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1. Introduction 
 
Human Computer Interaction (HCI) and Software Engineering (SE) are like two old friends with different 
backgrounds: they share values but they use them differently. Both domains address the design and development 
of useful and usable systems, and both are concerned with “requirements analysis”, “incremental and iterative 
design”, as well as “quality assurance”. However, they address these problems with different development 
processes, different notations, and different priorities. For HCI, the Human is the first class entity in all phases of 
the development process. For SE, the final objective is a running system developed at minimal cost, and 
delivered in time, while satisfying contractual specifications. The user is, at best, involved at the very beginning 
of the process, and hopefully at the very end of the project for summative evaluation. However, this is too little, 
and too late, to avoid or correct wrong design decisions. Even in the early stages of the development process, 
functional requirements and quality goals are rarely the result of a close collaboration between HCI and SE 
specialists.  
 
There are many reasons for the lack of collaboration between HCI and SE scientists and practitioners: mutual 
ignorance resulting from educational background, and from there, economic consideration. HCI methods such as 
contextual design (see Chapter XX), scenario-based approaches (see chapter XX), and task analysis (see chapter 
XX), are perceived as too demanding in terms of time and competence to inform the system functional 
specifications and non functional requirements in a formal and timely manner. On the other hand, UML use 
cases, which express the functions that the system should support with a scenario-based flavor, are pale attempts 
to factor out user-centered concerns. They do not result from a human centered requirements analysis nor do 
they have the expressive power of task models. Task model notations such as CTT [Paternò 03] or UAN 
[Hartson 90], which use LOTOS operators and logic, familiar to computer scientists, to express temporal 
dependencies and task composition, are not used by software engineers.  Conversely, domain-dependent 
concepts referenced in task models are ill-defined, whereas UML class diagrams would improve task 
specifications significantly.  
 
In summary, HCI and SE pursue the same goal, using development processes and notations that sometimes 
overlap, and that sometimes complement each other. In this chapter, we present one way to exploit both fields 
for the development of plastic user interfaces using the notion of model as the keystone between the two 
disciplines. In the following section, we present the problem space of User Interface (UI) plasticity followed, in 
Section 3, by three exemplars of plastic interactive systems that illustrate aspects of the problem space. We then 
introduce the key objectives and principles of Model Driven Engineering [Planet] (Section 4) and show, in 
Section 5, how they can be exploited as a solution space for UI plasticity. 
 
2. The Problem Space of User Interface Plasticity 
 
The term plasticity is inspired from the capacity of solids and biological entities such as plants and brain, to 
adapt to external constraints to preserve continuous usage. Applied to interactive systems, UI plasticity is the 
capacity of user interfaces to adapt to the context of use while preserving usability [Thevenin 99]. We define 
these terms in details in the following sections. 
 
2.1 Context and Context of use 
It is commonly agreed that context is about evolving, structured, and shared information spaces, and that such 
spaces are designed to serve a particular purpose [Coutaz 05]. In other words, context is not simply a state but 
part of a process (the purpose). Thus, there is no such thing as the context, but there is a context qualified by the 



process it serves. This is why we use the term “context of use”, and not simply “context”, to refer to the 
information spaces that serve the adaptation process when context changes. A context change could be defined 
as the modification of the value of any element of the contextual information spaces. This definition would lead 
to an explosion of contexts. We need more structure. The following ontological foundation provides this 
structure. 
 
2.1.1 Ontological Foundation for Context 
As shown in Figure 1, a contextual information space is modeled as a directed graph where a node denotes a 
context and an edge a condition to move between two contexts. In turn, a context is a directed graph of situations 
where a node denotes a situation and an edge, a condition to move between two situations. Thus, a contextual 
information space is a two-level data structure, i.e., a graph of contexts where each context is in turn a graph of 
situations1. We need now to specify the domain of definition of contexts and situations. 
 
A context is defined over a set E of entities, a set Ro of roles (i.e., functions) that these entities may satisfy, a set 
Rel of relations between the entities. Entities, roles and relations are modeled as expressions of observables that 
are captured and inferred by the system. For example, in a conference room, E denote the participants, Ro the 
roles of speaker and listener, and Rel, some spatial relations such as “in front of”. The situations that pertain to 
the same context share the sets E, Ro and Rel. 
 
The condition to move between two contexts is one of the following: E is replaced by a different set (e.g., the set 
E of participants is now replaced with the set of family members), Ro has changed (e.g., the roles of speaker and 
listener are replaced with that of parent), or Rel has changed (e.g., in addition to spatial relationships, temporal 
relationships between entities, now, matter).  
The condition to move between two situations is one of the following:  
• The cardinality of the set E has changed. For example, ten persons enter the room and are recognized by the 

system as participants (their observables match the characteristics and behavior of participants). If 
recognized as terrorists, then the system would detect a context change (and not a situation change).  

• A role assignment to an entity has changed (e.g., participant e switches from the speaker role to the listener 
role),  

• A relation between two entities has changed (e.g., participant e was in front of e’. Now, e’ is in front of e).  

 
 
Figure 1. The graph of contexts Gc is composed of 4 contexts C1, C2, C3, C4 defined on their own sets of 
Entities, Roles, and Relations. In turn, Context C2 is composed of 4 situations S1, S2, S3, S4. By definition, 
these situations share the same sets of Entities, Roles, and Relations. In S4, Entities e1 and e4 (elements of E4) 
play the role r2 (element of R4), whereas Role r1 is played by Entities e2 and e3;  e3 and e4 satisfy Relation rel1, 
e5 and e3 satisfy rel2, and e5 and e4 are related by rel1.  
 
The ontology does not specify the nature of the entities, roles, relations, and observables. These are abstract 
classes from which a domain-dependent model can be specified. Using expression of observables, designers 
identify the set of Entities, Roles and Relations that are relevant for the case at hand. As discussed next, the 
observables of a context of use are organized into three information spaces. 

                                                
1 If more structure is needed, situations may in turn be refined into “sub-situations”, and so 
on. 



 
2.1.2 Observables of the Context of Use 
The observables of a context of use define three information spaces called the user, the environment, and the 
platform models.  
• The user model denotes the attributes and functions that describe the archetypal person who is intended to 

use, or is actually using, the interactive system. This includes profile, idiosyncrasies, tasks and activities. 
• The environment model includes attributes and functions that characterize the physical places where the 

interaction will take place, or is actually taking place. This includes numeric and/or symbolic locations (e.g., 
at home, in a public space, on the move in the street, in the train or car), social rules and activities, light and 
sound conditions. 

• The platform model describes the computing, sensing, networking and interaction resources that bind 
together the physical environment with the digital world.  

 
In the conventional GUI paradigm, the platform is limited to a single computing device, typically a workstation 
or a PDA, connected to a network and equipped with a fixed set of interaction resources such as screen, 
keyboard and stylus. Technological advances are leading to the capacity for individuals to assemble and mould 
their own interactive spaces from public hot spots and private devices to access services within the global 
computing fabric. Interactive spaces will also take the form of autonomous computing islands, or ecosystems, 
whose horizon will evolve, split and merge under the control of users. Figure 2 illustrates this view of ubiquitous 
computing where resources are coupled opportunistically to amplify human activities with new services, and 
where any real world object (e.g., a wall, pen and fingers) can play the role of an interaction resource. As a 
result, the platform should be viewed as a dynamic cluster of heterogeneous resources rather than a conventional 
mono-computing device. 
 

(a)         (b)  
Figure 2. Assembling interaction resources opportunistically: (a) Access to services within the global computing 
fabric via dynamic connection of a private device to a public hot spot (e.g., an active map). (b) Ecosystem: 
connecting two tablets to enlarge the screen real estate, or to start an intimate collaboration between users  
[Hinckley 03]. 
 
2.2 Usability 
The term “usability” is interpreted in different ways by authors, even within the same scientific community. 
Usability has been identified with ease of use and learning, while excluding utility [Shackel 84, Nielsen 93]. In other 
cases, usability is used to denote ease of use and utility, while ignoring learnability. In software engineering, 
usability is considered to be an intrinsic property of the software product, whereas in HCI, usability is contextual: a 
system is not intrinsically usable or unusable. Instead, usability arises relatively to contexts of use.  
 
