
A Three-dimensional Characterization Space of Software
Components for Rapidly Developing Multimodal Interfaces

Marcos Serrano, David Juras, Laurence Nigay
Grenoble Informatics Laboratory (LIG), University of Grenoble

38042, Grenoble, France
{Marcos.Serrano, David.Juras, Laurence.Nigay}@imag.fr

ABSTRACT

In this paper we address the problem of the development of
multimodal interfaces. We describe a three-dimensional
characterization space for software components along with its
implementation in a component-based platform for rapidly
developing multimodal interfaces. By graphically assembling
components, the designer/developer describes the transformation
chain from physical devices to tasks and vice-versa. In this context,
the key point is to identify generic components that can be reused
for different multimodal applications. Nevertheless for flexibility
purposes, a mixed approach that enables the designer to use both
generic components and tailored components is required. As a
consequence, our characterization space includes one axis dedicated
to the reusability aspect of a component. The two other axes of our
characterization space, respectively depict the role of the component
in the data-flow from devices to tasks and the level of specification
of the component. We illustrate our three dimensional
characterization space as well as the implemented tool based on it
using a multimodal map navigator.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Interfaces
– Input devices and strategies, Interaction styles, Prototyping, User
interface management systems (UIMS); D.2.2 [Software
Engineering]: Design Tools and Techniques – User interfaces

General Terms
Algorithms, Design, Human Factors, Standardization, Theory.

Keywords
Multimodal Interaction Model, Component-based Approach,
Design and Implementation Tool.

1. INTRODUCTION
The multimodal interaction domain has expanded rapidly and
significant achievements have been made in terms of both
modalities and real multimodal applications. The advent of new
modalities based on a variety of captors and effectors coupled with
recognition/synthesis mechanisms, as well as the availability of
affordable and commonly used devices, such as webcams and game

devices (Nintendo Wii Remote [34]) are rapidly enriching the
interaction capabilities of desktop computers. As pointed out by
Olsen [28], “systems based on one screen, one keyboard and one
mouse are the new equivalent of command-line interfaces”.
In addition, going beyond desktop interfaces, multimodal
applications have a key role to play on mobile and tabletop systems.
Mobile devices embed more and more sensors and interaction
techniques, such as the accelerometer and the tactile screen with
two-handed interaction of the recent iPhone [20]. Moreover tabletop
applications are often based on multimodal interaction by
combining speech and gesture [38].
Facing the vast world of possibilities for interaction modalities,
models and tools for integrating and combining those modalities
become a real challenge that we address in this paper. Our
discussion will concentrate on multimodal input, from the user to
the system, although the presented approach may hold for output as
well.
In this paper we describe a characterization space of software
components for rapidly developing multimodal interfaces. Our
characterization space is independent from component-based
technologies, such as Corba [29], and from services-based
approaches, such as OSGi [31]. The characterization space defines
high-level characteristics of components, that can be implemented in
any of those technologies. In this paper we use the term
“component” to refer to any type of software unit (e.g., software
component, service). We present an implementation of the
characteristics defined in our space in a component-based platform,
OpenInterface (OI) [13].
The structure of this paper is as follows: we first motivate our
approach according to existing tools for multimodal interaction. We
then present an overview of the characterization space as well as its
scope. We then explain its implementation within the OpenInterface
framework and illustrate our approach using one of the multimodal
applications developed within the OI framework, a multimodal map
navigator whose main features are presented in the next section.

2. ILLUSTRATIVE EXAMPLE: A
MULTIMODAL MAP NAVIGATOR
Since the seminal put-that-there [3], many studies have focused on
multimodal interaction with a map [7] [38]. We thus consider the
classical example of multimodal navigation for a map-based
application in order to illustrate and validate our approach.
The multimodal map navigator consists of a map that can be
controlled using several interaction modalities. Using a set of
devices and the corresponding pure/combined modalities, the user
can perform a set of interactive tasks such as panning or zooming.
For example, the zoom on a specific point of the map can be
specified by combining speech and mouse (Figure 1-a), speech and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICMI’08, October 20–22, 2008, Chania, Crete, Greece.
Copyright 2008 ACM 978-1-60558-198-9/08/10...$5.00.

