Towards Autonomic Multimodal Interaction

Pierre-Alain Avouac
Grenoble University
220 rue de la chimie

38 000 Grenoble
France

Pierre-Alain.Avouac@imag.fr

ABSTRACT

Heterogeneity and dynamism of pervasive environment prevent to
build static multimodal interaction. In this paper, we present how
we use the autonomic approach to build and maintain adaptable
multi-modal interaction. We describes characteristic of adaptation,
realized by an autonomic manager that relies on models specified
by interaction designers and developers. Finally, an example with
a real application and existing devices is explained.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User
Interfaces — input devices and strategies, interaction styles, user
interface management systems (UIMS). D.2.2 [Software
Engineering]|: Design Tools and Techniques — User interfaces.

General Terms
Algorithms, Design.

Keywords

Multimodal interaction, autonomic computing.

1. INTRODUCTION

As envisioned by Mark Weiser [6], computers are getting more
and more numerous and interconnected. Somehow, they even
disappear from the user’s awareness that now tends to reason in
terms of services and not in terms of computing elements. One
purpose of pervasive computing indeed is to realize this vision of
increasingly ubiquitous network-enabled devices. Specifically, it
aims at filling our environment with communication-enabled
devices in order to assist us in our daily activities.

Service-oriented Computing (SOC) has recently emerged and has
clearly fostered the domain of pervasive communication-enabled
devices [4],[1]. The very purpose of this reuse-based approach is
to build applications through the late composition of independent
software elements, called services. Services can be implemented
within smart devices. They are described and dynamically
published by service providers; at runtime they are chosen and
invoked by service consumers. This is achieved within a service-
oriented architecture (SOA), providing the supporting
mechanisms. Service orientation brings in major software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MAASC'11, May 12, 2011, Paris, France.

Copyright 2011 ACM 978-1-4503-0847-2/11/05...$10.00.

Laurence Nigay
Grenoble University
220 rue de la chimie
38 000 Grenoble
France

Laurence.Nigay@imag.fr

Philippe Lalanda
Grenaoble University
220 rue de la chimie
38 000 Grenoble
France

Philippe.Lalanda@imag.fr

qualities. It promotes weak coupling between consumers and
providers, reducing dependencies among composition units. Late
binding and substitutability improve adaptability. Since a service
can be chosen or replaced at runtime, it is easier to improve the
way requirements are met. A number of implementations have
been proposed in the last years. Web Services (www.w3c.org), for
instance, represent a solution of choice for software integration.
UPnP (www.upnp.org) and DPWS (Devices Profile for Web
Services) are heavily used in pervasive applications in order to
implement volatile devices. OSGI (www.osgi.org) and iPOJO
(www.ipojo.org) provide advanced dynamic features to many
software systems.

It is expected that, in the long term, devices will fade into the
environment and users will not be aware of their location or their
precise nature. There will be no need for complex, specific
interfaces. Users will simply express their needs or desires and the
environment and the objects in it will configure themselves
autonomously. In the midterm, the situation is a bit different.
Interactions with smart devices are generally explicit. Users have
to engage explicit interaction with devices in order to obtain a
service.

Effectively interacting with pervasive devices is complicated by
several factors. First, an interaction may need several devices. It is
then necessary to deal with several sources of heterogeneous data
in order to trigger an action. The activity of integrating disparate
information sources in a timely fashion is known under the name
of mediation. Mediation has been historically used to integrate
data stored in IT resources like databases, knowledge bases, file
systems, digital libraries or electronic mail systems [7],[8],[3]. It
is now also used to allow interoperation between heterogeneous
software applications and devices [2].