The contextual nature of usability has been recently recognized by the ISO/IEC2 9126 standards developed in the 
software community with the overarching notion of “quality in use”. Quality in use is “the capability of the software 
product to enable specified users to achieve specified goals with effectiveness, productivity, safety and satisfaction in 
specified contexts of use”. Unfortunately, as shown in Figure 3, usability is viewed as one independent contribution 
to quality in use. Thus, the temptation is high for software people to assimilate usability to cosmetic issues limited 
to the user interface component of a software product, forgetting that system latency, reliability, missing functions 
and inappropriate sequencing of functions, have a strong impact on systems useworthiness. 
 
Useworthiness is central to Cockton’s argument for the development of systems that have value in the real world 
[Cockton 04, Cockton 05]. In value-centered approaches, software design should start from the explicit expression of 
an intentional creation of value for a selected set of target contexts of use. Intended value for target contexts are then 

                                                
2 ISO stands for International Organisation for Standardisation , IEC: International Electrotechnical 
Commission. The ISO/IEC 9126 series are part of the standards defined by the software engineering community. 



translated into evaluation criteria. Evaluation criteria are not necessarily elicited from generic intrinsic features such 
as time for task completion, but are contextualized. They are monitored and measured in real usage to assess the 
achieved value.  
 

 
Figure 3. Usability model from ISO/IEC 9126-1. 

 
 
Building on Cockton’s approach, we suppose that for each of the target contexts of use Ci of a system, an intended 
value Vi has been defined, and that Vi has been translated into the set of triples  {(ci1, di1, wi1), …, (cij, dij, wij), … (cin, 
din, win)} where cij is an evaluation criteria, and dij and wij, the expected domain of values and relative importance 
of cij in Ci. As discussed above, cij may be a generic measurable feature or a customized measure that depends on 
the intended value in Ci. Usability Ui of the system for context Ci is evaluated against a combining function Fi 
on the set {(ci1, di1, wi1), …, (cij, dij, wij), … (cin, din, win)} whose results is intended to lie within a domain of 
values Di.  
 
Coming back to the notion of plasticity, an interactive system S is plastic from a source context of use Ci to a 
target of use Cj if the following two conditions are satisfied:  
• Adaptation, if needed, is supported when switching from Ci to Cj,  
• Usability (value) is preserved in Cj by the adaptation process.  
 
In turn, usability in the target context Cj is preserved if the following two conditions are satisfied:  
• the usability function Fj defined for Cj lies within its intended domain Dj.  
• the usability function meta-Fij of the meta-UI lies within its intended domain meta-Dji when transiting from 

Ci to Cj. 
 
A meta-UI is to ambient computing what the desktop metaphor is to conventional workstations. It binds together 
the activities that can be performed within an interactive space. In particular, it provides users with the means to 
configure, control and evaluate the adaptation process. It may, or may not, negotiate the alternatives for 
adaptation with the user. A meta-UI without negotiation makes observable the state of the adaptation process, 
but does not allow the user to intervene. The system is autonomous. A meta-UI incorporates negotiation when, 
for example, it cannot make sound decisions between multiple forms of adaptation, or when the user must fully 
control the outcome of the process. The balance between system autonomy and too many negotiation steps 
depends on the case at hand.  
 
The domain of plasticity of a system is the set C of contexts of use Ci for which usability is achieved. 
   
We have defined usability by reasoning at the context level. If needed, a finer grain of reasoning can be applied 
at the situation level: intended value is defined for each situation of each context, then translated into evaluation 
criteria. Preserving usability is then evaluated on situation changes. 
 
These definitions provide a theoretical framework where value comes first and defined on a per-context (or 



situation) of use basis. For each of the intended target contexts (or situations), value is operationalized into a mix 
of generic and customized metrics. The problem is the identification of the relevant contexts of use and 
situations as well as the appropriate translation of value into significant metrics. We have no answer for 
operationalizing value, except to use generic measures when applicable, to instrument the system appropriately 
using sound software development techniques (such as AOP [Elrad 01]), and to apply a healthy dose of common 
sense. On the other hand, our ontological framework on context and its associated method presented in [Rey 
05]3, can be used to define the boundaries of contexts and situations of use as well as their relationships. For our 
notion of context of use, the fundamental entities are the user(s), environment, and platform, each of them being 
characterized by observables monitored by the system. Section 5.1 shows how to integrate the monitoring of 
observables within the software architecture of an interactive system. 
 
2.3 System Adaptation 
System adaptation to context of use can take multiple forms. Here, we limit the discussion to the consequence of 
adaptation as perceived by users at the user interface. Adaptation can use one, or a combination of, the following 
techniques: UI remoulding, UI distribution, and UI migration. 
 
2.3.1 UI remoulding 
UI remoulding denotes the reconfiguration of the user interface that results from the application of one or 
several transformations on all, or parts, of the user interface. These transformations can be applied at multiple 
levels of abstraction, and they can be intra-modal, inter-modal, or multi-modal. These transformations include: 
• Suppression of the UI components that become irrelevant in the new situation/context;  
• Insertion of new UI components to provide access to new services relevant in the new situation/context;  
• Substitution of UI components when UI components are replaced with new ones. Substitution can be viewed 

as a combination of suppression and insertion of UI components; 
• Reorganization of UI components by revisiting their spatial layout and/or their temporal dependency. 

Reorganization may result from the suppression, insertion, or substitution of UI components. On the other 
hand, switching from a portrait to a landscape view requires spatial reorganization only.  

 
Remoulding is intra-modal when the source UI components concerned by the transformations are retargeted 
within the same modality. Remoulding is inter-modal if the source UI components expressed in one modality 
(say GUI) are transformed into UI components using a different modality (say speech). Remoulding is multi-
modal if it uses a combination of intra- and inter-modal transformations. For example, Teresa supports multi-
modal remoulding [Berti 05]. 
 
The transformations can be performed at multiple levels of abstraction: 
• At the Physical Presentation (PP) level, physical interactors (widgets) used for representing functions and 

concepts are kept unchanged but their rendering and behaviour may change. For example, if a concept is 
rendered as a button class, this concept is still  represented as a button in the target UI. However the look 
and feel of the button or its location in the workspace may vary. This type of adaptation is used in Tk as well 
as in Java/AWT with the notion of peers. 

• At the Logical Presentation (LP) level, adaptation consists of changing the representation of functions and 
concepts. For example, the concept of month can be rendered as a Label+Textfield, or as a 
Label+Combobox, or as a dedicated physical interactor. In an LP adaptation, physical interactors can 
replace each other provided that their representational and interactional capabilities are equivalent. The 
implementation of an LP level adaptation can usefully rely on the distinction between Abstract Interactive 
Objects and Concrete Interactive Objects as presented in [Vanderdonckt 93]. Changes at the LP level imply 
changes at the PP level. 

• At the Dialog Component (DC) level, the tasks that can be executed with the system are kept unchanged but 
their organisation is modified. As a result, the structure of the dialogue structure is changed. AVANTI’s 
polymorphic tasks [Stephanidis 01] are an example of a DC level adaptation. Changes at the DC level imply 
changes at the LP and PP levels. 

• At the Functional Core Adaptor (FCA) level, the nature of the entities as well as the functions exported by 
the functional core (the services) are changed. Zizi’s semantic zoom is an example of an FCA level 
adaptation [Zizi 94]. Changes at the FCA level imply changes at the DC, LP, and PP levels. 

 
2.3.2 UI distribution 
                                                
3 Editorial Note: this thesis is written in French. If needed, a summary of the method could be 
presented in an annex of the chapter. 



A UI is distributed when it uses interaction resources that are distributed across a cluster. For example, in 
graphical UI’s (GUI), the rendering is distributed if it uses surfaces that are managed by different computing 
devices. Distribution is static when it is performed off-line between sessions. It is dynamic when it occurs on the 
fly.   
 
The granularity of UI distribution may vary from application level to pixel level: 
• At the application level, the GUI is fully replicated on the surfaces managed by each computing device. The 

x2vnc implementation of the VNC protocol offers an application level distribution.  
• At the workspace level, the unit for distribution is the workspace. A workspace is a logical space that 

supports the execution of a set of logically connected tasks4. PebblesDraw [Myers 01] and Rekimoto’s Pick 
and Drop [Rekimoto 97] are examples of UI distribution at the workspace level.  

• The interactor level distribution is a special case of the workspace level where the unit for distribution is an 
elementary interactor.  

• At the pixel level, any user interface component can be partitioned across multiple surfaces. For example, in 
the DynaWall [Streitz 99], a window may simultaneously lie over two contiguous white boards as if these 
were managed by a single computer. 