149

pointing gesture (Figure 1-b), or by pressing a balloon along with a
pointing gesture (Figure 1-c). A high pressure on the balloon is used
to zoom in, and a low pressure to zoom out.

Capture of the finger position is done using the DiamondTouch [9].
Capture of the pressure on the balloon is realized using the
interface-Z electronics platform [17], which integrates several
innovative sensors such as an atmospheric pressure sensor. Other
input devices used with our map-based application include an IR
finger tracker [21] and the Wii Remote.

-a- -b- -c-

Figure 1. Multimodal interaction with a map.

3. RELATED WORK
Nowadays we observe an increasing interest in software tools for
multimodal / post-WIMP User Interfaces (UI).
Several recent studies especially in the fields of ubiquitous
computing and augmented reality, such as phidgets [14] and the
iStuff toolkit [1], focus on innovative and multi-devicesinteraction.
Most toolkits are designed for specific devices and/or interaction
paradigms, such as camera-based interaction [23], 3D interaction
[32], interactive information visualization [15] or multi-person
concurrent interfaces [33]. Those toolkits allow implementation and
configuration of specific interaction techniques, usually supporting
devices efficiently but in ad-hoc ways. Moreover they cover only the
device level of interaction or they provide a simple direct mapping
between devices and tasks. Moreover they do not consider the
combination of modalities.
As opposed to toolkits dedicated to programmers, other tools for
post-WIMP UI are dedicated to prototyping such as CrossWeaver
[35], BOXES [17] and the CSLU Toolkit [36]. Such tools do not
require programming skills.
In this context our goal is to define a tool dedicated to multimodal
UI (1) that supports multiple devices, being able to encapsulate
existing post-WIMP UI toolkits (2) that enables the description of
the complete interaction from devices to tasks (3) that allows us to
define multimodal design solutions without programming skills (4)
that supports the rapid development of multimodal interaction for
quickly exploring different design solutions.
As in Magglite [18] and its related toolkit ICON [10] as well in our
previous work ICARE [4], we adopt a data-flow approach that has
been shown to be adapted for specifying multimodal interaction.
Our contribution is to characterize the building blocks (called here
components) that define this data-flow from devices to application
tasks. The following section presents this characterization space. We
then present a design/development tool based on components with
these characteristics.

4. CHARACTERIZATION SPACE OF
COMPONENTS
After presenting the scope and an overview of our characterization
space of multimodal UI components, we explain how such
characteristics will enable us to reach our objectives stated in the
previous section and motivated by the limitations of existing tools.

4.1 Scope and overview of the space
Our characterization space for multimodal interaction defines a set
of characteristics of components, understanding the term
“component” as any type of software unit (e.g., software component,
service). As pointed out by Morch [24], component-based software
development (CBSD) allows users to tailor existing applications by
assembling high-level components. However our characterization
space does not define the execution behaviour of the components or
the communication mechanisms between components, as do
traditional component-based models, such as the Corba Component
Model (CCM) [29], the Component Object Model (COM) [8] and
JavaBeans [11], or services-based approaches, such as OSGi [31].
Our space can be used to define and implement high-level
characteristics of components that can be implemented in any of
those technologies.

Figure 2. Different types of components within the ARCH

software architecture [37].
Concerning the development of an interactive system, to fully
understand the scope of our approach, we show in Figure 2 where
the corresponding components are located within the complete code
of the interactive system structured along the ARCH software
architectural model [37]: our approach focuses on the interaction
part of an interactive system. For example, in our illustrative
example, we consider that we have a functional core of a map
application and we focus on the design and implementation of the
interactive part of the system. By doing so, for the implementation
of our example, we were able to experiment on multimodal
interaction with different map applications (Functional Core)
including GoogleEarth [13], a map server developed by France
Telecom and a stand-alone application in Java. Now that we have

150

presented the scope of our approach, we give an overview of the
characterization space before detailing its key points in the next
paragraphs.

