

The Many Faces of Plastic User
Interfaces

 Abstract
In this paper, we discuss the problem of UI adaptation
to the context of use. To address this problem, we
propose to mix declarative languages as promoted in
Model Driven Engineering (MDE) with a “code-centric”
approach where pieces of code are encapsulated as
service-oriented components (SOA), all of this within a
unified software framework that blurs the distinction
between the development stage and the runtime
phase. By doing so, we support UI adaptation where
conventional WIMP parts of a user interface can be
(re)generated from declarative descriptions at the level
of abstraction decided by the designer, and linked
dynamically with hand-coded parts that correspond to
the post-WIMP portions of the UI whose interaction
nuances are too complex to be expressed with a UIDL.
We have experienced different methods for mixing MDE
with SOA at multiple levels of granularity.

Keywords
Plastic User Interface. User Interface adaptation,
context-sensitive user interface, Model Driven
Engineering, Service Oriented Architecture, User
Interface Description Language. Copyright is held by the author/owner(s).

CHI 2007, April 28 – May 3, 2007, San Jose, USA

ACM 1-xxxxxxxxxxxxxxxxxx.

Gaëlle Calvary

Université Joseph Fourier

Grenoble Informatics Lab.

BP 53

38041 Grenoble Cedex 9,

France

gaelle.calvary@imag.fr

Joëlle Coutaz

Université Joseph Fourier

Grenoble Informatics Lab.

BP 53

38041 Grenoble Cedex 9,

France

joelle.coutaz@imag.fr

Lionel Balme

Université Joseph Fourier

Grenoble Informatics Lab.

BP 53

38041 Grenoble Cedex 9, France

lionel.balme@imag.fr

Alexandre Demeure

Université Joseph Fourier

Grenoble Informatics Lab.

BP 53

38041 Grenoble Cedex 9, France

alexandre.demeure@imag.fr

Jean-Sebastien Sottet

Université Joseph Fourier

Grenoble Informatics Lab.

BP 53

38041 Grenoble Cedex 9, France

jean-sebastien.sottet@imag.fr

 2

ACM Classification Keywords
H5.2. [Information interfaces and presentation (e.g.,
HCI)]: User Interfaces – User Interface Management
Systems (UIMS).

Introduction
With the move to ubiquitous computing, it is
increasingly important that user interfaces (UI) be
adaptive or adaptable to the context of use (user,
platform, physical and social environment) while
preserving human-centered values [3]. We call this “UI
plasticity”. From the software perspective, UI plasticity
goes far beyond UI portability and UI translation.

As discussed in [4], the problem space of plastic UI is
complex: clearly, it covers UI re-molding, which
consists in reshaping all (or parts) of a particular UI to
fit the constraints imposed by the context of use. It
also includes UI re-distribution (i.e. migration) of all (or
parts) of a UI across the resources that are currently
available in the interactive space. UI plasticity may
affect all of the levels of abstraction of an interactive
system, from the cosmetic surface level re-
arrangements to deep re-organizations at the functional
core and task levels. When appropriate, UI re-molding
may be concerned by all aspects of the CARE
properties, from synergistic-complementary
multimodality (as in “put-that there”) and post-WIMP
UI’s, to mono-modal GUI. Re-molding and re-
distribution should be able to operate at any level of
granularity from the interactor level to the whole UI
while guaranteeing state recovery at the user’s action
level. Because we are living in a highly heterogeneous
world, we need to support multiple technological

spaces1 simultaneously such that a particular UI may
be a mix of, say, Tcl/Tk, Swing, and XUL. And all of
this, should be deployed dynamically under the
appropriate human control by the way of a meta-UI
[4].

Observations
Our approach to the problem of UI plasticity is based on
the following observations:

(1) The software engineering community of HCI has
developed a refinement process that now serves as a
reference model for many tools and methods: from a
task model, an abstract UI (AUI) is derived, and from
there, the Concrete UI (CUI) and the Final UI (FUI) are
produced for a particular targeted context of use. The
process is sound but cannot cope with ambient
computing where task arrangement may be highly
opportunistic and unpredictable.

(2) Software tools and mechanisms tend to make a
dichotomy between the development stage and the
runtime phase making it difficult to articulate run-time
adaptation based on semantically rich design-time
descriptions. In particular, the links between the FUI
and its original task model are lost. As a result, it is
very hard to re-mold a particular UI beyond the
cosmetic surface.

(3) Pure automatic UI generation is appropriate for
simple (not to say simplistic, “fast-food”) UI’s. As

1 “A technological space is a working context with a set of
associated concepts, body of knowledge, tools, required skills,
and possibilities.” [5]

 3

mentioned above, the nuances imposed by high-quality
multi-modal UI’s and post-WIMP UI’s, call for powerful
specification whose complexity might be as high as
programming the FUI directly with the appropriate
toolkit. In addition, conventional UI generation tools
are based on a single target toolkit. As a result, they
are unable to cross multiple technological spaces.

(4) Software adaptation has been addressed using
many approaches over the years, including Machine
Learning, Model-Driven Engineering (MDE), and
service-oriented components. These paradigms have
been developed in isolation and without paying
attention to UI-specific requirements. Typically, a
“sloppy” dynamic reconfiguration at the middleware
level is good enough if it preserves system autonomy.
It is not “observable” to the end-user whereas UI re-
molding is! Thus, UI re-molding adds extra constraints
such as making explicit the transition between the
source and the target UI’s so that, according to
Norman, the end-user can evaluate the new state.

