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ABSTRACT 

In this paper we address the problem of the development of 
multimodal interfaces. We describe a three-dimensional 
characterization space for software components along with its 
implementation in a component-based platform for rapidly 
developing multimodal interfaces. By graphically assembling 
components, the designer/developer describes the transformation 
chain from physical devices to tasks and vice-versa. In this context, 
the key point is to identify generic components that can be reused 
for different multimodal applications. Nevertheless for flexibility 
purposes, a mixed approach that enables the designer to use both 
generic components and tailored components is required. As a 
consequence, our characterization space includes one axis dedicated 
to the reusability aspect of a component. The two other axes of our 
characterization space, respectively depict the role of the component 
in the data-flow from devices to tasks and the level of specification 
of the component. We illustrate our three dimensional 
characterization space as well as the implemented tool based on it 
using a multimodal map navigator. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User Interfaces 
– Input devices and strategies, Interaction styles, Prototyping, User 
interface management systems (UIMS); D.2.2 [Software 
Engineering]: Design Tools and Techniques – User interfaces 

General Terms 
Algorithms, Design, Human Factors, Standardization, Theory. 

Keywords 
Multimodal Interaction Model, Component-based Approach, 
Design and Implementation Tool. 

1. INTRODUCTION 
The multimodal interaction domain has expanded rapidly and 
significant achievements have been made in terms of both 
modalities and real multimodal applications. The advent of new 
modalities based on a variety of captors and effectors coupled with 
recognition/synthesis mechanisms, as well as the availability of 
affordable and commonly used devices, such as webcams and game 

devices (Nintendo Wii Remote [34]) are rapidly enriching the 
interaction capabilities of desktop computers. As pointed out by 
Olsen [28], “systems based on one screen, one keyboard and one 
mouse are the new equivalent of command-line interfaces”. 
In addition, going beyond desktop interfaces, multimodal 
applications have a key role to play on mobile and tabletop systems. 
Mobile devices embed more and more sensors and interaction 
techniques, such as the accelerometer and the tactile screen with 
two-handed interaction of the recent iPhone [20]. Moreover tabletop 
applications are often based on multimodal interaction by 
combining speech and gesture [38]. 
Facing the vast world of possibilities for interaction modalities, 
models and tools for integrating and combining those modalities 
become a real challenge that we address in this paper. Our 
discussion will concentrate on multimodal input, from the user to 
the system, although the presented approach may hold for output as 
well. 
In this paper we describe a characterization space of software 
components for rapidly developing multimodal interfaces. Our 
characterization space is independent from component-based 
technologies, such as Corba [29], and from services-based 
approaches, such as OSGi [31]. The characterization space defines 
high-level characteristics of components, that can be implemented in 
any of those technologies. In this paper we use the term 
“component” to refer to any type of software unit (e.g., software 
component, service). We present an implementation of the 
characteristics defined in our space in a component-based platform, 
OpenInterface (OI) [13].   
The structure of this paper is as follows: we first motivate our 
approach according to existing tools for multimodal interaction. We 
then present an overview of the characterization space as well as its 
scope. We then explain its implementation within the OpenInterface 
framework and illustrate our approach using one of the multimodal 
applications developed within the OI framework, a multimodal map 
navigator whose main features are presented in the next section. 

2. ILLUSTRATIVE EXAMPLE: A 
MULTIMODAL MAP NAVIGATOR 
Since the seminal put-that-there [3], many studies have focused on 
multimodal interaction with a map [7] [38]. We thus consider the 
classical example of multimodal navigation for a map-based 
application in order to illustrate and validate our approach. 
The multimodal map navigator consists of a map that can be 
controlled using several interaction modalities. Using a set of 
devices and the corresponding pure/combined modalities, the user 
can perform a set of interactive tasks such as panning or zooming. 
For example, the zoom on a specific point of the map can be 
specified by combining speech and mouse (Figure 1-a), speech and 
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pointing gesture (Figure 1-b), or by pressing a balloon along with a 
pointing gesture (Figure 1-c). A high pressure on the balloon is used 
to zoom in, and a low pressure to zoom out. 

