

Requirements and models for next
generation UI languages

 Abstract
In this paper we argue that concrete User Interfaces
(UI) languages are not suitable for adaptation. In
addition, we point out the fact that the quality of
tailored UIs is far better than the quality of
automatically generated UIs. Therefore we propose to
capitalize human designed UIs in a structured
knowledge base as promoted by Service Oriented
Approaches. The base aims at supporting designers
and/or automatic UI generation algorithms in retrieving
UI descriptions both at design time and runtime.

Keywords
Plastic User Interface (UI), UI Adaptation, Model Driven
Engineering, Service Oriented Architecture, UI
Description Language, Tailored UIs.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g.,
HCI): User Interfaces – User Interface Management
Systems (UIMS).

Introduction
With the rise of ubiquitous computing, a lot of work has
been done about User Interface (UI) Description
Languages (UIDL). The main goal was to enable
designers to describe UIs at a high level of abstraction

Copyright is held by the author/owner(s).

CHI 2007, April 28 – May 3, 2007, San Jose, USA

ACM 1-xxxxxxxxxxxxxxxxxx.

Alexandre Demeure

University of Grenoble, LIG

385, rue de la bibliothèque B.P. 53

38041 Grenoble Cedex 9, France

Alexandre.Demeure@imag.fr

Gaëlle Calvary

University of Grenoble, LIG

385, rue de la bibliothèque B.P. 53

38041 Grenoble Cedex 9, France

Gaelle.Calvary@imag.fr

 2

and then automatically generate the final UI for
different platforms. Later on, the CAMELEON reference
framework [4] made explicit four levels of abstraction
for describing a UI: concepts and tasks (C&T), Abstract
UI (AUI), Concrete UI (CUI) and Final UI (FUI).

One problem in UI generation is that only WIMP
languages or WIMP toolkits (SWING, XHTML, etc.) are
targeted. As a result, UIs are of a poor quality and
deprived of any non WIMP interaction style. This is
probably due to the fact that WIMP toolkits are
standard de facto.

The right model at the right place
Whilst task languages are almost well formalized,
providing just the required information, the same can
not be said for current CUI languages. One of the
problems is that they just enumerate “classical” WIMP
widgets. These widgets implicitly mix several levels of
abstraction. For instance, a button can be described at
the CUI level (a clickable box with a text inside) as well
as at the task level (it supports the “activation” task).
This is probably due to the time when no task model
was used to model a UI. It is no more the case but
leads to two main drawbacks: each widget is associated
with a particular task and symmetrically each task has
a finite and frozen set of possible presentations. Such
rigid associations are the result of years of practice. It
is valuable within the WIMP assertion (one user, one
screen, one keyboard, one mouse …) but becomes
inadequate in ubiquitous computing. The same applies
to the look and feel of the widgets. The way of
interacting with a widget is most of the time hard-
coded in the widget itself, disabling the possibility for
the user to use other interaction modalities such as
gesture or vocal recognition.

Model Driven Engineering (MDE) [3] shows that each
level of abstraction should be described along an
appropriate specific language. These languages should
focus on their abstraction level (C&T, AUI, CUI, FUI)
without introducing artificial dependencies with other
abstraction levels. Mappings are devoted to such
relationships.

In practice, these comments apply to CUI languages or
toolkits. However, some works separate rendering from
interaction [1],[2] and tend to overcome classical
widgets [4]. The trend (at least for graphical UIs)
seems to be the definition and organization of drawing
primitives among a scene graph. “Widgets” are built as
assemblies of primitive nodes [[7],[4]]. This makes
easier the design of nice looking UIs and as a result
favors the exploration of new designs. Other
approaches [8] explore arbitrary abstract widgets that
can be mapped on concrete and possibly non standard
widgets on the fly, thus enhancing the diversity of
presentations.

Generated versus tailored UIs
When considering quality in use, tailored UIs (i.e., UIs
designed by a human) are far away from what a
program can automatically generate (Figure 1). This is
partially due to the fact that computers know almost
nothing about notions such as “beauty” yet. Figure 1-B
shows two WinAMP skins. Compared to Figure 1-A, a lot
of graphical artefacts have been added: they do not
correspond to functional requirements of an audio
player (light effect, rounded forms, buttons layouts,
etc.). They improve the UI quality in use. Today, it is
still impossible to integrate them automatically.

