
End-User Programming and the Intrinsic Complexity
of Networked Artefacts

Joëlle Coutaz
Grenoble Informatics Laboratory

University Joseph Fourier
385 rue de la Bibliothèque
38041 Grenoble Cedex 9

+33 4 76 51 48 54

joelle.coutaz@imag.fr

ABSTRACT
In this article, we propose a model for networked artifacts
inspired from molecular chemistry. It demonstrates the intrinsic
complexity of the domain illustrated with unsolved problems such
as mastering the semantics of networked artefacts. Based on this
model, we identify similarities with the service-oriented
computing paradigm and suggest possible avenues for
collaboration between Software Engineering and researchers in
EUD including: semantic alignment between end-user
programming languages and service descriptions, and human-
service interaction as a transversal issue in software design.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
User interfaces, evolutionary prototyping.

General Terms
Design, Human Factors.

Keywords
End-user development, end-user programming, ubiquitous
computing, service-oriented computing.

1. INTRODUCTION
Ubiquitous computing promises unprecedented empowerment
from the flexible and robust combination of software services
with the physical world. For the HCI research community, this
means that end-users will be able to shape their own interactive
spaces and build imaginative new forms of interaction and
functionalities that were not anticipated by the system’s
designers. For the software engineering community, service
combination entails the development of multi-scale computing
fabrics that will autonomously adapt to their environment. Here,
autonomy denotes self-deployment, self-reconfiguration, self-
protection, and self-repair … without human intervention. In

other words, in HCI, the human is at the core of the computation
loop, where-as, in software engineering, the human is removed
from the loop.

Although this duality of viewpoints between HCI and Software
Engineering has been recurrent for years, ubiquitous computing
makes it critical. Ubiquitous computing will not hold its promise
as long as “system-ers” and “human-ers” keep working separately
with different scientific objectives. The challenge is not to build
autonomous systems, but to protect end-users from software
complexity by increasing system autonomy and at the same time
provide them with the appropriate services and means for
preserving values such as control, freedom, and creativity.

In this position paper, I address one particular complex issue, at
the core of ubiquitous computing: the dynamic interconnection of
“smart devices”. I propose to address this complexity using an
analogy with chemistry where a smart artefact is modeled as a
composition of physical and digital atoms whose configuration
evolves under particular conditions. From this vantage, I will seek
to unify the HCI and software engineering goals using end-user
development for the HCI side and the service-oriented paradigm
for the software engineering side.

2. SMART ARTEFACTS AS CHEMICAL
MOLECULES

2.1 The Model
A smart artefact (also called a mixed-reality object or an
augmented object) is a chemistry-inspired assembly made from
two sorts of elements – digital atoms (D) and physical atoms (P)
whose bonds correspond to communication mechanisms or
physical attachments. As in chemistry, reaction (or a chain of
reactions) results from the confluence of particular events, and
produces new smart artefacts.
A smart artefact may break down into simpler artefacts and
atoms, or it may be coupled with other artefacts and atoms into a
more sophisticated artefact. Alternatively, only the internal
geometry of the artefact may evolve. The confluence of events
that provokes a reaction denotes a change in context as introduced
by the ubiquitous computing community. These events are
generated either by humans, by the physical environment, or by
the system itself (to guarantee service continuity, for example).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WEUSE IV, May 12, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-034-0/08/05…$5.00.

Thus, the simplest smart artefact is composed of a single D atom
coupled with a single P atom. Software services are composed of
D atoms only, whereas conventional objects of the real world are
strictly built from P atoms. An interactive space (e.g., a smart
home), may be a unique but large molecule of D and P elements,
or it may be a set of molecules each one defining a smaller
bubble, but prone to reconfiguration.
As in chemistry, the nature of the events that trigger a reaction
has an impact on the resulting product. For example, in
Hinckley’s dynamic display tiling [4], users obtain different
arrangements depending on the way the tablets are bumped
together. According to our model, each tablet is a [P–D] molecule
where P denotes the rectangular screen and D represents the set of
services that are currently mapped on this screen. If one tablet
rests flat on a desk surface, and a second tablet is bumped into the
base tablet, then the resulting artefact is a larger display that
shows the content of the base tablet (see Figure 1-a).
Alternatively, if the two tablets are bumped symmetrically, the
tablets perform a mutual exchange of information (see Figure 1-
b). In case a), a bond is created between the two P’s to form a
larger screen, and the D that was associated with the moving
screen becomes a free atom. In case b, the P’s are linked as in
case a, but their D’s have been exchanged.