 
2.3.3 UI Migration 
UI migration corresponds to the transfer of all or part of the UI components to different interaction resources 
whether these resources belong to the current platform or to another one. Migration is static when it is 
performed off-line between sessions. It is dynamic when it occurs on the fly. In addition, the migration of a user 
interface is total if the user interface moves entirely to a different platform (application level migration). It is 
partial (at the workspace, interactor or pixel levels) when a subset only of the user interface moves to different 
interaction resources. For example, on the arrival of a PDA, the control panels currently rendered on a 
whiteboard migrate to the PDA (workspace level migration). 
 
Migration and distribution are two distinct notions: a UI may be distributed but not migratable (static 
distribution). A centralized UI may migrate, but if the migration is total, it remains centralized on the target 
platform. 
 
2.3.4 State Recovery 
The granularity of state recovery characterizes the effort users must apply to carry on their activity after 
adaptation has occurred. State recovery can be performed at the session, task, and physical action levels: 

- When the system state is saved at the session level, users have to restart the interactive system from scratch. 
They rely on the state saved by the service (functional core) level before adaptation is taking place.  

- At the task level, the user can pursue the job from the beginning of the current interrupted task (provided 
that the task is attainable in the retargeted system). 

- At the physical action level, the user is able to carry on the current task at the exact point within the current 
task (provided that the task is attainable in the new version of the user interface). 

 
The examples presented next illustrate the problem space of plastic UI’s. 
 
3. Case Studies 
 
The home heating control system, CamNote, and Sedan-Bouillon are three examples of plastic interactive 
systems developed according to the MDE approach presented Sections 4 and 5. The services they provide are 
accessible from different types of computing devices including workstations, personal digital assistants (PDA), 
and mobile phones. The UI of the heating control system is kept centralized on one single device at a time, 
whereas for CamNote and the Sedan-Bouillon web site, the UI components can be dynamically distributed and 
migrated across the interaction resources currently available in the interactive space. CamNote and Sedan-
Bouillon differ in the technological spaces used for implementation: CamNote is Java-centric whereas Sedan-
Bouillon uses PHP-MySQL Internet solutions.   
 

                                                
4 A workspace is analogous to the concept of focus area used in Contextual Design for expressing the user 
environment design. 



3.1 Home heating Control System 
The home heating control system envisioned is intended to be used (a) at home through a dedicated wall-
mounted device or through a PDA connected to a wireless home-net; (b) in the office, through the Web, using a 
standard work station; (c) anywhere using a mobile phone or a watch. 
 
A typical user's task consists of consulting and modifying the temperature of a particular room. Figures 4 and 5 
show versions of the system for a home comprised of two rooms: 
• In Figure 4a, the screen size is comfortable enough to display the state of all of the home thermostats.  
• In Figure 4b, 4c, and 4d, the screen size allows the rendering of the state of one single thermostat at a time. 

Thus, an additional navigation task is required to access the state of the second thermostat. In 4b, the task is 
supported by a button, whereas in 4c and 4d, a combo-box and hyperlinks are used to browse the system 
state. In 4e, the screen of the watch is so small that the user interface is limited to the living room, the most 
important place of the home. 

 

Figure 4. Home heating Control system. a) Large screen. The temperature of the rooms are available at a glance. 
b) c) d) Small screen: the temperature of a single room is displayed at a time but the system state is  modifiable 
and browsable via a button (in b), combo-box (in c) and hyperlinks (in d). e) Very small screen: only one single 
room is observable. Temperature setting and navigation tasks are not available.   

 

 a)          b)                c)       

Figure 5. Modifying the temperature using a mobile phone. 

Figure 5 shows the interaction trajectory for setting the temperature of a room with a mobile phone. 
• In 5a), the user selects the room (e.g., "le salon" – the living room). 
• In 5b), the system shows the current temperature of the living room. 
• By selecting the editing function ("donner ordre"), one can modify the temperature of the selected room 

(5c). 

(b) (c) 



When comparing with the situation depicted in Figure 4, two navigation tasks (i.e., selecting the room, then 
selecting the edit function) must be performed in order to reach the desired state. In addition, a title has been 
added to every page to recall the user with the current location within the information space. 
 
Using the taxonomy of Section 2, the home heating control system can be characterized in the following way: 
the context of use is limited to the user’s preference (what is themost important room in the home), and to the 
platform. This platform is always a mono-computing device. Context of use can be modeled as a graph of 
situations where the set of entities is the user and the intended computing devices. The sets of Roles and 
Relations are empty. Switching between two situations occurs when using a different computing device. 
Adaptation to context of use boils down to adapting the UI to the resources of the currently used computing 
device. Adaptation relies on remoulding only. It is GUI intra-modal and the grain of recovery is the session: 
switching between devices on the fly requires starting from scratch. The adaptation level depends on the source 
and target platforms: when switching between the b-c-d- situations, adaptation occurs at the Logical Presentation 
level: a widget is replaced by a functionally equivalent widget. When switching between the large screen and the 
small screen, the task space is not changed but organized differently: adaptation occurs at the Dialogue 
Controller level. When switching to the watch, a number of services are no longer available: the adaptation is 
performed at the FCA level.  
 
3.2 CamNote 
CamNote (for CAMELEON Note) is a slides viewer that runs on a dynamic heterogeneous platform. This 
platform may range from a single PC to a cluster composed of a PC and a PDA. Its UI is structured into four UI 
workspaces: a slides viewer, a note editor for associating comments to slides, a video viewer also known as 
“mirror pixels” that shows a live video of the speaker, and a control panel to browse the slides and to setup the 
level of transparency of the mirror. The mirror is combined with the slides viewer using alpha-blending. 
Speakers can point at items on the slide using their finger. This means of pointing is far more compelling and 
engaging than the conventional mouse pointer that no one can see. 
 

 

 

 

 

 

 

Figure 6. The user interface of CamNote. (a) The UI of CamNote when distributed on a PC and a PocketPC 
screens; (b) the control panel when displayed on the PC screen. 

Picture 6a shows a configuration where the graphical UI is distributed across the screens of a PC and of a PDA. 
The slides viewer is displayed in a rotative canvas so that it can be oriented appropriately when projected on a 
horizontal surface. If the PDA disappears, the control panel automatically migrates to the PC screen. Because 
different resources are now available, the control panel includes different widgets, but also a miniature 
representation of the speaker’s video is now available. During the adaptation process, users can see the control 
panel emerging progressively from the slides viewer so that they can evaluate the progress of the adaptation. The 
UI, which was distributed on a PC and a PDA is now centralized on the PC (Picture 6b). Conversely, if the PDA 
re-enters the interactive space, the UI automatically switches to the configuration of Figure 6a, and the control 
panel disappears from the PC screen by weaving itself into the slides viewer before reappearing on the PDA. 
 
In this exemplar, context of use is limited to the platform and the transitions between the situations occur on the 
arrival/departure of a computing device. Adaptation is based on migration and distribution at the workspace 
level, as well as on intra-modal GUI remoulding at the Dialogue Controller level: when the control panel resides 
on the PDA, the note editing task is no longer available. Adaptation is automatic: the user has no control over the 
adaptation process, but a minimum of meta-UI exists to express the transition between two situations (the 

(a) 

(b) 



weaving effect). State recovery is performed at the physical action level: the slides show is not disturbed by 
adaptation. 
 
3.3 The Sedan-Bouillon Web Site 
“Sedan-Bouillon” is a web site that aims at promoting tourism in the regions of Sedan (France) and Bouillon 
(Belgium) (http://www.bouillon-sedan.com/). It provides tourists with information for visiting and sojourning in 
these regions including a selection of hotels, camping, and restaurants. Figure 7a shows a simplified version of 
this web site when a user is logged in from a PC workstation. 

a)             b)  
  
Figure 7 – The Sedan-Bouillon web site. (a) UI centralized on a PC screen. (b) The control panel of the meta-UI 
to distribute UI workspaces across the resources of the interactive space. The lines of the matrix correspond to 
the workspaces, and the columns denote the browsers currently used by the same user. 
 

Preparing a trip for vacation is an exciting experience when shared by a group of people. However, one single 
PC screen does not necessarily favour collaborative exploration. By dynamically logging to the same web site 
with a PDA, users are informed on the PDA that they can distribute the UI components of the site across the 
interaction resources currently available. In the example of Figure 7b, the user asks for the following 
configuration: the title must appear on the PDA as well as on the PC (the title slots are ticked for the two 
browsers available), whereas the content should stay on the PC and the navigation bar should migrate to the 
PDA. Figure 8 shows the resulting UI. At any time, the user can ask for a reconfiguration of the UI by selecting 
the “meta-UI” link in the navigation bar. The UI will be reconfigured accordingly. 

