
Lessons of Experience in Model-Driven Engineering of
Interactive Systems: Grand challenges for MDE?

Gaëlle Calvary1, Anne-Marie Pinna2

1 Laboratoire d’Informatique de Grenoble, Equipe IIHM, 385 Rue de la Bibliothèque, BP 53

38041 Grenoble Cedex 9, France
2 Laboratoire I3S, Bâtiment ESSI, 650, Route des Colles, B.P. 145

06903 Sophia-Antipolis Cedex, France
Gaelle.Calvary@imag.fr, pinna@polytech.unice.fr

Abstract. Model-based approaches have been recognized as powerful for separating concerns
when designing a User Interface (UI). However model-based generation of UIs has not met a
wide acceptance in the past. Today, taking benefit from MDE advances, models are revisited
in Human Computer Interaction (HCI) for engineering multi-contexts interactive systems.
This paper relates some difficulties and requirements highlighted by experience. Among them
is the need of support for sustaining the collaboration between models both at design time and
runtime. Another requirement is about the capitalization of models, mappings and
metamodels for saving the know how in HCI. Last but not least requirement is about
evaluation. How shall we evaluate the strengths and weaknesses of MDE for HCI?

Keywords: Human Computer Interaction, Interactive system, User interface,
Multi-models, Multi-actors, Multi-views, Capitalization, Evolution, Evaluation.

1 Introduction

Model-based approaches have been widely explored in Human-Computer Interaction (HCI)
for long. The motivation was to force designers focus on user’s task instead of blending
several concerns including cosmetic considerations. Rapidly, task modeling has emerged as a
wise starting point when engineering interactive systems. Automatic generators of User
Interfaces (UIs) have appeared (e.g., ADEPT [2]) but the poor quality of the resulting UIs
killed the approach for long. Later on, the increasing diversity of platforms (e.g., PC or PDA)
and the rise of Platform Dependent versus Independent Models (PSM versus PIM) brought
models back to life in HCI [4]. Now, we are at the point of blurring the distinction between
design time and runtime for making it possible for the end-user to fashion his/her own
interactive space according to his/her feelings and needs as well as to the arrival and departure
of interaction resources. The purpose of this paper is to relate where we are in the tandem
MDE-HCI and which issues need to be solved for going further in Meta-Design [1].

2 Where we are in MDE for HCI

The canonical functional decomposition of interactive systems makes the distinction
between the Functional Core (FC) and the UI. From a methodological point of view,
along a forward engineering process, the starting point is most of the time a task
model which structures the user’s goal into sub-goals. Conversely, reverse
engineering consists in analyzing legacy systems for recovering the models that may
have driven the design (e.g., the task model) and/or implementation (e.g., the
architecture model). Using chains of tools (e.g., the UsiXML arsenal of tools - see
http://www.usixml.org/), it is possible to hybrid forward and reverse engineering [3].
In this section, we first focus on the UI design, and then address the implementation
of the whole interactive system.
2.1 MDE for the design of UIs
Designing a UI means setting all the degrees of freedom (e.g., the structure of the UI,
the choice of interactors) based on given requirements (e.g., the user’s task and
preferences, the ergonomic criteria that have been elicited, the targeted platforms).
Fig. 1 shows four functionally equivalent UIs: they support the same user’s task T that
consists in accomplishing T1 and T2 in interleaving. The UIs differ from an
ergonomic point of view. In a, the subtasks T1 and T2 are directly observable whilst
they are browsable in b-c-d. Browsing has a human cost: at least one physical action
for commuting between subtasks.
Along a forward engineering process, once the task is modeled, decisions have to be
made about the structure and rendering of the UI. Decisions are mostly driven by
ergonomics (e.g., minimal actions). At this point, the UI is classically a mockup either
drawn on paper sheets or prototyped using languages (e.g., Smalltalk) and tools (e.g.,
JBuilder). Predictive and/or experimental evaluations must be done.

Fig. 1. Four functionally but not non functionally equivalent UIs.

Our lessons of experience are listed below:
MDE for capturing the know-how in HCI: the relevant models (e.g., task, structure,
interactors) are identified giving rise to several notations (e.g., CTT [6]), metamodels
and versions of metamodels. One open issue specific to HCI is the modeling of
ergonomic properties.
MDE for platform independence: a plethora of Platform/Rendering Independent
Languages has appeared (e.g., UsiXML, UIML (www.uiml.org), RIML (european
CONSENSUS project), XIML (www.ximl.org), XAML (Microsoft), AUIML (IBM)).
There is a need of reconciliation to clarify the state of the art.
Miscellaneous statements about MDE in practice: as the focus has mostly been set on

high level models so far (typically the user’s task), these models are often overloaded
with information typically related to transformation (e.g., the targeted platform). Most
of the time, transformations are mono-technological (e.g., HTML). In addition, the
rendering can be improved.
2.2 MDE for the implementation of interactive systems

Software architecture models (e.g., ARCH) improve software quality. ARCH
refines the UI into sub functions among which is the Dialog Controller (DC). The DC
is in charge of piloting interaction while ensuring consistency between the FC and the
UI. The DC is a kind of implementation of the task model. General research in MDE
deals with the FC only. Below are our lessons of experience about the whole system.
MDE for models collaboration: the global picture (Fig. 2) implies biaxial mappings
and transformations: vertical for the engineering process, horizontal for
complementary descriptions and/or code [5].
MDE for models at runtime: we are at the point of keeping the design models and
design rationale (i.e., the biaxial lattice of Fig. 2) alive at runtime so that to enable the
revision at runtime of any design decision.