Capture of the finger position is done using the DiamondTouch [9]. 
Capture of the pressure on the balloon is realized using the 
interface-Z electronics platform [17], which integrates several 
innovative sensors such as an atmospheric pressure sensor. Other 
input devices used with our map-based application include an IR 
finger tracker [21] and the Wii Remote. 

 
-a-   -b-   -c- 

Figure 1. Multimodal interaction with a map. 

3. RELATED WORK 
Nowadays we observe an increasing interest in software tools for 
multimodal / post-WIMP User Interfaces (UI).  
Several recent studies especially in the fields of ubiquitous 
computing and augmented reality, such as phidgets [14] and the 
iStuff toolkit [1], focus on innovative and multi-devicesinteraction. 
Most toolkits are designed for specific devices and/or interaction 
paradigms, such as camera-based interaction [23], 3D interaction 
[32], interactive information visualization [15] or multi-person 
concurrent interfaces [33]. Those toolkits allow implementation and 
configuration of specific interaction techniques, usually supporting 
devices efficiently but in ad-hoc ways. Moreover they cover only the 
device level of interaction or they provide a simple direct mapping 
between devices and tasks. Moreover they do not consider the 
combination of modalities.  
As opposed to toolkits dedicated to programmers, other tools for 
post-WIMP UI are dedicated to prototyping such as CrossWeaver 
[35], BOXES [17] and the CSLU Toolkit [36]. Such tools do not 
require programming skills.  
In this context our goal is to define a tool dedicated to multimodal 
UI (1) that supports multiple devices, being able to encapsulate 
existing post-WIMP UI toolkits (2) that enables the description of 
the complete interaction from devices to tasks (3) that allows us to 
define multimodal design solutions without programming skills (4) 
that supports the rapid development of multimodal interaction for 
quickly exploring different design solutions.  
As in Magglite [18] and its related toolkit ICON [10] as well in our 
previous work ICARE [4], we adopt a data-flow approach that has 
been shown to be adapted for specifying multimodal interaction. 
Our contribution is to characterize the building blocks (called here 
components) that define this data-flow from devices to application 
tasks. The following section presents this characterization space. We 
then present a design/development tool based on components with 
these characteristics. 

4.  CHARACTERIZATION SPACE OF 
COMPONENTS 
After presenting the scope and an overview of our characterization 
space of multimodal UI components, we explain how such 
characteristics will enable us to reach our objectives stated in the 
previous section and motivated by the limitations of existing tools. 

4.1 Scope and overview of the space 
Our characterization space for multimodal interaction defines a set 
of characteristics of components, understanding the term 
“component” as any type of software unit (e.g., software component, 
service). As pointed out by Morch [24], component-based software 
development (CBSD) allows users to tailor existing applications by 
assembling high-level components. However our characterization 
space does not define the execution behaviour of the components or 
the communication mechanisms between components, as do 
traditional component-based models, such as the Corba Component 
Model (CCM) [29], the Component Object Model (COM) [8] and 
JavaBeans [11], or services-based approaches, such as OSGi [31]. 
Our space can be used to define and implement high-level 
characteristics of components that can be implemented in any of 
those technologies. 

 
Figure 2. Different types of components within the ARCH 

software architecture [37]. 
Concerning the development of an interactive system, to fully 
understand the scope of our approach, we show in Figure 2 where 
the corresponding components are located within the complete code 
of the interactive system structured along the ARCH software 
architectural model [37]: our approach focuses on the interaction 
part of an interactive system. For example, in our illustrative 
example, we consider that we have a functional core of a map 
application and we focus on the design and implementation of the 
interactive part of the system. By doing so, for the implementation 
of our example, we were able to experiment on multimodal 
interaction with different map applications (Functional Core) 
including GoogleEarth [13], a map server developed by France 
Telecom and a stand-alone application in Java. Now that we have 
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presented the scope of our approach, we give an overview of the 
characterization space before detailing its key points in the next 
paragraphs.  