 
Figure 8- The Sedan-Bouillon web site when distributed across the resources of the interactive space. The 
MetaUI link allows users to return to the configuration panel shown in Figure 7b.  
 
 



In terms of the plasticity problem space, the Sedan-Bouillon web site is very similar to CamNote: same model of 
context of use, adaptation based on distribution and migration at the workspace level, and GUI intra-modal 
remoulding at the workspace level. Contrary to CamNote, remoulding is performed at the Logical Presentation 
level (no task is suppressed nor restructured), and state recovery is supported at the task level: if adaptation 
occurs as the user is filling a form, the form content is lost by the adaptation process. Contrary to CamNote, the 
user has full control over the reconfiguration of the UI using the control panel of the meta-UI. 
 
Having characterized three exemplars in the problem space, we now consider the method and mechanisms 
necessary to support interactive systems plasticity. We advocate a Model Driven Engineering (MDE) approach. 
 
 
4. Model Driven Engineering 
 
The motivation for MDE is the integration of knowledge and techniques developed in software engineering using 
the notions of model and model transformation and mapping as the key concepts.  
 
In the early days of computer science, software systems were simple programs written in assembly languages. In 
those days, a code-centric approach to software development was good enough, not to say unavoidable to ensure 
a fine control over the use of computing resources. Over the years, the field has evolved into the development of 
distinct paradigms and application domains leading to the emergence of multiple Technological Spaces (TS).  
  
"A technological space is a working context with a set of associated concepts, body of knowledge, tools, 
required skills, and possibilities." [Kurtev 2002]. Examples of technological spaces include documentware 
concerned with digital documents using XML as the fundamental language to express specific solutions, 
dataware related to data base systems, ontologyware, … HCIware!  
 
Today, technological spaces can no longer evolve in autarky. Most of them share challenges of increasing 
complexity, such as adaptation, to which they can only offer partial solutions. Thus, we are in a situation where 
concepts, approaches, skills, and solutions, need to be combined to address common problems. This is where 
MDE comes into play. MDE aims at achieving integration by defining gateways between technological spaces 
using a model-based approach.  The hypothesis is that models, meta-models, models transformations and 
mappings, are everything.  
 
4.1 Models 
A model is a representation of a thing (e.g., a system), with a specific purpose. It is “able to answer specific 
questions in place of the actual” thing under study [Bezivin 01]. Thus, a model, built to address one specific 
aspect of a problem, is by definition a simplification of the actual thing under study. For example, a task model 
is a simplified representation of some human activities (the actual thing under study), but it provides answers 
about how “representative users” proceed to reach specific goals.  
 
A model may be physical (a tangible entity in the real world), abstract (in human mind), or digital (within 
computers) [Favre 04a, Favre 04b]. For example, considering the person Peter, a printed photograph of Peter is a 
physical representation of Peter that his mother (for example) uses for specific purpose. Peter’s mother has 
mental representations of him as a good son, or as a brilliant researcher (multiple abstract models about Peter). 
The authentification system that runs on Peter’s computer knows him as a login name and password (digital 
model). If Peter’s portrait is digitized as a JPEG picture, then the JPEG file is a digital model of a physical 
model. When displayed on the screen, the JPEG file is transformed into yet another digital graphics model in the 
system’s main memory before being projected on the screen as an image (yet another physical model that Peter’s 
mother can observe).  
 
As this example shows, models form oriented graphs (µ graphs) whose edges denote the µ relation “is 
represented by”. In other words, a model can represent another model, and a model can be represented by several 
models (see Figure 9).  
 



 
 

Figure 9. Models organized as oriented µ graphs.  
 
Fypically, scenarios developed in HCI [Rosson 02] are contemplative models of human experience in a specified 
setting. 
 
In order to be processed (by humans, and/or by computers), a model must comply with some shared syntactic 
and semantic conventions: it must be a well-formed expression of a language. This is true both for productive 
and contemplative models: most contemplative models developed in HCI use a mix of drawings and natural 
language. A language is the set of all well-formed expressions that comply with a grammar (along with 
semantics). In turn, a grammar is a model from which one can produce well-formed expressions (or models). 
Because a grammar is a model of a set of models, it is called a meta-model. 
 
4.2 Meta-model 
A meta-model is a model of a set of models that comply with it. It sets the rules for producing models. It does not 
represent models. Models and meta-models form a χ tree: a model complies to a single meta-model, whereas a 
meta-model may have multiple compliant models. 
 
As an illustration, suppose that the authentification system mentioned above is a Java program J. J is a digital 
model that represents Peter and that complies with the Java grammar GJ. GJ does not represent J, but defines the 
compliance of J with Java. GJ is one possible meta-model, but not the only one. The authentification system 
could also be implemented in C (yet another digital model of Peter). It would be compliant with the C grammar 
GC. Grammars GC and GJ could in turn, be produced from the same grammar such as EBNF. EBNF5 is an 
example of a meta-metamodel.  
 
A meta-metamodel is a model of a set of meta-models that are compliant with it. It does not represent meta-
models, but sets the rules for producing distinct meta-models. As shown in Figure 10, the OMG Model-Driven 
Architecture6 (MDA) initiative has introduced a four-layer modeling stack as a way to express the integration of 
a large diversity of standards using MOF (Meta Object Facility) as the unique meta-metamodel. EBNF, GJ and 
GC, the Java and C programs are models that belong to the programming technological space. Within the MDA 
                                                
5 EBNF (Extended Backus-Naur Form) is defined as the s ISO/IEC 14977:1996 standard 
6 MDA is a specific MDE deployment effort around industrial standards including MOF, UML, CWM, QVT, 
etc. 



technological Space, the java source code of our authentification system becomes a UML Java model compliant 
with the UML meta-model. In the XML technological space, the java source code could be represented as a 
JavaML document compliant with a JavaML DTD7. 

 
 

Figure 10. The OMG MDA four-layer modeling stack.  
 
As shown in Figure 10, µ relations (“is represented by”) and χ relations (“complies with”) make explicit the 
multiplicity of existing technological spaces as well as their systematic structure into 3 levels of modeling spaces 
(the so-called M1, M2, M3 levels of MDA)+the M0 level that corresponds to a system, or parts of a system. The 
µ and χ relations, however, do not tell how models are produced within a technological space nor how they 
relate to each other across distinct technological spaces. The notions of transformation and mapping is the MDE 
answer to this issue.  
 
4.3 Transformations and Mappings 
In the context of MDE, a transformation is the production of a set of target models from a set of source models, 
according to a transformation definition. A transformation definition is a set of transformation rules that 
together describe how source models are transformed into target models [Mens 04]. Source and target models 
are related by the τ relation “is transformed into”. Note that a set of transformation rules is a model (a 
transformation model) that complies with a transformation meta-model. 
 
Relation τ expresses an overall dependency between source and target models. However, experience shows that 
finer grain of correspondence needs to be expressed. Typically, the incremental modification of one source 
element should be propagated easily into the corresponding target element(s) and vice versa. The need for 
traceability between source and target models is expressed as mappings between source and target elements of 
these models. For example, each task of a task model and the concepts involved to achieve the task, are rendered 
as a set of interactors in the Concrete User Interface model. Rendering is a transformation where tasks and their 
concepts are mapped into a workspace which in turn is mapped into a window populated with widgets. The 
correspondence between the source task (and concepts) and its target workspace, window and widgets, is 
maintained as a mapping function. In section 5, we will see how mapping functions can be exploited at run time. 
 

                                                
7 DTD (Document Type Definition). In the XML Technological spaces, a DTD defines the legal building blocks 
of an XML document. 



Transformations can be characterized within a four-dimension space: 
 
• The transformation may be automated (it can be performed by a computer autonomously), it may be semi-

automated (requiring some human intervention), or it may be manually performed by a human. For 
example, given our current level of knowledge, the transformation of a “value-centered model” into a 
“usability model” can only be performed manually. On the other hand, User Interface generators such as 
CTTE [Mori 02, Mori 04] produce user interfaces automatically from a task model. 