Based on these observations, we propose the following
key principles that we have put into practice using a
combination of MDE and SOA. The exploration of
Machine Learning is under way.

Three Principles for UI Plasticity
Principle #1: Close-adaptiveness must cooperate with
open-adaptiveness. By design, an interactive system
has an “innate domain of plasticity”: it is close-adaptive
for the set of contexts of use for which this
system/component can adapt on its own. In ubiquitous
computing, unplanned contexts of use are unavoidable,
forcing the system to go beyond its domain of
plasticity. Then the interactive system must be open-

adaptive so that a tier infrastructure can take over the
adaptation process. The functional decomposition of
such an infrastructure is described in [1].

Principle #2: An interactive system is a set of graphs of
models that express different aspects of the system at
multiple levels of abstraction. These models are related
by mappings and transformations, which in turn, are
models as well. As a result, an interactive system is not
limited to a set of linked pieces of code. The models
developed at design-time, which convey high-level
design decision, are still available at runtime for
performing rationale deep adaptation. In addition,
considering transformations and mappings as models is
proving very effective for controlling the adaptation
process [6].

Principle #3: By analogy with the slinky meta-model of
Arch, increasing principle #1 allows you to decrease
principle #2 and vice-versa. At one extreme, the
interactive system may exist as one single task model
linked to one single AUI graph, linked to a single CUI
graph, etc. This application of Principle#1 does not
indeed leave much flexibility to cope with unpredictable
situations unless it relies completely on a tier
infrastructure that can modify any of these models on
the fly, then trigger the appropriate transformations to
update the Final UI. This is the approach we have
adopted for MARI [7]. In its current implementation,
MARI provides a reasonable answer to Observations
#1, #2, and #3: (a) the “fast-food” UI portions are
generated from a task model. The corresponding AUI
and CUI are automatically generated and maintained by
MARI : they are not imposed on the developer; (b) In
addition, hand-coded service-oriented components can
be dynamically plugged and mapped to sub-tasks

 4

whose UI cannot be generated by transformations.
MARI has been applied to develop a photos browser
that includes an augmented multi-touch table.

Alternatively, the various perspectives of the system
(task models, AUI, FUI, context model, etc.) as well as
the adaptation mechanisms may be distributed across
distinct UI service-oriented components, each one
covering a small task grain that can be run in different
contexts of use. We have adopted this approach to
implement the Comet toolkit [2]. Basically, a Comet is
a plastic micro-interactive system whose architecture
pushes forward the separation of concerns advocated
by PAC and MVC. The functional coverage of a comet is
left open (from a plastic widget such as a control panel,
to a complete system such as a powerpoint-like slide
viewer). Each Comet embeds its own task model, its
own adaptation algorithm, as well as multiple CUI’s and
FUI’s, each one adapted to a particular context of use.
FUI’s are hand-coded possibly using different toolkits to
satisfy our requirements for fine-grained
personalization and heterogeneity (Observation #3).
From the infrastructure point of view, a Comet is a
service that can be discovered, deployed and integrated
dynamically into the configuration that constitutes an
interactive environment.

Conclusion
The community has a good understanding about the
nature of the meta-models for describing the high-level
aspects of plastic interactive systems (e.g., task and
domain-dependent concepts). Blurring the distinction
between the design and the runtime phases provides
humans (e.g., designers, installers, end-users) with full
potential for flexibility and control. On the other hand,
we still fall short at describing fine-grained post-WIMP

multimodal interaction and at supporting situations that
could not be predicted at design time. For these cases,
we claim that hand-coding and a tier service-oriented
infrastructure are unavoidable. This is what we have
done with MARI and the Comets, two very different
ways of applying our principles for UI plasticity.

Acknowledgements
This work has been partly supported by Project EMODE
(ITEA-if4046) and the NoE SIMILAR- FP6-507609.

References
[1] Balme, L., Demeure, A., Barralon, N., Coutaz, J.,
Calvary, G.: CAMELEON-RT: A Software Architecture
Reference Model for Distributed, Migratable, and Plastic
User Interfaces. In Proc. EUSAI 2004, LNCS Vol. 3295,
Springer-Verlag (Publ.) (2004), 291-302.

[2] Calvary, G. Coutaz, J. Dâassi, O., Balme, L.
Demeure, A. Towards a new generation of widgets for
supporting software plasticity: the “comet”. In Proc. of
Joint EHCI-DSV-IS (2004).

[3] Calvary, G., Coutaz, J., Thevenin, D. A Unifying
Reference Framework for the Development of Plastic
User Interfaces. In Proc. Engineering HCI’01, Springer
Publ., LNCS 2254 (2001), 173-192

[4] Coutaz, J. Meta-User Interface for Ambient Spaces.
In Proc. TAMODIA’06, Springer LNCS (2006), 1-15.

[5] Kurtev, I., Bézivin, J. & Aksit, M. Technological
Spaces: an Initial Appraisal. In Proc. CoopIS, DOA'2002
Federated Conferences, Industrial track, Irvine (2002).

[6] Myers, B., Hudson, S.E. & Pausch, R.: Past,
Present, and Future of User Interface Software Tools.
TOCHI, ACM Publ., Vol 7(1), (2000) 3-28

[7] Sottet, J.S., Calvary, G., Coutaz, J., Favre, J.M. A
Model-Driven Engineering Approach for the Usability of
Plastic User Interfaces. In Proc. Engineering Interactive
Systems 2007, DSV-IS 2007), Springer.