Another problem is related to the number and variety of smart
communication devices that is just exploding! PDAs,
smartphones, set-top-boxes, cameras, and electronic appliances
can be found in many houses today. As envisioned by Moore’s
law, these devices are getting cheaper, smaller and are pervading
every aspect of our life. The problem is that this invasion is
chaotic: devices use a number of communication protocols and
are rarely interoperable. For instance, there are today more than
50 candidate protocols, working groups and standard
specifications for home networking already exist (see
www.caba.org for an updated list). As a consequence, building
consistent interactions based on network enabled devices that
spontaneously enter and leave the network turns to be a real
challenge. We believe that significant progress is needed along
several dimensions. New architectures and techniques are actually



needed in order to seamlessly integrate heterogeneous and
changing devices and networks.

In this paper, we present an autonomic solution to this problem of
multimodal interaction in heterogeneous, dynamic domains. The
paper is organized as it follows. Firstly, our autonomic approach
is motivated, and adaptation characteristics of our work are
described. Secondly, models used to guide adaptation are
explains. Finally, a concrete example is provided with emphasis
on the autonomic aspect and its coupling with models.

2. AUTONOMIC INTERACTION

A multimodal interface enables a user to use more than one device
to interact with a system. In the pervasive vision, a user is
surrounded by devices that can be seen as resources or as means
to trigger an action on the environment. Input devices, like remote
controllers or webcams coupled with movement recognition,
allow users to express their needs and desires. Other devices, like
heating systems or movie players, host application and are
actually in charge of fulfilling the users’ needs. Finally, output
devices inform the user of the system response: loudspeaker,
screen, etc. Our work focus on input multimodality, that is to say
on unidirectional communication from input devices to services-
based devices.

Due to the heterogeneity of environments, no assumption can be
made about how a user will interact with an application. Thus,
applications and devices are independent. However, interaction
designers should be able to add some of their knowledge. Finally,
a user should be able to configure some aspect of interaction
along its preferences. Therefore, the interaction has to be
adaptable. However, doing this adaptation requires deep technical
knowledge that users and interaction designers do not have. The
need of autonomic emerges from this set of facts. We develop
DynaMo (standing for “dynamic modalities”), a software that
generates and maintains context-adapted multimodal interactions.
General assumptions behind DynaMo are:

e  An application is a set of tasks that consume data;
e A device is a set of sensors that provide data;

e Applications and devices are exposed as services, as
defined in service-oriented computing.

Providing users with multimodal interaction facilities is a hard
task where a number of requirements have to be met. A user
generally has preferences that have to be considered carefully. A
user does not want to deal with low level details. For instance,
he/she neither wants to notify the system that a device is no more
usable nor creates a whole interaction. Also, a user may want to
prevent a device to be used for some task, or give a policy in order
to guide the interaction generation along his or her preferences.

Providing multimodal interaction facilities is even made harder in
pervasive environments, characterized by their heterogeneity and
dynamicity. More precisely, the following aspects have to be
taken into account:

e The environment (which devices and services are
accessible at a given point in time?);

e Information about devices and services (how do services
and devices interact?);

e User preferences (which policy should follow an
interaction?).

In our work, we propose to use an autonomic manager in order
to generate (and maintain) an interaction. Because carrying data

26

from input devices to services can be seen as a mediation
problem, we have decided to implement an interaction through a
mediation chain. In this approach, the autonomic manager has
thus three kinds of input, which will be detailed here after, and its
output is a mediation chain. The autonomic manager is reactive:
when a modification occurs in the input elements, it computes a
new chain or adapts the current one.

Praxies and Models

Interaction Pollcy Discovery

%

O]

Premey of
the Application 1
of
the Device 2

i ]

In order to better understand the adaptations that have to be made
by the autonomic manager, we present here the objects to adapt,
the realization issues, the temporal characteristics and the
interaction concerns as suggested in [5].

the Davica 1

10

Runtime Envimnment

Figure 1. Global approach

The object to adapt is a mediation chain that is made of specific
elements called mediators. Adaptations are done globally, at the
chain level. The impact is low from the system’s point of view:
because the mediation chain is in a well-defined place in the
architecture, there is no side effect elsewhere. The mediation
chain is decoupled from the autonomic manager. The device and
application are not aware of the mediation chain, so they do no
see any change. Currently, the time cost is not negligible from the
user point of view (about 3 seconds). It will be really negligible
when the low level anomaly is spotted: less that one second is
aimed. The impact on the user can be huge: a new interaction
takes place, the old interaction is no longer available. Of course,
the adaptation is done in order to enhance the user communicative
capabilities: a new interaction is built due to new communication
possibilities. As a conclusion, the adaptation is strong because a
part of architecture is modified.