Our space is defined along three dimensions as shown in Figure 3. 
The first dimension of the space describes the genericity of the 
components. Our space includes both generic and tailored 
components. Generic components represent high-level reusable 
abstractions. Tailored components implement operations for specific 
devices or for application-dependent tasks. The second dimension 
of the space is related to the data-flow from input devices to an 
interactive application. Along this axis, we identify four types of 
components: we reuse from ICON [10] the three types of 
components (Device, Adapters and Application components) 
corresponding to three levels of abstraction that we respectively 
name Device, Transformation and Task. From ICARE [4], we reuse 
the CARE Composition components. The third dimension of the 
space is related to the component approach. Along this dimension, 
we identify two levels of abstraction for specifying a component: 
Software Component and Interaction Entity. 

As shown in Figure 3, this component characterization space is 
wider than the ones of ICARE and ICON. 

 
-a-    -b- 

Figure 3. -a- Three axes of our characterization space.   
     -b-  Comparison with ICARE and ICON. 

In the next paragraphs of this section we describe how those three 
dimensions respond to some of the limitations identified in Section 
3. 

4.2 From input devices to interactive tasks 
As explained before, existing approaches intend to connect input 
devices to interactive tasks. While the ICON approach is interesting, 
using adapters between the input devices and the tasks, it does not 
treat the multimodal fusion of modalities. For defining the 
combination of modalities, we reuse the CARE components from 
the ICARE tool [3]. The CARE components are fully described in 
[25]. 
Our space advocates four types of components that will help both 
designers and developers to fill the gap existing today between input 
devices and interactive applications. The four types of components 
are organized into three levels: Task (task components), 
Transformation Chain (transformation and composition 
components) and Device (device components). 

Input devices define the entry points of data in the transformation 
chain (at the bottom in Figure 2). The transformation chain is 
responsible for transforming input values coming from input devices 
into values adapted to the interactive task under design. The 
transformation chain is composed of two classes of components, 
namely transformation and composition components. 
At the end of the transformation chain (on top in Figure 2), task 
components are responsible for the link between the multimodal 
interaction specified in the assembly of components and the rest of 
the application. If the application is structured along the ARCH 
software architectural model (Figure 2), task components will 
communicate with the Dialog Controller.  

4.3 Designing Multimodal Interaction: 
description levels 
Existing approaches are not made for designers, as they require 
programming skills. As part of our iterative user-centered design 
process, we would like designers to be able to build multimodal 
interaction using components. The main issue is the component 
description level, as designers need different information than 
developers. For example, for a given device a designer will be more 
interested by the human sense involved, the weight of the device, its 
dimensions, etc. The developer will be more interested by the driver 
library, its programming language, the types of the parameters, etc. 

 
Figure 4. Designer assembly using interaction entities (left) and 

developer assembly using software components (right). 
The component specification axis defines two levels of abstraction 
for specifying a component. Such levels define different points of 
view on components that can be manipulated by the 
designer/developer. The Interaction Entity level corresponds to 
general characteristics of the component, without implying any 
logical or software structure. The description of an Interaction Entity 
is therefore independent of the component-based approach. Indeed 
the description includes attributes related to its nature: HCI and 
physical attributes for device component, mathematical or physical 
attributes for transformation components, semantic or temporal 
attributes for composition components, and Foley’s taxonomy-based 
attributes for task components [12]. An Interaction Entity can then 
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be implemented in different Software Components. Each Software 
Component belongs to a component technology (such as Corba or 
OSGi), has a license, a price, and is implemented in a specific 
language (Java, C++), etc.  
Figure 4 illustrates two assemblies of components: on the left, an 
assembly of interaction entities made by a designer. On the right, the 
corresponding assembly implemented by a developer using software 
components. 

