
Flexible Plans for Adaptation by End-Users

Cyrille Martin, Humbert Fiorino and Gaëlle Calvary
Université Joseph Fourier, Grenoble INP, CNRS UMR 5217

Laboratory of Informatics of Grenoble
BP 53, 38041 Grenoble cedex 9, France

Abstract

Ubiquitous computing promotes flexibility for the end-
user. This means that some design choices have to be
shifted from design-time to run-time in order to involve
the end-user into the decision process. In this paper, we
study flexible plans, i.e. plans that let the end-user ar-
range tasks planned by an automated process seeking to
achieve his needs. More precisely, we present an algo-
rithm λ-graphplan that lets the end-user to decide the
order of specific treatments (loop body) execution to a
set of objects (loop variants).
λ-graphplan is based on graph planning structure.
Its strength is that it does not require any problem-
dependent knowledge to compute flexible plans. By
relaxing mutex constraints in the planning graph, λ-
graphplan discovers the loop variants and builds the
macro-actions that constitute the loop bodies. We show
that λ-graphplan is performant with “iterative” as well
as with “linear” domains.

1 Introduction
Today’s ubiquitous information technologies and computer
networks supply numerous resources, namely services and
data, for connected people. This wide emergent digital
world is heterogeneous, highly dynamic and unpredictable:
computation, communication as well as interaction re-
sources may arrive and disappear dynamically. Thus people
live in highly variable interactive spaces which in addition
may trigger opportunistic user needs. The challenge we
address is how to develop interactive systems capable of
adaptation to dynamic user needs (Aarts and de Ruyter
2009) and resources (Weiser 1999). The problem is all the
more complex because the user needs and resources cannot
be comprehensively envisioned at design time (Myers,
Ko, and Burnett 2006). Particularly, it is no more possible
to suppose that one adequate service will be available at
run-time to fulfill the user needs. More likely, the users will
achieve their goals by interacting with several services.

Since most users cannot manage the composition of
services themselves (Guzdial, Reppy, and Smith 1992) due
to their lack of knowledge and skills, the composition has

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to be automated. One possibility to compose services while
taking into account varying contexts of use (Rao and Su
2004) is based on automated planning. For instance, in the
travel management case study, the user goal is to prepare a
journey through different cities such as Paris, Rome and
Berlin. For that purpose, the user has access to services
allowing him to reserve accomodations, find restaurants, get
city information, etc. Suppose that, for each city, the user
wants to find a two-star hotel and a vegetarian restaurant.
This requires that the user visits each service one by one and
repetitively specifies his destinations and preferences. An
automated composition of services handles this in a more
efficient way by providing a solution plan that represents
an ordered sequence of actions corresponding to hotel and
restaurant reservations fitting his preferences. It is worth
noting that the sequence of actions (choosing a hotel and
then a restaurant) is a macro-action applied on each targeted
city. However, the ordering of the cities to be visited is a
decision that should be left to the user at run-time. Indeed,
the user may have hidden context-dependent constraints (for
instance the need to bring presents from Paris to parents
in Berlin before meeting friends in Rome) that appear at
run-time.

A flexible plan lets the user draw up his own arrangement
at run-time over some objects subject to macro-actions.
Such flexibility is key in user-centred approaches and is
now crucial for ubiquitous computing. To our knowledge,
automated planning either does not provide flexible plans
or needs problem-dependent knowledge about the objects
possibly subject to the user arrangement. In this paper,
we propose a planning algorithm that computes flexible
plans from STRIPS–like planning domains without problem-
dependent knowledge. Gripper (Bonet, Palacios, and
Geffner 2009) is used to illustrate our concepts throughout
this paper: a robot can PICK a ball, DROP it and MOVE from
room to room. In the initial state, the Left room contains
n balls, the Right room is empty, and the robot stands
in this empty room. The user needs to move the n balls
from the Left to the Right room. The following plan (cf.
plan 1) is said to be flexible as it achieves the user goal
while letting him decide about the balls ordering. The while
loop body is a macro-action. The balls are the loop variant.
Thus searching for a flexible plan is equivalent to finding



Plan 1: Flexible plan for Gripper

1 B ← {Ball1, . . . , Balln };
2 while B is not empty do
3 User selects ball ∈ B;
4 B ← B − ball;
5 MOVE(Right, Left);
6 PICK(ball, Left);
7 MOVE(Left, Right);
8 DROP(ball, Right);

a common representation for a set of solution plans (the
instances of the flexible plan). To be noted, the Gripper
variant that is used here only has one gripper on the robot.
The other variants will be discussed later.