The realization issue is split into approach and type. The
decision-making is static: a user can choose a policy at runtime,
but he/she cannot modify the effect of a rule without recompiling.
Same thing for the models used to generate an interaction: models
can be modified at runtime, but the decision-making that relies on
these models cannot be changed at runtime. These statements
have to be mitigated: DynaMo itself is built with the dynamic
service approach. In theory, deciding processes can be changed at
runtime but that has not been investigated. The adaptation is
external: the adaptable mediation chain is decoupled from the



autonomic manager. This separation eases the evolution of the
mediation chain in one hand, and the evolution of autonomic
manager in the other hand. The adaptation is realized without
learning from the user inputs. However, several cases would
obviously leverage the learning. For example, if a button is never
used by a user, DynaMo could propose to bind this button to
another function. Usage of autonomic architecture will ease the
machine learning process because sensing and effecting are
already done. The adaptation is model-based: description of
devices and applications resides in model. These models have to
be conformed to a meta-model; that is specific to interaction
domain.

The temporal characteristics are split into reactive/proactive
adaptation and continuous/adaptive monitoring. The adaptation is
reactive: a change in the environment potentially trigger the
generation of the new interaction. Same thing occurs for rules: if
the user chooses another rule, a new interaction is generated. No
assumption can be done about the evolution of the environment.
Hence, the monitoring is continuous.

Finally, interaction concerns are split into human involvement,
trust and interoperability. The user is involved when he/she
chooses a policy rule. Moreover, the user can choose which
application she or he wants to control through the multimodal
interaction. By contrast, changes in the accessible device set do
not required user’s involvement. The trust is obtained by different
ways. First, used algorithms are deterministic: if autonomic
manager inputs are the same, the provided mediation chain is the
same. Then, appearance and disappearance of services and
devices are notified to the user. Finally, a simple mechanism is
used, allowing that if a button has a validation function, it will be
used for validation, whatever the application deals with. The main
lack concerns the observability by a user of an interaction.
Currently, a user cannot easily know what task is bound to a
sensor. Some works is being done to improve this.

Along this presentation, we have underscored some advantages of
our modeling approach. The next section presents models that can
be specified by stakeholders.

3. MODELS

The autonomic manager needs some information to generate a
useful interaction. We have decided to store most of the necessary
information in models. Two kinds of model are handled: proxy
models and interaction models. This separation has been done in
order to target the two different stakeholders: developers and
interaction designers.

A developer is in charge of developing both device and
application proxies. She/he has to provide one model for each
proxy. A proxy model contains information about the discovering
process that is used by the discovery manager. From this
information, the discovery manager is able to track the concerned
device or application and start its corresponding proxy. The model
contains other information relative to how send to data to a proxy,
or receive data form a proxy, especially the data type. From this
information, the autonomic manager can connect the endpoints of
a mediation chain to the proxies. If a data type is a number (float
or integer), the interval has to be provided. An interval is
composed of a lowest bound and an upper bound. This
information enables the autonomic manager to adapt intervals at
runtime by inserting an adaptor between incompatible intervals.
For example, if a device provides numbers in the interval [-180,
+180], and a connected application task handles numbers in the
interval [0, +100], the inserted adaptor does a linear

27

transformation for each value between these two intervals. Figure
2 shows the meta-model of expected proxy models.