4.4 Need for genericity 
The major goal of our approach is, through the exploration of design 
solutions, to enable the fast development of multimodal 
applications, promoting reusability and simplifying the design and 
development of multimodal interfaces. In order to attain this, the key 
point is the genericity of the manipulated units. There are two main 
reasons for looking for genericity: expressive leverage and 
reusability. In this section we detail those two points and then 
present our approach for defining generic components. 

4.4.1 Genericity for expressive leverage 
Using generic components improves the expressive leverage of our 
approach, as pointed out by Myers [26] and Olsen [28]. “Expressive 
leverage is achieved when a tool reduces the total number of choices 
that a designer must make to express a desired solution” ([28]). In 
order to improve the expressive leverage of a tool, “generalize and 
reuse” is one of the solutions. 
As seen in Figure 4, the designer (left assembly) can choose a 
generic component (e.g., 2D Motion) instead of a specific input 
device (e.g., Mouse). The developer will then select a tailored 
component. This reduces both the choices for the designer and the 
developer.  
At the same time, tailored components allow both the designer and 
the developer to have more freedom. The notion of tailored 
component has been defined in [24] as a component supporting 
domain-oriented functionalities. In our case, tailored components 
are components implemented in an ad-hoc way.  

4.4.2 Genericity for reusability 
In our approach the key point is to identify generic components that 
can be used for different multimodal applications. Such generic 
components will enable the rapid development and exploration of 
design solutions for multimodal interaction.  
We have identified two levels of reusability: reusing a component 
and reusing a set of components. For example, in Figure 4, generic 
components, such as the Equivalence component, can be reused in 
another assembly (reuse of one component). At the same time, if the 
developer wants to use another input device instead of the Mouse, 
he just has to replace the Mouse component. He is reusing the whole 
assembly (reuse of set of components), thanks to the generic device 
2D Motion, that allows the easy connection of different input 
devices. 
Concerning the reusability of tailored components, they may be 
reusable, but usually tailored components are implemented for the 
needs of a specific interactive application. For example, in Figure 4, 
the Voice Recognition and the Mouse components are tailored, as 
they use specific drivers. We could say that, as the Mouse 
component is reusable, it should be generic. However, we define 
generic devices according to the interaction actions, and not to the 
captured data. We will detail this in the next section by introducing 

the notion of generic component in relation to the different data-
flow levels (task, transformation, composition, device). 

4.4.3 Models for genericity 
In order to define generic components at the different levels 
identified before, i.e. task, composition, transformation and device 
levels, we use existing and well-known models of human-computer 
interaction. We will next present the models used for each level. 

Generic devices 
On the bottom of the data-flow, to define generic device 
components, we use and extend Buxton’s taxonomy [5]. As 
explained in [22], several taxonomies exist for input devices. 
Buxton’s taxonomy classifies continuous hand-controlled input 
devices along a classification matrix, using the degree of freedom 
and the sensed property as main axes. Some studies also provide 
taxonomies dedicated to a specific class of devices, such as the 
taxonomy of Hinckley [16] for touch-sensing devices. We base our 
approach for defining generic device components on Buxton’s 
taxonomy, shown in Figure 5 with some examples of input devices. 

 
Figure 5. Buxton's taxonomy. 

Other types of input devices, such as speech or image analysis, are 
difficult to classify since several levels of abstraction can be defined 
for describing them. We do not treat them in the taxonomy. Those 
non-classified devices can then be described in our model using 
tailored components. In our future work we will study how to 
classify and define abstractions of those other input devices. 

Generic tasks 

On the upper part of the data-flow, generic and reusable tasks 
components are based on Foley’s interactive tasks [12]. For 
example, the Orient task of Figure 4 is one of Foley’s tasks.  