 
• A transformation is vertical when the source and target models reside at different levels of abstraction. UI 

generation is a vertical top down transformation from high-level descriptions (such as a task model) to code 
generation. Reverse engineering is also a vertical transformation but it proceeds bottom up, typically from 
executable code to some high-level representation by the way of abstraction. A transformation is horizontal 
when the source and target models reside at the same level of abstraction. For example, translating a Java 
source code into C, preserves the original level of abstraction. 

 
• Transformations are endogenous when the source and target models are expressed in the same language. 

They are exogenous when sources and targets are expressed in different languages while belonging to the 
same technological space. For example the transformation of a Java source code program into a C program 
is exogenous.  

 
• When crossing technological spaces (e.g., transforming a java source code into a JavaML document), then 

additional tools (exporters or importers) are needed to bridge the gap between the spaces. Inter-
technological transformations are key to knowledge and technical integration. This is the quest of MDE.  

 
In the following section, we show how the MDE principles can be applied to the development of plastic 
interactive systems by bringing together HCIware with mainstream software technological spaces. 
 
5. MDE for Plastic User Interfaces 
 
There are several approaches for the development of the systems presented in Section 3. For example, the user 
interface of the home heating control system can be produced based on a sound iterative user-centered design 
process. A similar process can be conducted in parallel for the mobile phone version. In the absence of explicit 
links between the two streams of development, this approach is doomed to failure: inconsistencies between the 
two user interfaces will occur, and maintenance of the two versions will be harder to synchronize. In addition, 
development efforts will be duplicated.  
 
Alternatively, the UI code for the workstation can serve as a reference for transformations into a new target UI 
for the mobile phone. Duplication of efforts is avoided and the approach is technically attainable. For example, 
using XLST, the HTML UI produced for the workstation can easily be translated into a WML UI for the mobile 
phone. Crossing technological spaces at the code level is not as straightforward, but is feasible. However this 
approach does not address deep UI adaptations: a code-centric approach is certainly able to address UI 
adaptation at the PP and LP levels (Physical and Logical Presentation). It cannot cope with higher levels of 
adaptation such as DC and FCA levels (Dialogue Control and Functional Core levels) where, for example, task 
sequencing may need substantial reorganization.  
 
UI migration and UI distribution introduce new challenges. In a code-centric approach, the code of CamNote and 
Sedan-Bouillon Web site would explicitly include instructions that make reference to the context of use. For 
example, “If am running on the PDA, then my rendering is this ; if I am running of a workstation, then my 
rendering is that”.  Clearly, this approach is acceptable for concept demonstration. It does not scale up in the 
context of ubiquitous computing where opportunism is paramount. This short analysis militates for an approach 
that continuously exploits models at multiple levels of abstraction not only for the development process but for 
the run time phase as well.  
 
In order to define the appropriate models, we need first, to investigate the functions that plastic interactive 
systems must support. Having identified the set of functions, we can then attach a useful set of perspectives 
(models) to each function.  

 



Figure 11. A reference model for the functional decomposition of plastic interactive systems. 
 
5.1 Functional Decomposition for Plastic Interactive Systems 
The picture shown in Figure 11 is a reference model that makes explicit the functional decomposition of an 
interactive space for supporting plasticity [Balme 04]. At the bottom of the picture, the hardware, a dynamic 
assembly of processors, sensors and actuators, as well as an heterogeneous set of interaction resources such as 
pointing devices, microphones, private-eyes, and large-size screens. Each computer executes its own operating 
system and a diversity of virtual machines.  
 
The virtual machines are model interpreters of various sorts: 
• Java VM is a model interpreter where the model is a byte-code program.  
• Modality interpreters denote conventional GUI or Post-WIMP systems, speech processing as well as text-

to-speech processors. They interpret models that are modality specific. 
• Other model interpreters represent any set of interpreters used at run time including UI transformers from 

high level specifications.   
 
The virtual machines, operating systems, and hardware (including the interaction resources) define the effective 
platform. The rest of the figure represents the interactive system per se. The interactive system is comprised of 
two functional complementary facets:  
• the fundamental functions that motivate the existence of the system,  
• the adaptation manager so that these functions can be adapted to the context of use.  
 
The fundamental functions are structured according to the five abstraction layers of the Arch reference model 
[Arch 92]: the Functional Core and the Functional Core Adapter, the Dialogue Controller, the Logical and 
Physical Presentation layers denoted in the picture as the Multimodal Logical Presentation and Multimodal 
Concrete UI to stress the multimodal dimension of user interfaces (see Chapter XX in this book for more 
information on multimodal interactive systems)8. 

                                                
8 Editorial note: additional description of Arch can be provided here if not presented 
elsewhere in the book. 



 
By acting on input interaction resources, users (represented on the figure as eyes, hands, lips, and hears), 
generate low-level events that are processed by the appropriate modality interpreter(s), then fed into the 
Multimodal Logical Presentation layer. The Multimodal Logical Presentation is in charge of multimodal fusion 
and fission both for input and output at the appropriate level of abstraction. As in the Arch model, the Dialogue 
Controller controls the domain and user-dependent task sequencing, and the Functional Core Adapters express 
the software interfaces to accommodate mismatches between the domain-specific Functional Cores 
(applications) and the user interface per se of the interactive space. This five-level Arch-based functional 
structure has the capacity to self-adapt to the context of use thanks to the Adaptation Manager.  
 
The Adaptation Manager aims at satisfying three functional requirements:  
1- To acquire the context of use at the appropriate level of abstraction, and to detect (and signals) context and 

situation changes (due, for example to the arrival of a PDA): this is performed by the Context&Situation 
Manager.  

2- To elaborate a reaction in response to a new situation/context: this is performed by the Evolution Manager. 
For example, “if a new PDA arrives, then move the control panels of the interactive system to the PDA.”  

3- To execute the reaction plan: this is performed by the Adaptation Producer.  
 
The Context&Situation Manager is structured into four levels of abstraction [Coutaz 05]: at the lowest level, the 
system’s view of the world is provided by a collection of sensors. Sensors may be physical sensors such as 
RFID’s, or software sensors that probe a user’s identity and the state of the platform cluster.  The sensing layer 
generates numeric observables. To determine meaning from numeric observables, the Context&Situation 
Manager must perform transformations. The perception layer is independent of the sensing technology and 
provides symbolic observables at the appropriate level of abstraction. The situation and context identification 
layer identifies the current situation and context from observables, and detects conditions for moving between 
situations and contexts. Services in this layer specify the appropriate entities, roles and relations for operating 
within the user’s activities. They can be used to predict changes in situation or in context, and thus anticipate 
needs of various forms (system-centric needs as well as user-centric needs).  
 
The reaction plan built by the Evolution Manager may require suppressing and/or replacing parts or all of the 
Arch-based functional structure. This can involve re-using components from a components storage, and/or 
generating executable code on the fly by applying transformations on the models maintained by the Models 
interpreters. Executable code is one sort of digital models to represent a particular function. In current code-
centric approaches, these are the only sorts of models considered at run time. As shown in the following section, 
they are not the only ones in a MDE approach to UI plasticity.  
 
5.2 Models for UI plasticity 
HCI design methods produce a large body of contemplative models such as scenarios, drawings, storyboards, 
and mock-ups. These models are useful reference material during the design process. On the other hand, because 
they are contemplative, they can only be transformed manually into productive models. Manual transformation 
supports creative inspiration, but is prone to wrong interpretation and loss of key information. Typically, 
contextual information elicited in a Contextual Design analysis, is lost during the development process. From 
explicit, contextual information becomes implicit within the executable program: the mapping between the real 
world contextual information and its corresponding translation into code does not exist. How can we improve the 
situation? 
 
Given the current state of the art in HCI and SE, we see three possible realistic bridging points:   
1- Moving from contemplative scenarios to productive use cases; 
2- Bringing together productive task models with UML class diagrams to cover domain-dependent services 

and concepts; 
3- Moving from the contemplative description of context of use into the terms of the ontological space 

presented in Section 2.1.1. 
 
The framework presented in Figure 13 combines the second and third of our options with the MDE M1-M2 
levels9. The M2 level is composed of a set of meta-models (and relations) that specify the structure of the 
“important” concepts of our problem space. The M1 level is populated with multiple models that each provides 
                                                
9 This framework is a revision of earlier reference frameworks from the authors [Calvary 01, Calvary 02] 
developed within the CAMELEON project (Context Aware Modelling for Enabling and Leveraging Effective 
interactiON) project: http://giove.isti.cnr.it/cameleon.html. 



an “important” perspective on a given interactive system. According to the MDE principle, the M1-level models 
comply with the M2 level meta-models.  