Our space is defined along three dimensions as shown in Figure 3.
The first dimension of the space describes the genericity of the
components. Our space includes both generic and tailored
components. Generic components represent high-level reusable
abstractions. Tailored components implement operations for specific
devices or for application-dependent tasks. The second dimension
of the space is related to the data-flow from input devices to an
interactive application. Along this axis, we identify four types of
components: we reuse from ICON [10] the three types of
components (Device, Adapters and Application components)
corresponding to three levels of abstraction that we respectively
name Device, Transformation and Task. From ICARE [4], we reuse
the CARE Composition components. The third dimension of the
space is related to the component approach. Along this dimension,
we identify two levels of abstraction for specifying a component:
Software Component and Interaction Entity.

As shown in Figure 3, this component characterization space is
wider than the ones of ICARE and ICON.

-a- -b-

Figure 3. -a- Three axes of our characterization space.
 -b- Comparison with ICARE and ICON.

In the next paragraphs of this section we describe how those three
dimensions respond to some of the limitations identified in Section
3.

4.2 From input devices to interactive tasks
As explained before, existing approaches intend to connect input
devices to interactive tasks. While the ICON approach is interesting,
using adapters between the input devices and the tasks, it does not
treat the multimodal fusion of modalities. For defining the
combination of modalities, we reuse the CARE components from
the ICARE tool [3]. The CARE components are fully described in
[25].
Our space advocates four types of components that will help both
designers and developers to fill the gap existing today between input
devices and interactive applications. The four types of components
are organized into three levels: Task (task components),
Transformation Chain (transformation and composition
components) and Device (device components).

Input devices define the entry points of data in the transformation
chain (at the bottom in Figure 2). The transformation chain is
responsible for transforming input values coming from input devices
into values adapted to the interactive task under design. The
transformation chain is composed of two classes of components,
namely transformation and composition components.
At the end of the transformation chain (on top in Figure 2), task
components are responsible for the link between the multimodal
interaction specified in the assembly of components and the rest of
the application. If the application is structured along the ARCH
software architectural model (Figure 2), task components will
communicate with the Dialog Controller.

4.3 Designing Multimodal Interaction:
description levels
Existing approaches are not made for designers, as they require
programming skills. As part of our iterative user-centered design
process, we would like designers to be able to build multimodal
interaction using components. The main issue is the component
description level, as designers need different information than
developers. For example, for a given device a designer will be more
interested by the human sense involved, the weight of the device, its
dimensions, etc. The developer will be more interested by the driver
library, its programming language, the types of the parameters, etc.

Figure 4. Designer assembly using interaction entities (left) and

developer assembly using software components (right).
The component specification axis defines two levels of abstraction
for specifying a component. Such levels define different points of
view on components that can be manipulated by the
designer/developer. The Interaction Entity level corresponds to
general characteristics of the component, without implying any
logical or software structure. The description of an Interaction Entity
is therefore independent of the component-based approach. Indeed
the description includes attributes related to its nature: HCI and
physical attributes for device component, mathematical or physical
attributes for transformation components, semantic or temporal
attributes for composition components, and Foley’s taxonomy-based
attributes for task components [12]. An Interaction Entity can then

151

be implemented in different Software Components. Each Software
Component belongs to a component technology (such as Corba or
OSGi), has a license, a price, and is implemented in a specific
language (Java, C++), etc.
Figure 4 illustrates two assemblies of components: on the left, an
assembly of interaction entities made by a designer. On the right, the
corresponding assembly implemented by a developer using software
components.

4.4 Need for genericity
The major goal of our approach is, through the exploration of design
solutions, to enable the fast development of multimodal
applications, promoting reusability and simplifying the design and
development of multimodal interfaces. In order to attain this, the key
point is the genericity of the manipulated units. There are two main
reasons for looking for genericity: expressive leverage and
reusability. In this section we detail those two points and then
present our approach for defining generic components.

4.4.1 Genericity for expressive leverage
Using generic components improves the expressive leverage of our
approach, as pointed out by Myers [26] and Olsen [28]. “Expressive
leverage is achieved when a tool reduces the total number of choices
that a designer must make to express a desired solution” ([28]). In
order to improve the expressive leverage of a tool, “generalize and
reuse” is one of the solutions.
As seen in Figure 4, the designer (left assembly) can choose a
generic component (e.g., 2D Motion) instead of a specific input
device (e.g., Mouse). The developer will then select a tailored
component. This reduces both the choices for the designer and the
developer.
At the same time, tailored components allow both the designer and
the developer to have more freedom. The notion of tailored
component has been defined in [24] as a component supporting
domain-oriented functionalities. In our case, tailored components
are components implemented in an ad-hoc way.