Generic transformation 

Generic transformations are based on the generic devices as defined 
before. Generic transformations implement reusable operations that 
are usually performed on data from a generic device (e.g., the Filter 
component of Figure 4, that filters input events according to a 
generic specification). 

Generic composition 

In order to create generic composition components, from ICARE [4] 
we reuse the CARE Composition components. For example, in 
Figure 4 we use an Equivalence composition between the mouse 
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and the voice recognition. The CARE components are fully 
described in [25].  

Table 1 summarizes the notion of generic component for the 
different data flow levels presented above. 

In this section we have presented our three-dimensional 
characterization space of components along with its key points and 
benefits for the rapid development of multimodal applications. In 
the next section we present one implementation. 

 
Table 1. Genericity according to the different levels of the 

interaction data-flow. 

5. IMPLEMENTATION 
The identified characteristics have been implemented in a 
component-based approach. We remind the reader that instead of 
component-based platform, we could have used a service-oriented 
approach. We implemented the characteristics defined in our space 
in the OpenInterface (OI) framework, a component-based platform. 
Several generic and tailored components have been implemented in 
the OI framework. Moreover, using the OI framework, we have 
implemented the multimodal map navigator of Section 2.  
The OI framework is composed of the OpenInterface Interaction 
Development Environment (OIDE), a graphical environment, and 
by the OI Kernel, the underlying runtime platform. The OI Kernel is 
a component-based platform that handles distributed heterogeneous 
components based on different technologies (Java, C++, Matlab, 
Python, .NET).  The heterogeneity of the platform allows the 
integration of existing interaction techniques written in different 
languages. The OI kernel manages the creation and the connection 
between components at runtime by dynamically loading and 
interpreting the OI interaction descriptions or “pipelines”. Pipelines 
can be created graphically using the OIDE, built on top of the OI 
kernel. 
The OIDE is a graphical environment that allows direct 
manipulation and assembling of components in order to specify a 
"pipeline” defining a multimodal interaction. Such graphical tools 
have already been used for allowing users to prototype their 
application, such as the CSLU Toolkit for spoken language 
interaction ([36]), or the Yahoo! Pipes for web service composition 
([39]). Figure 6 gives an example of a pipeline in our tool. The 
OIDE includes a component repository as well as construction, 
debugging and logging tools [13]. 
The OI kernel and the OIDE allow the dynamic assembly of 
components. Moreover, components are pre-compiled, giving a 
great flexibility to the tool and making it possible to perform rapid 

design changes. This flexibility is one of the key properties of UI 
tools as identified in [28]. 
Many other multimodal applications have been implemented using 
OI and its underlying component-based approach, such as a 
multimodal helicopter game on PC, a 3D multimodal game on a 
mobile phone and a multimodal slide show. In the next section we 
present the implementation of the multimodal map navigator 
presented in Section 3. 
 

 
Figure 6. OIDE graphical editor. 

6. ITERATIVE DESIGN SCENARIO  
Using the software tool presented in the previous section, we have 
implemented the multimodal map navigator introduced in Section 2. 
We will focus on one task of the interactive system: zooming on a 
specific point. This task is quite interesting from a multimodal point 
of view as it may imply multimodal composition of two 
complementary modalities: one for specifying the point and one for 
activating the zoom command. 

Step 1. Design of the multimodal interaction 
The designer defines the interaction techniques of the different 
interactive tasks of the multimodal application. For each one of 
those tasks, the designer creates an assembly of generic and tailored 
interaction entities.  

 
Figure 7. Designer Assembly for specifying a zoom task and 

screenshot of the same assembly in the OIDE. 
Generally, designer assemblies look like the assembly of Figure 4, a 
composition of two input modalities. In the example of Figure 7, we 
can see the representation of the assembly for specifying the 
multimodal interaction for the zoom task along with a screenshot of 
the same assembly implemented in the OIDE. Notice that assemblies 
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in the OIDE are done horizontally. In this paper, for clarity 
purposes, we will show vertical representations of the assemblies 
rather than screenshots of the OIDE. 