We propose a brief overview of the related work in sec-
tion 2. The planning graph our planner is based on is pre-
sented in section 3. Our proposal is detailed in section 4 and
evaluated in section 5.

2 Related Work
To our knowledge, there is no approach in planning devoted
to flexibility. However generalized planning provides while-
loop based plans and thus deserves attention. Generalized
planning aims to plan solutions for a set of problems belong-
ing to the same abstract class. A class of problems contains
the description of variables which values correspond to dif-
ferent instances of problems.

In (Hu and Levesque 2009), the domain contains a plan-
ning parameter to represent the variable number of planning
objects. This variable is used as a loop variant in the gen-
erated plan. For instance, in Gripper, the number of balls
would be represented by this parameter. Thus, the user goal
could only be to move all the balls. As a result, the user can-
not aim at moving only a subset of the balls. To move this
subset, another planning domain which parameter character-
izes the subset of the balls has to be defined. This means that
the class of problems to be solved has to be known at design
time. Our proposition, λ-graphplan, solves all the problems
for a given domain, not only a class of problems.

In (Srivastava, Immerman, and Zilberstein 2008), ab-
straction predicates are used to define roles. These roles
make it possible to transform an example plan into an ab-
stract state space (using 3-valued logic). From the transfor-
mation of the example plan, the algorithm finds loops on
the objects that play the defined roles. Then, the plan can be
applied to any problem that is an instance of the correspond-
ing class. Furthermore, a set of integrity constraints ensures
the validity of abstract states. In Gripper, if the user goal
concerns only a subset of the balls that play the same role,
then the balls cannot be distinguished. This limits the class
of problems that can be addressed. In addition, the possible
roles are elicited at design time by setting the set of abstrac-
tion predicates.

In (Winner and Veloso 2007) the proposition is slightly
different of the generalized planning. Indeed, the aim is to

provide domain-specific planning programs (named dsPlan-
ner). A given example plan is observed to find repeated pat-
terns. These patterns are transformed into while-loop struc-
tures. This requires to compute a first solution before look-
ing for the generalized plan. λ-graphplan directly computes
a flexible plan, bypassing the step of a concrete solution
plan.

3 λ-graphplan Overview
λ-graphplan is based on the planning graph approach (Blum
and Furst 1997). A planning graph G for a given planning
domain and a given problem is a collapsed representation
of the state space. It is composed of actions layers Ai and
propositions layers Pi. Ai (resp. Pi) contains the actions
(resp. propositions) that can be executed (resp. reached) at
time step i.

Preconditions of action a ∈ Ai are propositions of Pi−1

linked to a. Likewise, propositions in Pi are either positive
or negative effects of action a ∈ Ai. Furthermore, each
proposition p ∈ Pi−1 is the precondition of a dummy ac-
tion noop-p in Ai which has one positive effect p ∈ Pi and
no negative effect.