4.4.2 Genericity for reusability
In our approach the key point is to identify generic components that
can be used for different multimodal applications. Such generic
components will enable the rapid development and exploration of
design solutions for multimodal interaction.
We have identified two levels of reusability: reusing a component
and reusing a set of components. For example, in Figure 4, generic
components, such as the Equivalence component, can be reused in
another assembly (reuse of one component). At the same time, if the
developer wants to use another input device instead of the Mouse,
he just has to replace the Mouse component. He is reusing the whole
assembly (reuse of set of components), thanks to the generic device
2D Motion, that allows the easy connection of different input
devices.
Concerning the reusability of tailored components, they may be
reusable, but usually tailored components are implemented for the
needs of a specific interactive application. For example, in Figure 4,
the Voice Recognition and the Mouse components are tailored, as
they use specific drivers. We could say that, as the Mouse
component is reusable, it should be generic. However, we define
generic devices according to the interaction actions, and not to the
captured data. We will detail this in the next section by introducing

the notion of generic component in relation to the different data-
flow levels (task, transformation, composition, device).

4.4.3 Models for genericity
In order to define generic components at the different levels
identified before, i.e. task, composition, transformation and device
levels, we use existing and well-known models of human-computer
interaction. We will next present the models used for each level.

Generic devices
On the bottom of the data-flow, to define generic device
components, we use and extend Buxton’s taxonomy [5]. As
explained in [22], several taxonomies exist for input devices.
Buxton’s taxonomy classifies continuous hand-controlled input
devices along a classification matrix, using the degree of freedom
and the sensed property as main axes. Some studies also provide
taxonomies dedicated to a specific class of devices, such as the
taxonomy of Hinckley [16] for touch-sensing devices. We base our
approach for defining generic device components on Buxton’s
taxonomy, shown in Figure 5 with some examples of input devices.

Figure 5. Buxton's taxonomy.

Other types of input devices, such as speech or image analysis, are
difficult to classify since several levels of abstraction can be defined
for describing them. We do not treat them in the taxonomy. Those
non-classified devices can then be described in our model using
tailored components. In our future work we will study how to
classify and define abstractions of those other input devices.

Generic tasks

On the upper part of the data-flow, generic and reusable tasks
components are based on Foley’s interactive tasks [12]. For
example, the Orient task of Figure 4 is one of Foley’s tasks.

Generic transformation

Generic transformations are based on the generic devices as defined
before. Generic transformations implement reusable operations that
are usually performed on data from a generic device (e.g., the Filter
component of Figure 4, that filters input events according to a
generic specification).

Generic composition

In order to create generic composition components, from ICARE [4]
we reuse the CARE Composition components. For example, in
Figure 4 we use an Equivalence composition between the mouse

152

and the voice recognition. The CARE components are fully
described in [25].

Table 1 summarizes the notion of generic component for the
different data flow levels presented above.

In this section we have presented our three-dimensional
characterization space of components along with its key points and
benefits for the rapid development of multimodal applications. In
the next section we present one implementation.

Table 1. Genericity according to the different levels of the

interaction data-flow.

5. IMPLEMENTATION
The identified characteristics have been implemented in a
component-based approach. We remind the reader that instead of
component-based platform, we could have used a service-oriented
approach. We implemented the characteristics defined in our space
in the OpenInterface (OI) framework, a component-based platform.
Several generic and tailored components have been implemented in
the OI framework. Moreover, using the OI framework, we have
implemented the multimodal map navigator of Section 2.
The OI framework is composed of the OpenInterface Interaction
Development Environment (OIDE), a graphical environment, and
by the OI Kernel, the underlying runtime platform. The OI Kernel is
a component-based platform that handles distributed heterogeneous
components based on different technologies (Java, C++, Matlab,
Python, .NET). The heterogeneity of the platform allows the
integration of existing interaction techniques written in different
languages. The OI kernel manages the creation and the connection
between components at runtime by dynamically loading and
interpreting the OI interaction descriptions or “pipelines”. Pipelines
can be created graphically using the OIDE, built on top of the OI
kernel.
The OIDE is a graphical environment that allows direct
manipulation and assembling of components in order to specify a
"pipeline” defining a multimodal interaction. Such graphical tools
have already been used for allowing users to prototype their
application, such as the CSLU Toolkit for spoken language
interaction ([36]), or the Yahoo! Pipes for web service composition
([39]). Figure 6 gives an example of a pipeline in our tool. The
OIDE includes a component repository as well as construction,
debugging and logging tools [13].
The OI kernel and the OIDE allow the dynamic assembly of
components. Moreover, components are pre-compiled, giving a
great flexibility to the tool and making it possible to perform rapid