D2+
P1

D1

P2

D1

=

+
P1

D1

P2

D2
=

a)

b)

P2 P1

D1
+

P2 P1

D2

D2

Figure 1. Hinckley’s tablets. a) the resulting artefact when a
second tablet is bumped into the base tablet. b) the resulting
artefact when the tablets are bumped symmetrically.
The Nabaztag shown in Figure 2 is another interesting form of
[P – D] molecule.

2.2 The Nabaztag Exemplar
The Nabaztag is an information appliance1 that results from the
binding of a P atom with a D atom: the Pnab atom is a 9 inches tall
plastic bunny shape including a loud-speaker, moving ears,
colored lights that pulsate on its nose and belly, and a Wi-Fi card.
Its Dnab atom implements some service-oriented protocol over IP.
The [Pnab – Dnab] molecule corresponds to the “virgin” Nabaztag
as users get it from the store.

Pnab

Dnab

Figure 2. The “virgin” Nabaztag as a [P – D] molecule.

1 Nabaztag means “rabbit” in Armenian.

To become a working information appliance, the Nabaztag must
be registered using a Web server on a personal computer. The
registration process is supported by the [PPC – Dweb – Dreg]
molecule where PPC denotes the PC, Dweb the Web server, and
Dreg the registration software service available from the Web
server (see figure 3). By filling in forms on the PC, the user
provokes a reaction between the original Nabaztag molecule and
the registration molecule resulting in the creation of a bond
between atoms Dnab and Dreg as well as bonds between Dweb and
the Ds services to which this particular instance of Nabaztag is
able to subscribe. These services include weather forecast, inter-
personal messaging, mood expression (the rabbit has a mood!),
etc.
.

DS

PPC

=

Dreg

Pnab

Dnab

+ Dweb

PPC

Dreg

Pnab

Dnab
Dweb

DS

DS

Figure 3. Registrating the Nabaztag. (Dashed lines denote

couplings that result from a chain of reactions.)
Through form filling, the user can specify which services are of
interest. The resulting molecule is shown in Figure 4-a. Once the
user has disconnected from the web server, the Nabaztag, as an
information appliance, is a rather well-balanced star-like molecule
with a stem coupled to a single P atom (see Figure 4-b). At any
time, the user can reconnect to the web server via the PC to
modify the Nabaztag molecule

DS

PPC

Dreg

Pnab

Dnab

Dweb

DS

DS

a)

DS

Dreg

Pnab

Dnab

DS

b)

 Figure 4. The Nabaztag as a working information appliance.
a) The PC is in use. b) The autonomous Nabaztag.

This simple real-life example illustrates two problems:
indirectness and semantics uncertainty:
- Users cannot customize their Nabaztag directly. They have

to build a number of intermediate molecules that are of no
interest to them. In addition, the complexity of these
intermediate molecules is a good candidate for potential
breakdowns, both technical (e.g., a network disconnection)
and cognitive (e.g., the user makes a mistake).

- Users may be uncertain about the semantics of the final
molecule. Using our exemplar, how can users be sure that the
final boundary of the Nabaztag is the “nice” molecule shown

in Figure 4-b? It is possible that the Ds atoms are coupled
with other services whose behavior may have an undesirable
impact on the native Dnab (for example, in terms of privacy).
By the way of the registration molecule, you can marry your
Nabaztag to another one. If this function is transitive, your
Nabaztag becomes polygamous. In other words, consequent
bonds are created between your Nabaztag and other
Nabaztags and this may be unknown to you. As another
example of chain of reactions, the arrival of the Nabaztag in
the home, which may be a huge molecule or a set of
coexisting molecules, may entail a chain of reactions that
may not be predictable or even observable and controllable.