Two actions a1 and a2 inAi are linked by a mutex relation
if either a negative effect of a1 is a precondition or a positive
effect of a2, or a precondition of a1 is mutex with a precon-
dition of a2 in Pi−1. Two propositions p1 and p2 in Pi are
mutex if every action in Ai that has p1 as positive effect is
mutex with every action in Ai that has p2 as positive effect,
and if no action in Ai has both p1 and p2 as positive effect.
µAi and µPi respectively denote the sets of mutex relations
between actions in Ai and propositions in Pi.
P0 represents the initial state. The planning graph is

expanded step by step according to the following rules: an
action is added intoAi if all its preconditions are non mutex
in Pi−1. A proposition p is added into Pi if an action in Ai

has p as positive or negative effect. The planning graph is
expanded until the current layer Pg contains a consistent
goal state, i.e. all propositions of the goal are non mutex.
When Pg is reached, Graphplan (Blum and Furst 1997)
tries to extract a plan from G: each selected proposition of
layer Pi has to be supported by at least one action of layer
Ai. The actions that support the selected propositions must
form a set that does not contain any mutex relation. All
preconditions of this set of actions inAi are then selected in
Pi−1 and so on. This selection process starts with the goal
propositions until P0 is reached. If no plan is found, the
planning graph is extended with an additional layer until a
plan is eventually extracted or the termination condition is
met.

Like Graphplan, λ-graphplan consists of an expansion
and an extraction step (Figure 1). It is based on the same ter-
mination condition and mutex definition. However, in addi-
tion to these principles, we introduce the concept of λ-mutex
for labelling the actions possibly subject to loop-structures.
A λ-solution plan is a layered plan such that actions within
each layer are either no mutex or λ-mutex: the λ-mutex rela-
tion is a relaxation of the mutex relation. When a λ-solution



Expand λ Pg ∈? G
yes

no
Extract λ

ν found?
no

yes
Transform

π valid?
no

yesπ

Figure 1: Illustration of λ-graphplan algorithm: extensions
to Graphplan are in bold.

plan ν is found, λ-graphplan subsequently applies transfor-
mations on ν (because it is not consistent) to find loop-
variants and include loop-structures. If the transformations
succeed, the transformed plan π is returned. Otherwise, the
expansion process is resumed as solution plans without λ-
mutex relaxations are still possible. Indeed, by construction
plans with loop-structures are shorter than plans without re-
laxation.

4 λ-graphplan Algorithm
In the following sections, an operator o is a 3-tuple
〈pre(o), eff+(o), eff−(o)〉 where pre(o), eff+(o) and eff−(o)
are sets of predicates that share a set of variables param(o).
They respectively represent the preconditions, the positive
and negative effects of the operator. An action a is the ap-
plication of a substitution σ on an operator o. Each predi-
cate of pre(o), eff+(o), eff−(o) becomes a proposition. That
means that for each variable v in param(o), a substitution
(v\t) exists in σ and a = σ(o). For instance, MOVE (Left,
Right) is an action derived from the operator MOVE. A par-
tially instantiated action results from σ(o) if it exists v in
param(o) such that (v\t) does not exist in σ. For example,
PICK (ball, Left) is a partially instantiated action.

4.1 Planning Graph Expansion
λ-graphplan relaxes some of the mutex constraints during
the extraction process: as in Graphplan, actions in the lay-
ered plan have to be non mutex except for those that will be
collapsed into macro-actions. These actions are said to be λ-
mutex and are detected in the expansion process. They are
mutex actions deriving from the same operator. More for-
mally,

Definition 1 (λ-Mutex – Actions) Two actions a1 and a2
in level Ai are λ-mutex if:

• (a1, a2) ∈ µAi;
• a1 = σ1(o) and a2 = σ2(o), where o is an operator, σ1

and σ2 are two substitutions.

λAi is the set of λ-mutex actions: ∀i, λAi ⊆ µAi. We note
σa = σ1 ∩ σ2, and aa = σa(o) is a partially instantiated
action which can represent the two actions a1 and a2. Thus,
aa will be key to constructing macro-actions and then loop
structures.
λ-mutex propositions are reachable propositions at time

step i only if they derive from actions that can be collapsed

into a loop structure. λ-mutex propositions are defined as
follows:

Definition 2 (λ-Mutex – Propositions) Two propositions
p1 and p2 in Pi are λ-mutex if:

• (p1, p2) ∈ µPi;
• every action inAi that has p1 as positive effect is λ-mutex

with every action in Ai that has p2 as positive effect.

λPi is the set of λ-mutex propositions in Pi and
∀i, λPi ⊆ µPi.

