511LAC4354 Thursday afternoon Calendar 
CID40506LAC4354 Thursday afternoon Messaging 
CID40511LAC4354 Thursday afternoon Settings 
CID58063LAC4354 Thursday afternoon Games 
CID58063LAC4354 Thursday evening Settings 
CID64457LAC4354 Thursday evening Call History 
CID22057LAC4354 Thursday evening Messaging 

 



3.3   User Model Implementation 

From an implementational point of view, the bayesian user model is developed with 
Netica™ [8], a software provided by Norsys Software Corp. Netica is a complete 
software package which includes a graphical editor and an Application Programming 
Interface (API). The API is available under several operating systems and is 
accessible within different programming languages. We use a C version specially 
crafted for Windows Mobile devices. The Netica-C API is a compact Dynamic Link 
Library (DLL) of ultra-fast C-callable functions. 

3.4   Parameters Learning 

In order to process bayesian inference, we need to specify the joint probability 
distribution of each node of the network. As discussed earlier, the structure of the 
network drives data gathering. In turn, the collected data are processed by a parameter 
learning algorithm to adapt the CPTs. Netica supports parameter learning from raw 
case files. Once parameters are learnt, the user model can be used to infer knowledge. 

User’s tasks and needs evolve over time as user’s experience increases. This is an 
important issue to take into account. Before running the parameter learning algorithm, 
we therefore fade the CPTs of nodes to indicate greater uncertainty, which accounts 
for the idea that user’s tasks and needs may evolve over time. Thus, what has been 
recently learned is more strongly weighted than what was learned long ago. The 
amount of fading to be done is 1 – r∆t, where ∆t is the amount of time since the last 
fading was done, and r is a number less than but close to 1. 

4   Clustering 

We have experimented clustering techniques for merging atomic contexts of use 
(days, times, locations) into key contexts of use. Merging is based on past user’s 
actions similarities. For instance, we merge two locations in which the user has set the 
same phone’s profile and used almost the same set of applications. Many clustering 
methods exist. We use two of them: K-Means and Hierarchical clustering. K-Means 
clustering is a partitioning method while Hierarchical clustering is an agglomerative 
one. We use Hierarchical clustering at the beginning when no key context of use has 
been identified yet. Then we use K-Means to reinforce existing key contexts. Before 
performing clustering, we first eliminate non-significant variables, i.e. variables of the 
context (day, time, or location) for which the standard deviations computed for tasks 
and preferences are close to zero. Standard deviations are computed as follow: 
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where X is either Task or Preference, N is the number of states for node X, and xi are 
the conditional probabilities pi of P(X | variable). 



Hierarchical clustering starts by putting each data in a separate cluster. Then, at 
each step, the algorithm chooses the pair of closest clusters and merges them into a 
new one (Fig. 5). Hierarchical clustering produces clusters for all possible number of 
clusters. Distances between clusters can be computed from one of single-link, 
complete-link, average-link, and centroid methods. 

 

Fig. 5. Two steps of hierarchical clustering. 

We use K-Means clustering to reinforce existing key contexts. K-Means assumes a 
fixed number of clusters, k. The goal is to create compact clusters. The classic          
K-Means algorithm starts by randomly initializing clusters. Here, we start by 
initializing the first n clusters with existing key contexts, and then we randomly 
initialize the k – n remaining ones. Then each data is assigned to the nearest cluster 
based on a similarity measure. Clusters are then recomputed (Fig. 6). The algorithm 
repeats the last two operations until convergence. 

 

Fig. 6. First step of K-Means clustering. 

5   Results and Perspectives 

EMMA is still under evaluation. However, the early results based on six people show 
that users tend to have two key contexts of use at least. This calls for further 
evaluation to (1) understand whether contexts of use can be matched with user’s 
profiles, (2) measure minimum and maximum numbers of contexts of use, and (3) 
elaborate a methodology that takes into account this first probing in the wild. In the 



near future, EMMA will act as an end-user’s tool for managing context-aware 
adaptation. Envisioned adaptations are phone’s profile managing and phone’s menu 
reordering. 
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