 3

This leads to the following conclusion: “if we can not do
it by ourselves and if there is no hope for the near
future then why not reusing human pre-built tailored
UIs?”. In Service Oriented Approaches (SOA), a service
can be achieved by combining smaller services provided
by other people. In the same way, the UI of a “large”
system could be composed of smaller ones tailored by
designers for a particular context. Automatically
composing tailored UIs would provide great benefits but
this requires that each UI is described in a processable
way.

A) B)

Figure 1. A) UI of an audio player generated by the SUPPLE
system [6]. B) Two tailored UIs of the WinAMP audio player.

Besides the description of UIs, another issue is where
to store and find tailored UIs.

Capitalizing knowledge
Capitalizing and giving access to services is a key point
of SOA. SOA promotes service brokers (Figure 2). In
the same way, capitalizing and giving access to UI
descriptions or implementations should be a key point
of UI generation (automatic, semi-automatic or
manual).

Figure 2. Global view of SOA.

The difference between SOA and Human Computer
Interaction (HCI) is that services descriptions are
mainly functional in SOA, whist HCI requires extra-
functional descriptions. Some works, like in [5], explore
the possibility of using a semantic network to classify
and retrieve UI models or implementations both at
design time and runtime. Each node corresponds to the
model of an interactive system. The model can be done
at any level of abstraction (C&T, AUI, CUI, FUI). Each
edge of the network corresponds to a relationship
between the two corresponding models. Classical
relationships are inheritance, specialisation, extension,
restriction, composition, etc. The structure of the
network provides a support for solving “plasticity
questions” such as: “Is there a pre-computed UI for
supporting this task on this platform or on this context
of use?”. The question is translated in terms of a logical
path in the semantic network starting from the node
describing the task.

 4

Conclusion
MDE for HCI clearly separates the UI models according
to their level of abstraction. Whist task languages are
almost well formalized and general enough, CUI
languages are mostly WIMP oriented. We need CUI
languages suitable for each modality. At least, we think
it is possible to define a GUI language that covers post
WIMP interaction. This language should describe stuff
like geometry, colors, textures, behavior, rich inputs,
etc. As automatically generating such descriptions may
be difficult and automatically generated UIs are mostly
of a poor quality, we believe in tailored UIs, capitalized
in a structure (e.g. a semantic network), and retrieved
at design time as well as at runtime.

Bibliography
[1] Appert, C. and Beaudouin-Lafon, M. 2006.
SwingStates: adding state machines to the swing
toolkit. In Proceedings of the 19th Annual ACM
Symposium on User interface Software and Technology.
UIST '06. ACM Press, New York, NY, 319-322.

[2] Blanch, R. and Beaudouin-Lafon, M. 2006.
Programming rich interactions using the hierarchical
state machine toolkit. In Proceedings of the Working

Conference on Advanced Visual interfaces. AVI '06.
ACM Press, New York, NY, 51-58.

[3] Calvary G., Coutaz J., Thevenin D., Limbourg Q.,
Bouillon L., Vanderdonckt J., A Unifying Reference
Framework for Multi-Target User Interfaces, Interacting
With Computers, Vol. 15/3, pp 289-308, 2003.

[4] Chatty, S., Sire, S., Vinot, J., Lecoanet, P., Lemort,
A., and Mertz, C. 2004. Revisiting visual interface
programming: creating GUI tools for designers and
programmers. In Proceedings of the 17th Annual ACM
Symposium on User interface Software and Technology.
UIST '04. ACM Press, New York, NY, 267-276.

[5] Demeure A., Calvary G., Coutaz J., Vanderdonckt
J., The COMETs Inspector: Towards Run Time Plasticity
Control Based on a Semantic Network, TAMODIA'2006.

[6] Gajos, K. and Weld, D. S. 2005. Preference
elicitation for interface optimization. In Proceedings of
the 18th Annual ACM Symposium on User interface
Software and Technology. UIST '05. ACM Press, New
York, NY, 173-182.

[7] Lecolinet E., A Brick Construction Game Model for
Creating Graphical User Interfaces: The Ubit Toolkit. In
Proc. INTERACT'99, 1999

[8] UIML. http://www.uiml.org.