design changes. This flexibility is one of the key properties of UI
tools as identified in [28].
Many other multimodal applications have been implemented using
OI and its underlying component-based approach, such as a
multimodal helicopter game on PC, a 3D multimodal game on a
mobile phone and a multimodal slide show. In the next section we
present the implementation of the multimodal map navigator
presented in Section 3.

Figure 6. OIDE graphical editor.

6. ITERATIVE DESIGN SCENARIO
Using the software tool presented in the previous section, we have
implemented the multimodal map navigator introduced in Section 2.
We will focus on one task of the interactive system: zooming on a
specific point. This task is quite interesting from a multimodal point
of view as it may imply multimodal composition of two
complementary modalities: one for specifying the point and one for
activating the zoom command.

Step 1. Design of the multimodal interaction
The designer defines the interaction techniques of the different
interactive tasks of the multimodal application. For each one of
those tasks, the designer creates an assembly of generic and tailored
interaction entities.

Figure 7. Designer Assembly for specifying a zoom task and

screenshot of the same assembly in the OIDE.
Generally, designer assemblies look like the assembly of Figure 4, a
composition of two input modalities. In the example of Figure 7, we
can see the representation of the assembly for specifying the
multimodal interaction for the zoom task along with a screenshot of
the same assembly implemented in the OIDE. Notice that assemblies

153

in the OIDE are done horizontally. In this paper, for clarity
purposes, we will show vertical representations of the assemblies
rather than screenshots of the OIDE.

Step2. From the designer assembly to the technical assembly
Once the designer has specified the multimodal interaction, the
developer creates a technical assembly from the designer’s
assembly. This generated technical assembly has to be completed by
the developer. He will specify the connections between components
and will add missing components (such as a specific device).
In our example, the developer wants to implement a first version
that can be tested on a laptop computer. For doing so, he chooses a
mouse device for specifying the 2D Position. The mouse gives the
coordinate of the point to zoom and the speech recognition supports
zooming commands such as “zoom here”. Figure 8 illustrates this
assembly.

Figure 8. Zoom task using the Mouse and the Speech

Recognition.
Step 3: Easily changing devices: from the PC to the tactile surface
Once the PC version is ready, the developer wants to test it on a
large display surface using the DiamondTouch for capturing the
position of the finger. He just replaces the Mouse component by the
DiamondTouch component, as shown in Figure 9.

Step 4. Adding a modality combination
During the informal evaluation of the previous version, we noticed
some problems of synchronization between the speech recognition
and the pointing on the table. The designer wants to use another
modality for the zoom command in order to have a bi-manual
multimodal interaction. The designer looks into the available
devices and selects the balloon coupled with an Interface-Z captor.
A high pressure on the balloon is used to zoom in, and a low
pressure to zoom out. He also would like to test the performance of
using a double pedal for the zooming command, where each pedal
performs a different zoom. He wants to use both the balloon and the
pedal in an equivalent way: the user can press the pedal or press the

balloon to launch a zoom command. Figure 10 shows the
corresponding assembly.

Figure 9. Zoom task using the DiamondTouch and the voice.

Figure 10. Equivalence composition between the pedal and the

balloon.
Step 5: Modifying the modality combination
The evaluation of this equivalent interaction shows that some zoom
commands have been launched accidentally due to the high
sensibility of the balloon. The designer would like to increase the
robustness of the application. For doing so, the developer changes

154

the Equivalence composition between the pedal and the balloon by a
Redundancy composition, that forces the user to use both the pedal
and the balloon at the same time. Figure 11 shows the corresponding
assembly.