At each time step i in the planning graph G, the available
information is Ai, µAi, λAi, Pi, µPi and λPi.

4.2 Plan Extraction
The first step toward a flexible plan is to relax the mutex
constraints on propositions and actions which are λ-mutex.
For any layer i, µAi \ λAi is the set of action couples that
cannot be jointly selected. Likewise, µPi \ λPi contains the
couples of propositions that cannot be reached together in
layer i. In particular, the goal is considered as reachable
in layer Pg even if it contains λ-mutex propositions. In the
Gripper domain, the goal is formed by the propositions at
Left Balli for each ball i. Graphplan expands the plan-
ning graph until these goal propositions without mutex re-
lations in the propositions are found, i.e. until layer P7 is
reached (whatever the number of balls). λ-graphplan stops
the planning graph expansion at layer P4 because all goal
propositions are strictly λ-mutex. Thus, λ-graphplan gener-
ally tries to extract a plan before Graphplan. In Gripper, the
plan extracted by λ-graphplan is the following (cf. plan 2).
This plan is not executable since the robot cannot pick more
than one ball at the same time. The next step is to transform
the plan in order to insert the loop structures.

Plan 2: Non consistent plan for Gripper, extracted by
λ-graphplan

1 MOVE(Right, Left);
2 PICK(Ball1, Left), . . . , PICK(Balln, Left);
3 MOVE(Left, Right);
4 DROP(Ball1, Right), . . . , DROP(Balln, Right);

4.3 Transformation
The transformation of the plan is threefold. First of all, the
possible loop variants are searched in the extracted plan.
Some actions are “collapsed” into a partially instantiated
action whose variables are loop variants. Then, the “inter-
nal closure” builds the loop body by aggregating collapsed
actions into a macro-action. Finally, the “external closure”
completes the macro-action so that its effects and precondi-
tions are consistent with iterations.

Collapsed actions and loop variants λ-mutex actions are
candidates for loops. But the first step is to search for a
representation of these actions that reveals planning objects
subject to loops, that is loop variants. For instance, ball ∈
{Ball1, . . . , Balln} is operated by all the Pick(Ball1,



Left), Pick(Ball2, Left) etc. actions. These actions
are collapsed into Pick(ball, Left). More formally, a
collapsed-action α (for the plan step i) is a partially instan-
tiated action defined as follows:

• Let Si = {a1, . . . , an} be a set of actions such that
∀aa, ab ∈ Si, (aa, ab) ∈ λAi, i.e. Si under λ-mutex re-
lation is a clique: this ensures that the actions are derived
from the same operator;

• ∀a ∈ Si,∃σ | a = σ(α), i.e. α is a partially instantiated
action that collapses all actions in Si. var(α), the set of
α’s variables are the loop variants.

This collapsed-action consists of:

• spre(α), the set of shared propositions in Si action pre-
conditions: spre(α) =

⋂
{pre(a) | a ∈ Si}. Likewise,

seff+(α) and seff−(α) are the sets of shared propositions
in respectively Si action positive and negative effects. The
shared propositions represent the preconditions and ef-
fects that do not affect the variants: they will be key to
forming the invariants of the loop;

• upre(α), the set of unshared propositions in Si action pre-
conditions: upre(α) =

⋃
{pre(a) | a ∈ Si} \ spre(α).

Likewise, ueff+(α) and ueff−(α) are the sets of unshared
propositions in respectively Si action positive and nega-
tive effects. The unshared propositions represent the pre-
conditions and effects on the variants.

Furthermore, as non collapsed-actions do not affect variants,
their preconditions and effects are “shared”. In the Gripper
example, the transformed plan is as follows (cf. plan 3).

Plan 3: Non consistent plan for Gripper, transformed by
λ-graphplan

1 MOVE(Right, Left);
2 PICK(ball ∈ {Ball1, . . . , Balln }, Left);
3 MOVE(Left, Right);
4 DROP(ball ∈ {Ball1, . . . , Balln }, Right);

Having found an appropriate collapsed-action for all ac-
tions under λ-mutex relations, the next transformation aims
at finding collapsed-actions which should be in the same
loop body.