 
Figure 13. A Model Driven Engineering framework for plastic UI’s. The set of columns represent different 
perspectives on a particular UI. In a column, all of the models conform to the same meta-model. A line 
corresponds to the result of transformation step. The framework makes explicit the need for revising models 
during the engineering process to fit in new constraints. For instance, an initial task model (M1-Tsk) might be 
tuned into another version (M1-Tsk') where a task interleaving operator (Figure 4a) is replaced with a sequence 
operator (Figure 4b) to cope with a small screen size. 
 
Figure 14 makes explicit the definition of some of the M2 meta-models (and their relations) using UML as the 
meta-metamodel [Sottet 06]. Figure 16 shows examples of M1-level models for the home heating control system 
and their mapping with their respective meta-models. 

 
Figure 14. A subset of the meta-models of our framework for plastic UI’s. 



 
The M2-models (meta-models) include, but are not limited to the following: 
 
M2-context of use defined as a specialization of the ontology presented in Section 2.1 where users, platforms and 
physical environments are sorts of Entities. 
 
M2-evaluation criteria: the productive meta-model that results from a manual translation of the system value 
presented in Section 2.2. 
 
M2-tasks and M2-concepts. As shown in Figure 14, a task has a name and pre- and post- conditions. It may be 
composed of other tasks by the way of a binary operator (such as the AND, OR, SEQ operators), or decorated 
with a unary operator (such as Optionality, Criticity, and Default option). BinaryOperators are related to 
navigation interactors to move between task spaces in the Concrete UI. A task manipulates concepts (denoted by 
the “ConceptTask” relation). In turn, a concept is a class composed of a set of attributes. This class may inherit 
from other classes, and may serve different roles. A concept is represented as interactor(s) in the Concrete UI by 
the way of the ConceptContainment relation. The TaskSpace relation shows how a task relates to a workspace. 
 
M2-Workspace structures the task space at an abstract level, and M2-interactor describes the interactors that will 
populate workspaces in the Concrete UI. As shown by the definition of M2-Workspace, workspaces are chained 
with each other depending on the binary operator of the source tasks. A workspace is mapped into the Concrete 
UI as a container class interactor. This container interactor, which, in the GUI modality, may be a panel or a 
window, is populated with interactors that render concepts and binaryOperations (navigation operators).  
 
M2-Program. A program is more than executable code. It covers multiple perspectives, typically: functional 
decomposition, mapping between functions and components, components configuration according to an 
architectural style10, mapping between components and resources of the platform [Bass 98]. Typically, a 
component specifies the services (functions) it requires, the functions it provides, the quality of service it can 
support, the technical space it belongs to, the “code” it encapsulates. Components as defined in distributed 
systems are not “rich enough” to express HCI concerns. Typically, we would like to express that a component is 
able to support this set of tasks, that it can run both on a PC and a MacOS X platform, and that supports such and 
such evaluation criteria in such and such situation. The Comet is one attempt in this direction [Calvary 04]. 
 
M2-Transformations correspond to transformation descriptions that can be automated. Figure 15 show examples 
of typical transformations between source task models and target workspaces using the following rules: 1) there 
is one workspace per source task. 2) chaining between workspaces is based on task operators. Thus, “T= T1 T2” 
(which means: “to achieve T, T1 must be achieved first, followed by the achievement of T2”) is transformed into 
two workspaces (shown in the picture as rectangles) that are accessible in sequence: the first workspace supports 
T1 and provides access to the workspace that supports T2. If T can be repeated, then the workspace that supports 
T2 must provide access to the workspace that supports T1. A more formal description of this type of 
transformation is presented next.  

 
 
                                                
10 An architecture style is a meta-model that includes a vocabulary of design elements (e.g., pipes and filters 
components), that imposes configuration constraints on these elements (e.g., pipes are mono-directional 
connectors between two filter components), and determines a semantic interpretation that gives meaning to the 
system description [Garlan, 1993]. 



Figure 15. Typical transformation patterns between task models (expressed with UAN operators) and 
workspaces.  

 
In practice, how to exploit an M2-space?  
 
5.3 Models in action 
The M2-space offers many ways to produce plastic UIs. Let’s see some examples. 
 
The approach in conventional UI generation is to start from the production of a M1-task model and a M1-
concept model, then to apply successive vertical transformations down to the generation of a M1-Program. In the 
example of Figure 16, the designer has produced the M1-Task model (bottom-right of the figure) and the M1-
Concept model (top left) for the home heating control system. These M1 level models comply with their 
respective M2 level models. They have been transformed by vertical top down refinement into the Concrete UI 
shown at the top of Figure 16. This Concrete UI, as perceived and manipulated by the user, results from the 
interpretation of the corresponding M1-program by the model interpreters of Figure 11.  
 

 
Figure 16. The home heating control system from an MDE perspective. A subset of the M1-level models that 

correspond to the situation c) of Figure 4, and their mapping with their respective M2-level models. (For 
simplification purpose, only a subset of the mappings have been represented.) 

 
Because the M1 level models of our example are productive, the transformations can be performed automatically 
in the following way: the M1-Task model, which is comprised of one top level task and two subtasks, is 
transformed into one entry/exit workspace that leads to two workspaces (top right of Figure 16). Figure 17 shows 
the corresponding transformation description using ATL [Bézivin 03] as a transformation language.  
 
Each workspace is then mapped into a container interactor (a window for the entry/exit workspace, and two 
panels within the window for the other two workspaces).  The concepts of M1-Concept (room and thermostats) 
are mapped into their respective interactors within their container interactors: on one hand, a ComboBox for 
specifying the room; on the other hand, a ComboBox for setting the room temperature and a label to express the 
unit of measure (Celsius). The interactors are then transformed into executable code. This top-down approach is 
used in classic UI generation. However, in classic UI generation, there is no traceability between the M1 level 
models. Typically, once the code is generated, the task model is lost.  
 
In our approach, all of the M1 level models maintain an explicit mapping between them. Since they are “alive” 
at run time, any model can be used on the fly to inform the adaptation process. Thus, our approach makes it 
possible to combine transformations at run time, mixing bottom-up transformations to reach the appropriate level 
of abstraction with horizontal transformations to switch, for example, to a distinct technological space, then 



applying vertical refinement to produce an appropriate retargeted UI. Note that, because, mapping is maintained 
at a fine grain, transformations can be applied only to the portions of the UI that need to be adapted.  
 
 
module M2TaskToM2Workspace { 
  from M1Task : M2Task  
  to   M1Workspace : M2Workspace  
  -- One workspace per task 
  rule TaskToSpace { 
    from t : M2Task!Task 
    to w : M2Workspace!Space ( 
      name <- t.name ) 
  } 
  -- OrOperator to SequenceOperators 
  rule OrOperatorToSequence{ 
    from o : M2Task!BinaryOperator ( 
      o.name = "or" 
    ) 
    to motherToLeft : M2Workspace!Sequence ( 
      origin<- [TaskToSpace.w]o.motherTask,   
      destination<-[TaskToSpace.w]o.leftTask) 
 
Figure 17. An ATL transformation description based on the M2-space of Figures 14 and 16. The rule 
TaskToSpace creates one workspace w per source task t where w takes the name of t; The rule 
OrOperatorToSequence transforms all OR operators o between two tasks (o.leftTask and o.rightTask) into two 
sequence operators (from o.motherTask to o.leftTask, and o.leftTask to o.rightTask). 

 
Other forms of optimization can be performed for known recurrent situations. For example, in CamNote and the 
Sedan-Bouillon Web site, two situations have been devised by design: the dynamic arrival and departure of a 
PDA with the dynamic migration of workspaces between the resources of the cluster. For these pre-planned 
situations, two types of control panels have been pre-computed and maintained in a components repository. They 
are dynamically retrieved as needed and mapped to the appropriate computing device.  
 

 
Figure 18. Factorisation applied to task models. 