Proxy
name : EString

/
/

/ports
/

1.% - 1
Discoverylnformation

discriminator : EString

factory : EString

location : EString

protocol : DiscoveryProtocol

P
Port
codeReference : EString

dataType : DataType
direction : PortDirection
name : EString

» DataType = DiscoveryProtocol 2 PortDirection

- event - bluetooth -in
- float - dbus - out
- integer - udp/tcp

- string

Figure 2. Detailed proxy meta-model

An interaction designer is an expert: she/he is able to detect what
is the best way to interact with an application or what is the best
way a device can be used. She/he may provide one or several
interaction models for each proxy model. Because these models
only depend on one proxy, they describe only a partial interaction
that is completed by the autonomic manager that generates a full
interaction at runtime. Interaction models contain information
about data semantics, data processing and data path. Without
knowing the semantics of a data, the autonomic manager is only
able to reason about its type. That prevents it from generating a
broken interaction caused by incompatible data types. Guided by
semantics, the autonomic manager is able to generate a more
useful interaction. Data processing is important: the interaction
designer is able to enhance an interaction by adding tasks to an
application, synchronizing data and so on. For example, if a media
player application proposes a task to control the sound volume
trough a number, then the interaction designer can add a task that
mute the volume. A data path is the succeeding functions that a
data will pass through. Figure 3 shows a detail of the general
meta-model about partial interactions.

Partiallnteraction
interactionClass
proxy

[

components
i
InteractionComponent
baseComponent

[}

ports
y1.x
Port
meaning
connectedPort

Figure 3. Detailed interaction meta-model

Freely defining semantics does not make sense because the
autonomic manager needs to match defined meanings in the
different interaction models. Several interaction classes have been
predefined. An interaction class defines several meanings that
make sense together. An interaction model references one
interaction class, so only the meanings of this class can be
attached to data of this model.

In order to ease the data processing definition, a predefined library
of processing functions is provided. The interaction designer
declares which function has to be used, and provides a



configuration for the function. For example, a triggering function
sends an event as soon as it receives a value greater than a
configured ceiling. These functions are specific to the interaction
domain. They have been tailored with reuse concerns in mind.
The functions are implemented by components. Thus, the
interaction designer specifies a partial interaction by declaring
which base component to use, configuring them and binding their
ports together. At this stage of specification, data types can
generally be ignored because the autonomic manager will be able
at runtime to infer each port data type. This inference leads to
complete the component configuration, and add data type
converting component if necessary.

Specifying a partial interaction by assembling and configuring
several domain specialized components eases the interaction
designer work. This approach maximizes the reusability by
providing generic components, lowers the difficulties by hiding
implementations details, and facilitates the implementation of
autonomic manager because the abstraction gap between
components and mediators is narrow.

ComponentLibrary referencingPort

0.*
Component e PO, —Fpon
— 1. o
T T referencedPort
LUIHPUIVHHI‘E
0..%

StandartComponent Proxy

1 [
baseComponent

attachedinteractions
0..* 0..*
. components v
InteractionComponent
1.

- Partialinteraction

0..*

interactionClass
1

InteractionClass
5 meanings

Figure 4. General meta-model used by the autonomic
manager

These models are conformed through instantiation to their
corresponding meta-model. The autonomic manager relies on a
general meta-model that integrates these two meta-models. Figure
4 shows an excerpt of this general meta-model, notably relation
between proxies, partial interactions and component library.

We have presented two main meta-models used by DynaMo. The
next section provides example of some model specifications.

4. EXAMPLE

The following example shows how the autonomic manager deals
with two devices and one application. The application is a media
player software, namely VLC'. The first device is a Blu-ray
remote control, namely BD Remote Control (or BDRC). The
second device is a controller for a video game console, namely
Wii Remoté® (or Wiimote). VLC can receive commands through an
inter-process communication system, namely D-Bus®. The two
devices use the Bluetooth protocol’ to send data. The Figure 5

! Official website: http://www.videolan.org/vlc/
2 Wikipedia article: http://en.wikipedia.org/wiki/Wii Remote

? Official website:
http://www.freedesktop.org/wiki/Software/dbus

4 Official website: http://www.bluetooth.com/

28

shows the proxy models. Only an excerpt of actual proxy and
interaction model are shown: VLC proxy model has stop, next and
previous tasks, etc.