Suppose for example, that the Nabaztag joins the smart home
represented by the molecule shown in figure 5. This smart home
is equipped with a presence detector, a surveillance system, and
an IP-device discovery facility. It includes a number of smart
objects such as an augmented IP fridge and an IP answering
machine. When the owner is away, any intrusion or abnormal
situation is notified to the owner via the mobile phone.
Suppose that the user has subscribed the Nabaztag to the buddies
messaging service. The Nabaztag is then able to play messages
sent by buddies using its speaker-phone. Unfortunately, it has no
replay facility. Thus, when there is nobody home, messages are
lost. In order for the Nabaztag to forward incoming messages to
the recording facilities of the home, additional bonds must be
created between the appropriate D services. These can be created
autonomously by the smart artefacts, or they can result from the
interpretation of an end-user program, or from a smooth
combination of both. Whatever the process, an initial coupling is
necessary to entail a chain of reactions until reaching a stable
appropriate situation.

 Smart home

DS

Dreg

Pnab

Dnab

DS

Pmob

Dmob

Mobile phone

Dfri

Pfri

Augmented Fridge

Ppre

Dpre

Presence detector

Dans

Pans

Answering machine

DIP
IP device
discovery

Dmes

Figure 5. A smart kitchen as a unique molecule.

In our case, because the Nabaztag is an IP device, a bond can be
automatically established between DIP, the IP-device discovery
facility and Dnab. Dnab is now able to discover Dpre, the presence
detector, as well as Drec to use the recording facility of the
answering machine or even Dmes to forward messages to the
mobile phone. These bonds can in turn provoke new chains of
reactions. How far can we go? The complexity is combinatorial,
even for very simple situations. For example, the three elements
D, P, D’ may yield into [D–P] + D’, or [D’–P] + D, or [P–D–D’],
or [P–D’–D] or into a complete graph where all the nodes D, P,
D’ are interconnected. Are all of them possible, or even desirable?
Drawing again on the analogy with molecular chemistry, the
following notions may help reasoning about these issues: valence
and affinity.

2.3 Valence and Affinity
In chemistry the notions of valence and affinity have been
introduced to rationalize the formulae of different chemical
compounds.
In our context, the valence of an element is an integer that
measures the maximum number of bonds that this element can
support. The affinity between two elements denotes their capacity
of forming new artefacts provided that they both satisfy a set of
constraints. In our case, constraints may apply to physical form
factors, software discoverability and interoperability, cognitive
compatibility, semantic relevance, and more generally human
values including ethical values (why not?).
Let’s come back to Hinckley’s tablets. Valence : because of the
form factor, each P can be linked to four P’s at most (one screen
on each side). Affinity: the D’s can be interconnected only if they
are interoperable. In case of the Nabaztag, the “marry” function is
transitive for my Nabaztag only if I, the owner, believe in
polygamy!
Valence and affinity are two ways to limit the combinatorial
effect of networked smart devices as well as controlling chains of
reactions in a semantically relevant fashion. We need now to
address the implications for both software engineering and HCI
using the particular case of service oriented computing and end-
user development.

3. SERVICE ORIENTED COMPUTING
AND END-USER DEVELOPMENT

3.1 Service-Oriented Computing
Service-oriented computing (SOC) is currently an active area of
research in Software Engineering. It is motivated by the need to
address heterogeneity, dynamic deployment and reconfiguration,
and this at multiple scales. SOC is based on three kinds of D’s –
service providers, service consumers and service brokers, along
with the specification of the services that are provided and
needed. The bonds between the D’s correspond to three kinds of
interactions: service publication between providers and brokers to
declare to the world the services they offer, service discovery
between consumers and brokers to find the desired services, and
service invocation between consumers and providers to
effectively use the services.

Clearly, the SOC paradigm matches the chemistry-inspired
composition that we propose here. On the other hand, the service

specifications, which formally express the notions of valence and
affinity between atomic elements, convey system issues, not end-
users needs. Typically, the contracts between software
components are primarily syntactic. The semantic level is still
overlooked. In particular, service descriptions do not include the
description of the human task that they are able to support, nor do
they express the quality of service they can achieve in terms of
human values.