Internal closing For that purpose, λ-graphplan builds a
parameterized macro-action. We use a notion of macro-
action very similar to that of macro-operator (Botea et al.
2005; Coles, Fox, and Smith 2007; Newton et al. 2007). A
macro-action M is a sub-plan: M = 〈π1, . . . , πn〉 where
πi are sets of actions and collapsed-actions. The construc-
tion of a macro-action begins with an empty macro-action
M = 〈〉 and each set of shared and unshared propositions
is empty. When a set of collapsed-actions or actions πi =
{a1, . . . , an} is added to M, the sets spre(M), upre(M)
etc. are updated accordingly. A macro-action is an abstrac-
tion considered as a unique action. Therefore, the update
rules are the following:

• The shared preconditions of M are updated with the
shared preconditions of each action in πi that are not also

shared positive effects ofM. Likewise, the unshared pre-
conditions ofM are updated with the unshared precondi-
tions of each action in πi that are not also unshared posi-
tive effects ofM;

• The shared positive effects of M are updated with the
shared positive effects of each action a in πi and then the
shared negative effects of each action a are withdrawn; the
unshared positive effects are updated in the same way;

• The shared negative effects of M are updated with the
shared negative effects of each action a in πi and then the
shared positive effects of each action a are withdrawn; the
unshared negative effects are updated in the same way.

The actions to be added to the macro-actions are selected
as follows:

• All collapsed-actions must be included in macro-actions
that manipulate the same variants and that are linked
by produced and consumed propositions (the positive
and negative effects): Ck is a collapsed-action andMi a
macro-action such that upre(Ck)∩ueff+(Mi) 6= ∅ and Ck
occurs afterMi. Then, Ck is included intoMi. For exam-
ple, at step 2 the collapsed-action CPICK = PICK (ball
∈ {Ball1, ..., Balln}, Left) has the proposition
carry Balli as positive effect for each ball i. Thus,
these propositions belong to the set ueff+(CPICK), but
also to the set upre of the collapsed-action CDROP de-
rived from DROP actions at step 4. Both collapsed-actions
are included into the same macro-action;

• Actions are added into macro-actions in order to perform
internal closures, i.e. to support the shared preconditions
of the collapsed-actions. For instance, to trigger CPICK ,
the robot has to be in the left room, i.e. the proposi-
tion at-g Left belongs to spre(CPICK). This precon-
dition is guaranteed to be supported, since CPICK is the
first collapsed-action of the macro-action and previous ac-
tions had this proposition as positive effect. Suppose s is
the world state just before the macro-action is launched.
One of the preconditions of CDROP is the proposition
at-g Right. Because this proposition is not supported
by the state resulting of the application of CPICK on s,
an action has to be found between CPICK and CDROP : it
has to have at-g Right as positive effect. This action
is guaranteed to exist since CDROP has been extracted
(all the actions collapsed into CDROP are achievable):
it is MOVE(Left, Right). In the general case, the in-
ternal closure is done by a set of actions between two
collapsed-actions that are included into the same macro-
action. Finally, the macro-action is formed by CPICK ,
MOVE(Left, Right) and then CDROP .

Once the robot is in the left room, this following macro-
action allows to pick up one ball and to drop it in the other
room.

External closing Macro-actions are not sufficient to
create loops. It is also mandatory to ensure a seamless
running of successive iterations, i.e. the states of the world
at the beginning and at the end of a macro-action have to
share propositions that represent the loop invariant: these



parameter: ball ∈ {Ball1,. . . , Balln }
1 PICK(ball, Left);
2 MOVE(Left, Right);
3 DROP(ball, Right);

elements are the propositions that form the shared precondi-
tions of the macro-action under consideration. They ensure
the proper execution of each action in the macro-action.
Thus, if the world state at the end of a macro-action
supports the shared preconditions of the macro-action, the
macro-action can be successfully executed.