VlicDiscoverylnformation

discriminator="org.mpris.vic'
factory="VLC'

VlcProxy y .
name="YyLC' [* » o |location="vic-0.1.jar
protocol=dbus
7 \

/ \
/ \,
\
PlayPort VolumePort
codeReference="play"
dataType=event
direction=in

name='play/pause’

codeReference="'setVolume'
dataType=integer
direction=in
name='setVolume'

BdrcDiscoverylnformation
discriminator="Nintendo'

BdrcProxy 2
name='BDRC' [* > = factory='Wiimote'
location="wiimote-wiiusej-0.1.jar'
},‘ \ protocol=bluetooth

MutePort :
codeReference="sensorZero’
dataType=event
direction=out
name="buttonZero'

PausePort
codeReference='sensorPause’
dataType=event
direction=out
name="'buttonPause’

WiimoteDiscoverylnformation
discriminator="Nintendo'
factory="Wiimote'
location="wiimote-wiiusej-0.1.jar'
protocol=bluetooth

WiimoteProxy
name="'Wiimote' _‘—
7 LY

/

APort _ ;
codeReference="'sensorA’
dataType=event
direction=out
name='buttonA’

BPort
codeReference="'sensorB’
dataType=event
direction=out
name='buttonB"'

Figure 5. Excerpt of the proxy models

The example follows this scenario: “Alice has previously used
DynaMo. She wants to watch a film. She starts VLC and activates
her BDRC. Bob comes and talks to Alice, so she pauses the film.
Later, when the BDRC is almost run out of energy, she activates
her Wiimote. Finally, she found the film boring, so when Bob
comes to ask something, she just mutes the sound volume to
answer.”

In the autonomic manager point of view, it receives a discovery
notification about VLC, hence it download the VLC binary proxy
from the repository and start it. Since no device is discovered, no
mediation chain is generated. Then, it receives a discovery
notification about the BDRC. It starts the BDRC proxy. Now, a
mediation chain can be generated. Amongst the interaction
models of BDRC and VLC, it selects the two that have the same
interaction class. It instantiates the components declared in the
interaction models, and binds mediator of each interaction if their
meanings matches. When Alice pushes the pause button, a data is
sent by the BDRC. The proxy gets the data and passes an event to
a mediator. In this mediator, we could eventually notify the
autonomic manager that the button has been used. The event
follows a path through the mediation chain, and arrives in the
pause port of the VLC proxy. The proxy calls the pause task on
VLC. As soon as the autonomic manager is notified of the
Wiimote discovery, it starts the proxy. Any interaction class of
VLC and Wiimote matches each others. The autonomic manager
generates the same mediation chain plus a part that connect the
Wimote proxy to the VLC proxy. This new part is created only
from information about data type. Finally, when the BDRC runs



out of energy, the autonomic manager is notified, and generates
the same mediation chain without the BDRC part.

Excerpts of partial interaction models are shown in the Figure 6.
The matching interaction class is “MediaPlayer”. Its meaning set
contains “pause” and “mute”. Since only components can be
declared in the interaction models, attaching a meaning is done by
declaring an “identity” component, and by attaching a meaning to
a port of the component. Since same meanings are employed in
each model, the autonomic manager is able to bind directly these
ports.
MediaPlayerinteractionClass

meanings='{pause, mute}'
name='MediaPlayer’

Bdrcinteraction
interactionClass=MediaPlayer

proxy=BDRC
4 A
¥ 'Y
BdrcMuteComponent BdrcPauseComponent
baseComponent=Identity baseComponent=Identity
¥ T X
%