As a result, service composition is determined by system-oriented
people, not by end-users. In addition, according to my knowledge,
there is no way for a particular consumer D1 to directly control
the services that its service provider D2 uses effectively. As
demonstrated by the Nabaztag, end-users need to specify some
form of range for chains of reactions. One possible approach is to
explore a recursive model as proposed by Fractal for software
components: a configuration of components can be encapsulated
as a component []. By doing so, one can define clear boundaries
along with the specification of a description that would include
human-centered concerns.

3.2 End-User Development
The Nabaztag exemplar, although simplistic, shows the necessity
for end-user development (EUD). As discussed at the Dagsthul
seminar on EUD [2], we still do not know which notation(s) to
offer to users, nor to support them with debugging facilities and
reuse. Partial solutions have been developed for specific domains,
problems, and target users. Clearly, we need to seek for
generalization. “Lingua Franca” is an interesting attempt in this
direction [3]. It is a scripting XML-based pivot language intended
to support multiple end-user notations such as a visual language
and the tangible Media Cubes.

Having defined the “right” notation for a particular class of end-
users addresses the syntactic issue, but leaves opened the
semantic dimension. This is where, I think, we need to align the
semantics of end-user languages with that of service descriptions
and compositions so that: 1) users can develop a good
understanding of the current state of the networked artifacts, 2)
users can control this state including delegate tasks to the
networked artifacts, and if necessary, deploy and repair faulty
artifacts. A recursive model of services would permit to define the
appropriate level of encapsulation to hide complexity. Such a
compound service would be very robust and trustworthy, and
would not need human intervention (just like a car whose
complexity is particularly well encapsulated because engines are
now very reliable).

But this is not enough: programs correspond to predefined
scenarios. Currently, electricity providers sale devices that let you
program a number of situations: energy saving during the week-
end and at night for such and such rooms, and a nice level of
comfort during week days based on your life style [1]. In
ubiquitous computing where human opportunism and
unpredictability are paramount, these programs may need to be
revised on the fly either by the end-user or the system. Thus, the

service(s) that are in charge of interpreting end-user programs
must be carefully designed since they potentially affect all of the
elements of the molecule. Therefore, just like security, end-user
interaction is a transversal issue. This aspect needs to be
addressed explicitly in collaboration with the software
engineering community.

4. CONCLUSION
In this article, we have defined a model for networked artifacts
inspired from molecular chemistry. It demonstrates the intrinsic
complexity of the domain illustrated with unsolved problems.
These include human control of a chain of reactions to context
changes and understanding the semantics of a particular
configuration of networked artifacts. Based on this model, we
have identified similarities with the SOC paradigm developed in
Software Engineering as well as limitations in one of the central
concepts of services-oriented approaches: the absence of human
concerns in service descriptions. We also suggest three possible
avenues for collaboration between Software Engineering and
researchers in EUD: a recursive model of services as a way to
keep complexity away from the end-user, semantic alignment
between end-user programming languages and service
descriptions, and human-service interaction as a transversal issue
(not as an epi-phenomenon).

5. ACKNOWLEDGMENTS
This work has been supported by the network of excellence
SIMILAR (IST, FP6) and the ITEA EMODE project.

6. REFERENCES
[1] Bourcier, J., Escoffier, C. Lalanda, 2007. Implementing

Home-Control Applications on Service Platform. In
Proceeding of the IEEE Consumer Communications and
Networking Conference, CCNC 2007 (Las Vegas, NV,
USA, 11-13 Jan. 2007).

[2] Burnett, M. H., Engels, D., Myers, B. A., Rothermel, G.
2007. User Software Engineering, Dagstuhl seminar
Proceedings 07081. DOI =
http://drops.dagstuhl.de/portals/index.php?semnr=07081

[3] Hague, R., Robinson, P. Blackwell, A. 2003. Towards
Ubiquitous End-User Programming. In Proceedings of the 5th
annual conference on Ubiquitous Computing (UbiComp),
Seattle, October 2003.

[4] Hinckley, K. 2003. Synchronous gestures for multiple
persons and computers. In Proceedings of the 16th Annual
ACM Symposium on User interface Software and
Technology (Vancouver, Canada, November 02 - 05, 2003).
UIST '03. ACM Press, New York, NY, 149-158.