In our example, the macro-action M can move a ball
from the left to the right room. The shared preconditions
spre(M) of the macro-action contain the proposition at-g
Left, which means that the robot must be in the left room
to pick a ball. An effect ofM is that the robot stands in the
right room i.e. at-g Left belongs to the shared negative
effects ofM and at-g Right to the shared positive effects
ofM. Consequently, the world state at the beginning ofM
is different from the state s reached through the application
of the shared effects (seff− and seff+) of M on that state.
Therefore, a plan to support spre(M) from the state s must
be found: this is a new planning problem where spre(M)
is the planning goal and s the initial state. If solved by λ-
graphplan, the solution plan is added to the macro-action. In
Gripper, this plan is composed of one action, MOVE(Right,
Left), which is added to M. If λ-graphplan succeeds in
closing all the macro-actions, it turns them into loop struc-
tures and allows the end-user to non deterministically se-
lect the arrangement of the objects addressed by the loop
variant. While processing the last object in the loop struc-
tures, the actions added to ensure the closure of the macro-
action should not be executed. Indeed, the initial plan was
extracted by considering a single object. Therefore the ex-
pected state at the output of the loop is the result of the appli-
cation of the macro-action without the actions for loop clo-
sure. In Gripper, the returned plan is as follows (cf. plan 4).
As a reminder, the steps 6 to 10 form the macro-action, the
step 7 provides the internal closure of the macro-action and
the step 10 its external closure.

Plan 4: Flexible plan for Gripper, returned by λ-
graphplan

1 MOVE(Right, Left);
2 B ← {Ball1,. . . , Balln };
3 while true do
4 User selects ball in B;
5 B ← B − ball;
6 PICK(ball, Left);
7 MOVE(Left, Right);
8 DROP(ball, Right);
9 if B is empty then break;

10 MOVE(Right, Left);

Blocks World

n Graphplan λ-graphplan extra
perf avg (ms) perf avg (ms) cost (%)

2 24 25 4
4 34 39 10
6 94 134 30
8 160 263 39

10 189 295 36
12 292 396 26
14 357 514 31
16 468 644 27
18 574 828 31
20 823 1245 34

Table 1: Graphplan and λ-graphplan average performances
in ms for 100 runs per problem for the Blocks World domain
with different numbers n of blocks. The performance of λ-
graphplan with respect to Graphplan is given in percent.

5 Evaluation of λ-graphplan
The computation of the λ-mutex relations is not more
expensive than the computation of the mutex relations.
Thus, as in Graphplan, the computation of the planning
graph has a polynomial cost (Blum and Furst 1997).

We evaluate the performances1 of λ-graphplan as an
extension of Graphplan, i.e. by measuring the cost of the
computation of flexibility in the plans.
First of all, we investigate the performances of λ-graphplan
in the most unfavorable situation. This happens with “lin-
ear” planning domains, i.e. domains with a single sequential
solution. This is for instance the case with a Blocks World
in which a vertical stack of n blocks has to be unstacked.
Necessarily, the solution plan unstacks the top block, drops
it on the table and so on (therefore, there is no open option
for the end-user). Table 1 compares the results obtained
with Graphplan and λ-graphplan: λ-graphplan is between
30 and 40 percent slower than Graphplan.
The Gripper domain is favorable to λ-graphplan (cf.
table 2): the performances of λ-graphplan are much better
than those of Graphplan. For 3 balls, λ-graphplan already
costs 51% less than Graphplan. This is due to the limited
graph expansion of λ-graphplan and to the shorter plans it
finds. λ-graphplan computes maximal cliques on λ-mutex
actions to create collapsed-actions. This is a NP-complete
problem. Although this computation can be done only
once per planning graph layer, it is an expensive part of
the extraction process which depends on the number of
λ-mutex actions. In our tests with Gripper, the relative cost
for computing cliques becomes greater than 50% beyond 8
balls.
Without actually comparing these results with those gener-
ated by work in generalized planning, we can affirm that,
in the case of flexible plans, our results will be faster since
the others take an example plan as input and λ-graphplan

1All run tests are executed on a 2.6 GHz Intel Core 2 Duo pro-
cessor, with 4 Go of 667 MHz DDR2.