3
BdrcMuteOutPort |
connectedPort=
direction=out
meaning=mute

BdrcMutelnPort
connectedPort=buttonZero
direction=in
meaning=

R
BdrcPauseQutPort
connectedPort=
direction=out
meaning=pause

i
BdrcPauselnPort
connectedPort=buttonPause
direction=in
meaning=

Vicinteraction
interactionClass=MediaPlayer

proxy=VLC
P4
v
VicMuteComponent

baseComponent=ConstantGenerator
configuration={constant="0"}

“

Ny
VlcPauseComponent
baseComponent=|dentity

\~
| f '
|

Trigger
connectedPort=
direction=in
meaning=mute

VicPauseOutPort
connectedPort=play/pause
direction=out
meaning=

Constant VicPauseinPort
connectedPort=
direction=in

meaning=pause

connectedPort=setVolume
direction=out
meaning=

Figure 6. Excerpt of the partial interaction models

The generated mediation chain is shown in the Figure 7. The
identity components declared in the interaction models are not
apparent in the mediation chain. Since the “identity” component
does not modify data that pass through it. They are removed at the
end of the generation process. The Wiimote proxy model does not
have an interaction model that use the “MediaPlayer” interaction
class. This lack of information results in random bindings between
Wiimote proxy ports and VLC ports. Of course, the autonomic
manager verifies the data type compatibility. Moreover, it
distributed the bindings between application tasks, to prevent that
only one task is bound to all sensors.

WiimoteProxy

PlayPort
ValumePort

VlcProxy

Constant N PausePort
Trigger '
Constant Generator
ZeroPort

Figure 7. Excerpt of the generated mediation chain

BdrcProxy

For now, a user can choose between two predefined interaction
policies: “simple” and “bind all”. If the “bind all” policy is
chosen, then the autonomic manager would try to connect all

29

available sensors to tasks. In this example, the Wiimote has more
sensors that VLC has tasks. With the “simple” policy, each task is
commended by one Wiimote sensor; and some buttons have no
effect. With the “bind all” policy, each task is commended by one
or more Wiimote sensors; and every buttons are bound to a task,
thus two buttons can commands the same task. Because only
excerpt are shown, this is not viewable in the Figure 7.

5. Conclusion

In this paper, we have shown how we leverage autonomic
computing principle to build context-adaptable multimodal
interactions. Heterogeneity and dynamicity of pervasive
environments are handled. We have created DynaMo, a software
that generates and maintains interactions. Generation and
maintenance are realized by an autonomic manager, which
reasons with models. At the conception time, these models are
specified by developers or interaction designers, according to their
knowledge. At runtime, a user is able to choose a policy to guides
interaction building towards its preference. An example with two
existing devices and a real application has been explained.

Our overall architecture has already enables to adapt an
interaction to the context. Some interesting works remain, that
should easily take place in this architecture. For example,
collecting data inside a mediation chain should enable DynaMo to
analyze user’s usages of interactions, in order to propose new
adaptations to the user.

6. REFERENCES

[1] Escoffier, C., Hall, R. S. and Lalanda, P. iPOJO: an
Extensible Service-Oriented Component Framework. IEEE
International Conference on Services Computing (SCC),
pages 474-481, 2007.

Garcia, 1., Pedraza, G., Debabbi, B., Lalanda, P.and Hamon,
C. Towards a service mediation framework for dynamic
applications, IEEE APSCC, 6-10 december, 2010,
Hangzhou, China

Lalanda, P., Bellissard, L. and Balter, R. Asynchronous
Mediation for Integrating Business and operational
Processes. IEEE Internet Computing, vol. 10, no. 1, 2006,
pp. 56-64

Papazoglou, M. P. and Georgakopoulos, D. Service-Oriented
computing: Introduction. Commununications of the ACM,
46 (10):24-28, October 2003

Salehie, M. and Tahvildari, L. Self-adaptive sofiware:
Landscape and research challenges. ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 4, no. 2,
2009, pp. 1-42

Weiser, M. The computer for the 21st century. Scientific
American, 265(3):66-75, September 1991.

Wiederhold, G. Mediators in the Architecture of Future
Information Systems. Computer, vol. 25, no. 3, 1992, pp. 38—
49

Wiederhold, G. and Genesereth, M. The Conceptual Basis
for Mediation Services. IEEE Expert, vol. 12, no. 5, 1997,
pp- 3847