Step2. From the designer assembly to the technical assembly 
Once the designer has specified the multimodal interaction, the 
developer creates a technical assembly from the designer’s 
assembly. This generated technical assembly has to be completed by 
the developer. He will specify the connections between components 
and will add missing components (such as a specific device).  
In our example, the developer wants to implement a first version 
that can be tested on a laptop computer. For doing so, he chooses a 
mouse device for specifying the 2D Position. The mouse gives the 
coordinate of the point to zoom and the speech recognition supports 
zooming commands such as “zoom here”. Figure 8 illustrates this 
assembly. 

 
Figure 8. Zoom task using the Mouse and the Speech 

Recognition. 
Step 3: Easily changing devices: from the PC to the tactile surface 
Once the PC version is ready, the developer wants to test it on a 
large display surface using the DiamondTouch for capturing the 
position of the finger. He just replaces the Mouse component by the 
DiamondTouch component, as shown in Figure 9. 

Step 4. Adding a modality combination 
During the informal evaluation of the previous version, we noticed 
some problems of synchronization between the speech recognition 
and the pointing on the table. The designer wants to use another 
modality for the zoom command in order to have a bi-manual 
multimodal interaction. The designer looks into the available 
devices and selects the balloon coupled with an Interface-Z captor. 
A high pressure on the balloon is used to zoom in, and a low 
pressure to zoom out. He also would like to test the performance of 
using a double pedal for the zooming command, where each pedal 
performs a different zoom. He wants to use both the balloon and the 
pedal in an equivalent way: the user can press the pedal or press the 

balloon to launch a zoom command. Figure 10 shows the 
corresponding assembly. 

 
Figure 9. Zoom task using the DiamondTouch and the voice. 

 
Figure 10. Equivalence composition between the pedal and the 

balloon. 
Step 5: Modifying the modality combination 
The evaluation of this equivalent interaction shows that some zoom 
commands have been launched accidentally due to the high 
sensibility of the balloon. The designer would like to increase the 
robustness of the application. For doing so, the developer changes 
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the Equivalence composition between the pedal and the balloon by a 
Redundancy composition, that forces the user to use both the pedal 
and the balloon at the same time. Figure 11 shows the corresponding 
assembly. 
 

 
Figure 11. Redundancy composition between the pedal and the 

balloon. 
In this section we have shown an example of iterative design of a 
multimodal interaction for a given task. The implementation of the 
characteristics of our space presented here shows how our approach 
allows the rapid development of multimodal interaction. This 
example has been implemented by both designers and developers 
using our tool, and an informal evaluation has been carried out.   

7. CONCLUSION AND FUTURE WORK 
This article has introduced a new characterization space of software 
component for rapidly developing multimodal interactions. The 
space supports generic and tailored components at different levels of 
abstraction within the transformation chain of raw data acquired 
from input devices to an application-dependent task. The space also 
defines two levels of abstraction for specifying components that 
describe different points of view on components. This flexibility 
allows users with different technical backgrounds to use a tool 
implementing these component characteristics. The approach has 
been implemented in the component-based OpenInterface (OI) 
framework and several multimodal applications have been 
implemented using this framework. Such a framework, that includes 
generic software components, enables the rapid development of 
multimodal interaction as a central tool for an iterative user-centered 
design approach. Two test-beds, namely a map-based application 
and a game, in two different settings (i.e., an augmented 

environment and a mobile platform), have been developed using the 
OI framework. Ergonomic evaluations have been performed and we 
further plan to study participatory design activities using the OIDE 
(i.e., the graphical environment of the OI framework) and our 
underlying characterization space.  
As further work on the approach, in addition to enriching the 
framework with new generic components (including logical device 
components and transformation components), we plan to focus on 
output multimodal response such as a multiple display set-up and to 
further study the links between the input and output components. 
We also started to validate the genericity of our space by using it 
with a service-based runtime platform. 
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