Gripper

n Graphplan λ-graphplan max-clique
perf. avg (ms) perf. avg (ms) cost (%)

1 27 30 0.0
2 37 40 2.7
3 68 45 3.1
4 328 57 3.9
5 471 58 6.6
6 947 72 9.0
7 3507 100 27.7
8 16241 203 59.5
9 – 406 79.4

10 – 687 86.6

Table 2: Graphplan and λ-graphplan average performances
in ms for 100 runs per problem for the Gripper domain with
different numbers n of balls. The max-clique cost is the time
spent to compute cliques out of the solution total computa-
tion time.

is comparable or faster than one of the fastest planner,
Graphplan. The example plan has to be calculated (without
flexibility), when our approach is integrated to the planning
process.

The Gripper and Blocks World variants used above are
sufficient to illustrate the performance of λ-graphplan, but
not enough to assess its capability in terms of flexibility. To
evaluate this capability, other variants of Gripper should be
defined, e.g.:

• the robot has several grippers (in other words, the set of
objects – the balls – can be treated in different ways);

• more than one room contains balls, or the balls have to
be moved in different rooms (the loop variant becomes a
tuple 〈room, ball〉);

• a specific treatment (e.g. paint each ball with different col-
ors) has to be applied to each object (e.g. full flexibility
claims for letting the user choose the colors ordering).

All these Gripper variants could be used as starting points
for building a full-fledged framework devoted to flexibility.
In its current version, λ-graphplan produces loop structures
containing one loop variant. λ-graphplan is a first step to-
ward flexibility that needs to be further generalized.

6 Conclusion
This paper deals with flexibility for the end-user, a key
property in user centered engineering in general and now
crucial for ubiquitous computing. More precisely, the paper
focuses on flexible arrangement of repetitive tasks by the
end-user. The approach under study is automated planning.

We define the λ-mutex relation for the planning graph
approach so as to identify actions and objects candidate
for loop structures at planning time. We propose the λ-
graphplan algorithm to compute loop bodies and variants.

We show that in addition to providing loop structures, λ-
graphplan can be more efficient than Graphplan. In future
work, we aim at extending λ-graphplan toward nested loops
and loops with multiple variables or n-tuple variables.

Acknowledgments
Thanks to Damien Pellier for the pddl4j package.

References
Aarts, E., and de Ruyter, B. 2009. New research perspectives
on ambient intelligence. JAISE 1:5–14.
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90(1):281–300.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In ICAPS.
Botea, B.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI planning with automatically
learned macro-operators. JAIR 24:581–621.
Coles, A.; Fox, M.; and Smith, A. 2007. Online identifica-
tion of useful macro-actions for planning. In ICAPS.
Guzdial, M.; Reppy, J.; and Smith, R. 1992. Report of the
’User/Programmer Distinction’ working group. A. K. Pe-
ters, Ltd. 367–383.
Hu, Y., and Levesque, H. 2009. Planning with loops: Some
new results. In ICAPS Workshop on Generalized Planning.
Myers, B.; Ko, A.; and Burnett, M. 2006. Invited research
overview: End-user programming. In CHI Extended Ab-
stracts on Human Factors in Computing Systems.
Newton, H.; Levine, J.; Fox, M.; and Long, D. 2007. Learn-
ing macro-actions for arbitrary planner and domains. In
ICAPS.
Rao, J., and Su, X. 2004. A survey of automated web service
composition methods. In SWSWPC.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning generalized plans using abstract counting. In AAAI
Conference on Artificial intelligence.
Weiser, M. 1999. The computer for the 21st century. SIG-
MOBILE MC2R 3:3–11.
Winner, E., and Veloso, M. M. 2007. Loopdistill: Learning
domain-specific planners from example plans. In Workshop
on AI Planning and Learning, ICAPS.