 
In an early version of the home heating control system, switching from a UI implemented in Java/AWT to a UI 
implemented in WML or HTML, was not performed on the fly: the target UIs were pre-computed according to 
the classic top-down approach using factorization and decoration transformations at every step of the vertical 
refinement process. Figure 18 illustrates the principle of these transformations. At the top, three M1-task models 
have been devised for the Java/AWT, HTML and WML-enabled target platforms. The task model obtained from 



factorization is shown at the bottom left: 3 specific parts are linked to a shared part. The AVANTI’s 
polymorphic tasks apply this method. On the bottom right, a unique task model is produced using decorations to 
express exceptions. Factorisation allows designers to focus on one target at a time, followed by the combination 
of the descriptions produced independently for each target into a single description where common parts are 
factored out. Decoration supports a different approach where designers focus on a reference target and then 
define exceptions. 
 
5. Conclusion 
Ad-hoc code-centric approaches to the development and deployment of plastic interactive systems are probably 
acceptable when the intended context of use is highly constrained. In ubiquitous computing, all aspects of user 
interface adaptation cannot be pre-programmed. Model Driven Engineering, which supports (re)computation 
from any level of abstraction, provides one possible avenue to address this new challenge.  
 
In MDE, everything is a model.  Models that represent a system do not float as independent things. Instead, they 
are organized into oriented graphs. Each graph represents an important principle of MDE: “compliance”, 
“representation”, and “transformations”.  
• Compliance enforces rigor. In MDE, the modeling world is organized into three levels of reasoning: the M1 

model level, the M2 meta-level, and the M3 meta-meta level, where each level complies with the level 
above it. 

• Representation supports the capacity to define multiple perspectives on a given thing. 
• Transformation and mapping are fundamental to on the fly adaptation. It also provides the formal 

foundation for crossing the boundaries between technological spaces. This is where SE and HCI can cross-
fertilize.  

 
In HCI, Model-based approaches to the automatic generation of user interfaces have been investigated since the 
mid-eighties (Cf. the seminal COUSIN [Hayes 85] and Open-Dialogue [Schulert 85] User Interface Management 
Systems - UIMS’s). Although promising, the UIMS technology has not found wide acceptance: for developers, 
it meant a new language to learn and designers felt severely limited by the constraints of stereotyped user 
interfaces  [Myers 00]. The MDE-based framework we propose is intended to alleviate these problems: tools can 
be defined to encapsulate the low-level details of a particular language. Developers can “program” (produce 
models) in their favorite language since the result of this programming activity is a model that can be 
transformed into the appropriate target model(s). Creativity is not limited since, again, M0 level code can be 
vertically transformed into higher level of abstraction. The fundamental difference with the UIMS technology is 
that all models of a system are alive at run time: the run time system is not about executable code only. 
 
Our MDE framework sets the global picture and principles for plastic user interfaces. It can be put in actions in 
many ways. Seminal work in plastic UI includes UIML [Abrams 94] and XIML [Puerta 01] that transform M1 
level models into M0 level programs to support Logical Presentation level adaptation for centralized GUI. Tools 
for retargeting UI’s such as Vaquita [Bouillon 02] and WebRevenge [Paganelli 03] correspond to a combination 
of bottom-up vertical, horizontal, and top-down vertical transformations. They lie within the same meta-meta 
level (the XML Technological Space), but they use distinct Level 2 meta-models. Vaquita and WebRevenge 
work off line. On the other hand, Digymes [Coninx 03] and Icrafter [Ponnekanti 01] generate Concrete User 
Interfaces (CUI) at run time where a renderer dynamically computes a CUI from a workspace level model 
expressed in XML. Websplitter [Perret 00] supports the distribution of web pages content at the interactor level 
across the interaction resources of heterogeneous clusters, but distribution is statically specified in an XML 
policy file. As  proof of concepts, small size exemplars have been developed for different technological spaces. 
The challenge is to define appropriate M2-level meta-models. Transformation is also key to the success of this 
approach. TransformiXML of the UsiXML [Limbourg 04a, Limbourg 04b] meta-level environment, which is 
based on graphs transformations, is certainly a promising way. Thus, there is still a long way to go. Success will 
require a strong active collaboration between software engineering for HCI, software architecture, machine 
perception, and evaluation process. 
 
6. Acknowledgements 
 
This work has been supported by the Framework V FET Open GLOSS project (IST-2000-26070), CAMELEON 
(IST-2000-28323), and Framework VI Network of Excellence SIMILAR. The authors wish to thank Gaëtan Rey 
for the development of the contextor infrastructure, Lionel Balme and Alexandre Demeure for the 
implementation of CamNote and the Sedan-Bouillon Web site as well as for the development of the first version 



of the run-time infrastructure for plastic UI’s. Thanks to Jean-Marie Favre and Jean-Sébastien Sottet for their 
insights into MDE principles.  
 
7. References 
 
[Abrams 94] Abrams, M. Phanariou, C., Batongbacal, A., Williams, S. and Shuster, J. UIML: an appliance-
independent XML User Interface Language. Proc. Of the 8th WWW conference, WWW’94. 
[Arch 92] Arch, “A Metamodel for the Runtime Architecture of An Interactive System”, The UIMS Developers 
Workshop, SIGCHI Bulletin, 24(1), ACM (1992). 
 
[Balme 04] Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G. CAMELEON-RT: A Software 
Architecture Reference Model for Distributed, Migratable, and Plastic User Interfaces, Lecture Notes in 
Computer Science, Volume 3295 / 2004, Ambient Intelligence: Second European Symposium, EUSAI 2004, 
Markopoulos P., Eggen B., Aarts E. et al. (Eds), Springer-Verlag Heidelberg  (Publisher), ISBN: 3-540-23721-6, 
Eindhoven, The Netherlands, November 8-11, 2004, pp 291-302. 
 
[Bass 98] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice.  Addison Wesley Publ., ISBN 0-
201-19930-0 (1998). 
 
[Berti 05] Berti, S. and Paternò F. Migratory multimodal interfaces in multidevice environments. In Proc. 
International Conference on Multimodal Interfaces (ICMI 05), ACM Publ., 2005, pp.92-99. 
 
[Bézivin 01]  Bézivin, J. In Search of a Basic Principle for Model Driven Engineering.  Novatica Journal, 
Special Issue, March-April 2004. 
 
[Bézivin  03] Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui., J. "First Experiments with the ATL 
Transformation Language: transforming XSLT into Xquery", in OOPSLA Workshop, Anaheim California USA, 
2003. 
 
[Bouillon 02] Bouillon, L., Vanderdonckt, J., Retargeting Web Pages to other Computing Platforms, 
Proceedings of IEEE 9th Working Conference on Reverse Engineering WCRE'2002 (Richmond, 29 October-1 
November 2002), IEEE Computer Society Press, Los Alamitos, 2002, pp. 339-348. 
 
[Calvary 01] Calvary, G., Coutaz, J., Thevenin, D. A Unifying Reference Framework for the Development of 
Plastic User Interfaces, Proceedings of 8th IFIP International Conference on Engineering for Human-Computer 
Interaction EHCI’2001 (Toronto, 11-13 May 2001), R. Little and L. Nigay (eds.), Lecture Notes in Computer 
Science, Vol. 2254, Springer-Verlag, Berlin, 2001, pp. 173-192. 
 
[Calvary 02] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Souchon, N., Bouillon, L. Vanderdonckt, J. 
Plasticity of User Interfaces: A Revised Reference Framework, First International Workshop on Task Models 
and Diagrams for User Interface Design TAMODIA'2002, Bucarest, 18-19 July 2002, pp 127-134. 
 
[Calvary  04] Calvary, G., Coutaz, J., Dâassi, O., Balme, L., Demeure, A. Towards a new generation of widgets 
for supporting software plasticity: the « comet », EHCI-DSVIS'2004, The 9th IFIP Working Conference on 
Engineering for Human-Computer Interaction Jointly with The 11th International Workshop on Design, 
Specification and Verification of Interactive Systems, Bastide, R., Palanque, P., Roth, J. (Eds), Lecture Notes in 
Computer Science 3425, Springer, ISSN 0302-9743, Hamburg, Germany, July 11-13, 2004, pp 306-323. 
 
[Cockton 04] Cockton, G. From Quality in Use to Value in the World. In ACM Proc. CHI 2004, Late Breaking 
Results, April 2004, pp. 1287-1290. 
 
[Cockton 05] Cockton, G. A development Framework for Value-Centred Design. In ACM Proc. CHI 2005, Late 
Breaking Results, April 2005, pp. 1292-1295. 
 
[Coninx 03] Coninx K., Luyten K., Vandervelpen C., Van den Bergh J., Creemers B., Dygimes: Dynamically 
Generating Interfaces for Mobile Computing Devices and Embedded Systems. In Proc. Mobile HCI, 2003. 
  