Figure 11. Redundancy composition between the pedal and the

balloon.
In this section we have shown an example of iterative design of a
multimodal interaction for a given task. The implementation of the
characteristics of our space presented here shows how our approach
allows the rapid development of multimodal interaction. This
example has been implemented by both designers and developers
using our tool, and an informal evaluation has been carried out.

7. CONCLUSION AND FUTURE WORK
This article has introduced a new characterization space of software
component for rapidly developing multimodal interactions. The
space supports generic and tailored components at different levels of
abstraction within the transformation chain of raw data acquired
from input devices to an application-dependent task. The space also
defines two levels of abstraction for specifying components that
describe different points of view on components. This flexibility
allows users with different technical backgrounds to use a tool
implementing these component characteristics. The approach has
been implemented in the component-based OpenInterface (OI)
framework and several multimodal applications have been
implemented using this framework. Such a framework, that includes
generic software components, enables the rapid development of
multimodal interaction as a central tool for an iterative user-centered
design approach. Two test-beds, namely a map-based application
and a game, in two different settings (i.e., an augmented

environment and a mobile platform), have been developed using the
OI framework. Ergonomic evaluations have been performed and we
further plan to study participatory design activities using the OIDE
(i.e., the graphical environment of the OI framework) and our
underlying characterization space.
As further work on the approach, in addition to enriching the
framework with new generic components (including logical device
components and transformation components), we plan to focus on
output multimodal response such as a multiple display set-up and to
further study the links between the input and output components.
We also started to validate the genericity of our space by using it
with a service-based runtime platform.

8. ACKNOWLEDGMENTS
The OpenInterface OI Project is an IST FP6 STREP funded by the
European Commission (FP6-35182), www.oi-project.org. The
authors thank the OI colleagues for their contribution.

9. REFERENCES
[1] Ballagas, R., Ringel, M., Stone, M. and Borchers, J. (2003).

iStuff: a physical user interface toolkit for ubiquitous
computing environments. Proc. of Human factors in
computing systems 2003, ACM Press, pp. 537-544.

[2] Benoit, A., Bonnaud, L. Caplier, A., Damousis, L., Tzovaras,
D., Jourde, F., Nigay, L., Serrano, M., and Lawson, J-Y.
(2006). Multimodal signal processing and interaction for a
driving simulation: component-based architecture. Journal on
Multimodal User Interfaces, 1, 1, pp. 49-58.

[3] Bolt, R. A. (1980). Put-that-there: voice and gesture at the
graphics interface. SIGGRAPH’80, 14, 3, pp. 262-270.

[4] Bouchet, J., Nigay, L. (2004). ICARE software components for
rapidly developing multimodal interfaces. In Proceedings of
ICMI 2004, State College, USA, pp. 251-258.

[5] Buxton, W. (1983). Lexical and pragmatic considerations of
input structures. ACM SIGGRAPH CG, 17(1), pp. 31-37.

[6] Card, S., MacKinlay, J., and Robertson, G. (1991). A
morphological analysis of the design space of input devices.
ACM Transactions on Information Systems, 9, pp. 99-122.

[7] Cohen, P., McGee, D., Clow, J. (2000). The efficiency of
multimodal interaction for a map-based task. Proc. of the 6th
ANLP Conference, ACM Press, pp. 331-338.

[8] COM. www.microsoft.com/com
[9] Dietz, P. and Leigh, D. (2001). DiamondTouch: a multi-user

touch technology. Proc. of UIST’01, ACM Press, pp. 219-226.
[10] Dragicevic, P., and Fekete, J. D. (2001). Input device selection

and interaction configuration with ICON. Joint Proc. of
IHM’01 and HCI’01,Springer Verlag, pp. 543-558.

[11] EJB. http://java.sun.com/products/ejb/.
[12] Foley, J., Wallace, V.L. and Chan, P. (1984) . The human

factors of graphics interaction techniques. IEEE Computer
Graphics and Applications, 11, pp. 13-48.

[13] Gray, P., Ramsay, A., Serrano, M. (2007). A demonstration of
the OpenInterface Interaction Development Environment.
UIST’07 Adjunct Proc., ACM Press, pp. 39-40.