Fig. 2. Biaxial and bidirectional transformations/mappings.

Miscellaneous statements about MDE in practice: automatic forward generators
mostly produce "fast food" UIs in which models and transformations are lost. The
transformations do not preserve collaborations at the code level, and horizontal
collaborations between FC and UI are not yet well supported. In addition, consistency
between models, transformations and code is not ensured at runtime along the models
evolution. This calls for further research. Next section elicits three main requirements.

3 What we need for going further: three requirements to conclude

To our understanding, HCI is an interesting domain for both illustrating and
inspiring research in MDE: on one hand, there is a long know-how in models and
transformations in HCI. It provides a lot of knowledge to support experiments in
MDE. On the other hand, keeping models at runtime raises new perspectives in both
HCI and MDE. Whist the global picture has been demonstrated on simple case studies
in HCI so far, we now aim at going beyond toy applications. This calls for mastering
MDE for HCI, i.e., being able to reuse mature generic supports (methods and tools)
from MDE so that to concentrate our efforts on the specific features of HCI (e.g.,
ergonomics). We identify three major requirements for going further: the support for
multi-models and multi-actors, capitalization and evaluation of models.

#1. Support for multi-models and multi-actors
From now on, an interactive system is depicted as a graph of models that conveys

both its design rationale and evolution over time. The models cover the internal state
of the system (FC and UI) as well as its deployment on the interaction resources. We
aim at formalizing the ergonomic properties so that to (1) characterize well-formed
interactive systems, (2) be aware of the validity domain of interactive systems, (3)
predict the effect of transformations, and (4) compute the conditions to satisfy and
transformations to perform for ensuring a set of properties. Defining the actors in
charge of such reasoning is interesting: who among designers and end-users might be
in charge of observing and/or controlling graphs of models? Which views would be
appropriate for whom and when? Fig. 3 and 4 provide two examples. In Fig. 3, the
designer can delete interactors by placing a toolglass on either the graph of interactors
or the UI itself. Consistency is ensured. In Fig. 4, the end-user controls the
distribution of his/her web site among the two connected platforms. One step further,
we can imagine putting metamodels under the human control as well. The global
picture gives rise to the notion of Mega-UI [7].

Fig. 3. Additional UIs for the designer: the interactors model is made observable.

The final UI,
ie. the UI of the
end-user. By
selecting a room
in the left part
(living room or
kitchen), the
end-user can set
the temperature
of this room.

The UI of
the graph of
interactors: this
UI is devoted to
the designer.

The
toolglass for
manipulating
UIs (the final UI
and the UIs of
the models): the
button deletes
the underlying
object.

Fig. 4. Additional UIs for the end-user: the check boxes represent the mappings between the UI
structure (the rows: title, content, navigation) and the connected platforms (the columns).

#2. Support for capitalization
As modeling and metamodeling takes time, capitalization is crucial for going

beyond small and basic interactive systems. We need a broad capitalization of models
(e.g., post-WIMP interactors such as round windows, platforms such as multi-touch
tables), metamodels as well as gateways between languages as one will never fit all.

#3. Support for evaluation
In HCI, evaluation is necessary. If evaluating a novel interaction technique is

feasible, how can we measure the effect of MDE in HCI. More than evaluate the
performance of the approach (cost and benefit), it is important to integrate evaluation
in the design process so that to step by step check whether transformations fulfills
ergonomic properties and platforms constraints. This goes far beyond evaluating the
performance of the generated code. To that end, we need methods and tools for
benchmarking our proposals.

References

1. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G., Mehandjiev, N.: Meta-design: a manifesto
for end-user development. In: Communications of the ACM, Volume 47, Issue 9, pp 33-37,
ACM Press, (2004)

2. Johnson, P., Wilson, S., Markopoulos, P., Pycock, J.: ADEPT-Advanced Design
Environment for Prototyping with Task Models. In: Proceedings of InterCHI'93, p. 56,
ACM Press, New York, Amsterdam, 24-29 April (1993)

3. Limbourg, Q.: Multi-path Development of User Interfaces, Ph.D. thesis, Université
catholique de Louvain, Louvain-la-Neuve, Belgium, November (2004)

4. Myers, B., Hudson, S.E., Pausch, R.: Past, Present, and future of user interface software
tools, ACM Transactions on Computer-Human Interaction (TOCHI), Volume 7, Issue 1, pp
3-28, March (2000)

5. Occello, A., Casile, O., Pinna-Déry, A.-M., Riveill, M.: Making Domain-Specific Models
Collaborate. In 7th OOPSLA Workshop on Domain-Specific Modeling (DSM'07), pp 79-86,
Montréal, Canada, 21-22 October (2007)

6. Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. In: Proceedings of Interact'97, pp. 362-369, (1997)

7. Sottet, J.S., Calvary, G., Favre, J.M., Coutaz, J.: Megamodeling and Metamodel-Driven
Engineering for Plastic User Interfaces: Mega-UI. In: Human Centred Software
Engineering: Software Engineering Architectures, Patterns and Models for Human
Computer Interaction, Seffah, A., Vanderdonckt, J. and Desmarais, M. (Eds) (2008)