[Coutaz 05] Coutaz, J., Crowley, J. , Dobson, S., Garlan, D. Context is Key, Communications of the ACM, ACM 
Publ., 48(3), March 2005, pp.49-53 
 



Coutaz, J. Architectural Design for User Interfaces; The Encyclopedia of Software Engineering, J. Marciniak 
Ed., Wiley & Sons Publ., seconde édition, 2001. 
 
[Elrad 01] Elrad, T., Filman, R., Bader, A.  Aspect Oriented Programming. Special issue, Communication of the 
ACM, August 2001, 44(10). 
 
[Favre 04a] Favre J.M., "Foundations of Model (Driven) (Reverse) Engineering", Dagsthul Seminar on 
Language Engineering for Model Driven Development, DROPS, http://drops.dagstuhl.de/portals/04101, 2004. 
 
[Favre 04b] Favre J.M., "Foundations of the Meta-pyramids: Languages and Metamodels", DROPS, 
http://drops.dagstuhl.de/portals/04101, 2004. 
 
[Hartson 90]  Hartson, R., Siochi, A. & Hix, D. “The UAN: a user-oriented representation for direct 
manipulation interface designs”. ACM Transaction on Information Systems (TOIS), 8(3), July 1990, pp. 181-
203. 
 
[Hayes 85] Hayes, P.J., Szekely, P., and Lerner, R.A. Design alternatives for user interface management systems 
based on experience with COUSIN. In Proc. Of the ACM Conf. on Human Factors in Computing Systems 
(CHI’85, San Francisco, CA, Apr. 14-18), 1985, pp. 169-175. 
 
[Hinckley 03] Hinckley, K. Synchronous gestures for  multiple persons and computers. Proc. 16th annual ACM 
symposium on User interface software and technology, UIST, 2003, pp. 149-158. 
 
[Kurtev 02] I. Kurtev, J. Bézivin, M. Aksit, "Technological Spaces: an Initial Appraisal", CoopIS, DOA'2002 
Federated Conferences, Industrial track, Irvine, 2002 
 
[Limbourg 04a] Limbourg, Q. "Multi-path  Development of User Interfaces", PhD of University of Louvain La 
Neuve, Belgium, 2004. 
 
[Limbourg 04 b] Limbourg Q., Vanderdonckt J., Michotte B., Bouillon L., Lopez-Jaquero, V., "UsiXML: a 
Language Supporting Multi-Path Development of User Interfaces", Working Conference on Engineering for 
Human-Computer Interaction, 2004. 
 
[Mens 04] Mens, T., Czarnecki, K. and Van Gorp, P. A taxonomy or Model Transformations. Dagstuhl Seminar 
Proc 04101. http://drops.dagstuhl.de/opus/volltexte/2005/11. 
 
[Mori 02] Mori, G. Paternò, F. and Santoro, C. CTTE: Support for Developing and Analyzing Task Models for 
Interactive System Design. IEEE Transactions on Software Engineering, August 2002, pp. 797-813. 
 
[Mori 04] Mori G., Paternò F., Santoro C. "Design and Development of Multidevice User Interfaces through 
Multiple Logical Descriptions" IEEE Transactions on Software Engineering, August 2004. 
 
[Myers 00] Myers B., Hudson S.E., Pausch R. "Past, Present, and Future of User Interface Software Tools", 
Transactions on Computer-Human Interaction (TOCHI), Vol 7, Issue 1, 2000. 
 
[Myers 01] Myers, B. A., Using Handhelds and PCs Together, Communication of the ACM, Vol. 44, No 11, 
November 2001, pp. 34-41. 
 
[Nielsen 93] Nielsen, J. Usability Engineering. London Academic Press. ISBN 0-12-518406-9, 1993. 
 
[Paganelli  03] Paganelli, L., Paternò, F. A Tool for Creating Design Models from Web Site Code, International 
Journal of Software Engineering and Knowledge Engineering, World Scientific Publishing 13(2), pp. 169-189, 
2003. 
 
[Paternò 03] Paternò, F. ConcurTaskTrees: An Engineered Notation for Task Models, Chapter 24, in  Diaper, D., 
Stanton, N. (Eds.), The Handbook of Task Analysis for Human-Computer Interaction, pp. 483-503, Lawrence 
Erlbaum Associates, 2003. 
 



[Perret 00] Han R., Perret V., Naghshineh M., WebSplitter: A Unified XML Framework for Multi-Device 
Collaborative Web Browsing, Appeared in ACM Conference on Computer Supported Cooperative Work 
(CSCW) 2000. 
 
[Planet] Planet MDE, "A Web Portal for the Model Driven Engineering Community" http://planetmde.org. 
 
[Ponnekanti  01] Ponnekanti, S., Lee, B., Fox, A., Hanrahan, P., Winograd, T. Icrafter: a Service Framework for 
Ubiquitous Computing Environments. In Proc. Ubicomp 2001, G. Abowd, B. Brumitt, S. Shafer Eds., Springer 
Publ., LNCS  2201, 2001, pp. 57-75. 
 
[Puerta 01] Puerta, A. Eisenstein. XIML: a common representation for interaction data. Proc. IUI01, ACM publ., 
2001, pp. 214-215. 
 
[Rekimoto 97] Rekimoto, J.: Pick and Drop: A Direct Manipulation Technique for Multiple Computer 
Environments. In Proc. of UIST97, ACM Press, (1997) 31-39. 
 
[Rey 05] Rey, G. Le Contexte en Interaction Homme-Machine ; le Contexteur. Thèse de doctorat Informatique 
préparée au Laboratoire de Communication Langagière et Interaction Personne-Système (CLIPS), Université 
Joseph Fourier, 1er Août, 2005 
 
[Rosson 02] Rosson, M,B.,and Carroll, J. Usability Engineering, Scenario-Based Development of Human 
Computer InteractioN. Morgan Kaufmann Pub. 2201. 
 
[Shackel 84] Shackel, B. The concept of usability. In Visual Display Terminals: Usability Issues and Health 
Concerns, J. Bennett et al. eds, Englewood Cliffs NJ: Prentice-Hall, ISBN 0-13-942482-2, 1984. 
 
[Schulert 85] Schulert, A. J., Rogers, G. T., and Hamilton, J. A. ADM-A Dialogue Manager. In Proc. Of the 
ACM Conf. on Human Factors in Computing Systems (CHI’85, San Francisco, CA, Apr. 14-18), 1985, pp. 177-
183. 
 
[Stephanidis 01] Stephanidis, C. and Savidis, A. (2001) Universal Access in the Information Society: Methods, 
Tools, and Interaction Technologies. Journal of the Universal Access in Information Society UAIS, 1 (1), 40-55.  
[Streitz 99] Streitz, N., Geibler, J., Holmer, T., Konomi, S., Müller-Tomfelde, C., Reischl, 
W., Rexroth, P., Seitz, P., Steinmetz, R. i-LAND: An interactive Landscape for Creativity and 
Innovation. In Proc. of the ACM conf. On Human Factors in Computer Human Interaction 
(CHI99), ACM, 1999, pp. 120-127. 
 
[Sottet 06]  Sottet, J.S., Calvary, G., Favre, J.M. Mapping Model: A First Step to Ensure 
Usability for sustaining User Interface Plasticity, MDDAUI'06 held in conjunction with 
MoDELS'06, Geneva, Italy, October 3, 2006 
 
[Thevenin 99] Thevenin, D. & Coutaz, J. Plasticity of User Interfaces: Framework and Research Agenda. In 
Proc. Interact99, Edinburgh, , A. Sasse & C. Johnson Eds, IFIP IOS Press Publ. , 1999, pp.110-117. 
 
[Vanderdonckt 93] Vanderdonckt, J. and Bodard, F. Encapsulating Knowledge for Intelligent Automatic 
Interaction Objects Selection. Proceedings of the joint ACM Conference on Human Factors in Computing 
Systems CHI and IFIP Conference on Human Computer Interaction INTERACT, April 24-29, 1993, 
Amsterdam, The Netherlands, ACM Press. 
 
[Zizi 94] Zizi, M. and Beaudouin-Lafon, M. (1994) Accessing Hyperdocuments through Interactive Dynamic 
Maps. Proceeding of the European Conference on Hypertext Technology ECHT, September 19 – 23, 1994. 
Edinburgh, Scotland. ACM Press. 
 
 