155

[14] Greenberg, S. and Fitchett, C. (2001). Phidgets: easy
development of physical interfaces throught physical widgets.
In Proc. of UIST’01, ACM Press, pp. 209-218.

[15] Heer, J., Card, S., Landay, J. (2005). Prefuse: a toolkit for
interactive information visualization. Proc. of the SIGCHI
conference on Human factors in computing systems, ACM
press, pp. 421-430.

[16] Hinckley, K., and Sinclair, M. (1999). Touch-sensing input
devices. ACM. Proc. of CHI’99, ACM Press, pp. 223-230.

[17] Hudson, S., Mankoff, J. (2006). Rapid construction of
functioning physical interfaces from cardboard, thumbtacks, tin
foil and masking tape. In Proc. of UIST’06, ACM Press, pp.
289-298.

[18] Huot, S., Dumas, C., Dragicevic, P, Fekete, J. and Hégron, G.
(2004). The MaggLite post-WIMP toolkit: draw it, connect it
and run it. In Proc. of UIST’04, ACM Press, pp. 257-266.

[19] Interface-Z, www.interface-z.com.
[20] iPhone, www.apple.com/iphone.
[21] Letessier, J., Berard, F. (2004). Visual tracking of bare fingers

for interactive surfaces. In Proc. of UIST’04, ACM Press, pp.
119-122.

[22] Lingrand, D. and Riveill, M. (2006). Input interactions and
context component based modelisations: differences and
similarities. Proc. of AVI’06. ACM Press. pp. 19-22.

[23] Maynes-Aminzade, D., Winograd, T., and Igarashi, T. (2007).
Eyepatch: prototyping camera-based interaction through
Examples. In Proc. UIST’07, ACM Press, pp. 33-42.

[24] Morch, A. I., et al. (2004). Component-based technologies for
end-user development. Comunications of the ACM, Volume
47, Issue 9, pp. 59-62.

[25] Multitel. www.multitel.be
[26] Myers, B., Hudson, S. E., Pausch, R. (2000). Past, present, and

future of user interface software tools. Transactions on
Computer-Human Interaction, Vol. 7, No. 1, pp. 3-28.

[27] Nigay, L., Coutaz, J. (1997). Multifeature systems: the CARE
properties and their impact on software design. intelligence and
multimodality in multimedia interfaces, AAAI Press.

[28] Olsen, D. R. Jr. (2007). Evaluating user interface systems
research. Proc. of UIST’07, ACM Press, pp. 251-258.

[29] OMG - CORBA. www.corba.org
[30] OpenInterface European project. IST Framework 6 STREP

funded by the European Commission (FP6-35182). www.oi-
project.org.

[31] OSGi. www.osgi.org
[32] Ray, A., Bowman, D. A., (2007). Towards a system for

reusable 3D interaction techniques. Proc. Of the 2007 ACM
symposium on Virtual reality software and technology, ACM
Press, pp. 187-190.

[33] Shen, C., Vernier, F., Forlines, C., and Ringel, M. (2004).
DiamondSpin: an extensible toolkit for around-the-table
interaction. Proc. of CHI’04, ACM Press, pp. 167-174.

[34] Shirai, A., Geslin, E., Richir, S. (2007). WiiMedia: motion
analysis methods and applications using a consumer video
game controller. Proc. of the SIGGRAPH Symposium on
Video Games, ACM Press, pp. 133-140.

[35] Sinha, A., Landay, J. (2003). Capturing user tests in a
multimodal, multidevice informal prototyping tool. Proc. of
ICMI’03, ACM Press, pp. 117-124.

[36] Sutton, S., Cole, R. (1997). The CSLU toolkit: rapid
prototyping of spoken language systems. Proc. of UIST’97,
ACM Press, pp. 85-86.

[37] The UIMS tool developers workshop, A metamodel for the
runtime architecture of an interactive system. SIGCHI Bulletin
(1992), pp. 32-37.

[38] Tse, E., Shen, C., Greenberg, S. and Forlines, C. (2006).
Enabling interaction with single user applications through
speech and gestures on a multi-user tabletop. Proc. of AVI’06,
ACM Press, pp. 336-343.

[39] Yahoo! Pipes. http://pipes.yahoo.com

156

