
QUIMERA: A Quality Metamodel to Improve
Design Rationale

Alfonso García Frey, Eric Céret, Sophie Dupuy-Chessa and Gaëlle Calvary

University of Grenoble, Grenoble INP, CNRS, LIG
385, avenue de la Bibliothèque, 38400, Saint-Martin d’Hères, France

{Alfonso.Garcia-Frey, Eric.Céret, Sophie.Dupuy, Gaelle.Calvary}@imag.fr

ABSTRACT
With the increasing complexity of User Interfaces (UI) it
is more and more necessary to make users understand the
UI. We promote a Model-Driven approach to improve the
perceived quality through an explicit and observable
design rationale. The design rationale is the logical
reasons given to justify a designed artifact. The design
decisions are not taken arbitrarily, but following some
criteria. We propose a Quality Metamodel to justify these
decisions along a Model-Driven Engineering approach.

Author Keywords
User Interfaces, Perceived quality, Quality Metamodel,
Design Rationale, QOC, Self-Explanation, Model-Driven
Engineering.

ACM Classification Keywords
H.5.2 User Interfaces: Theory and method.

General Terms
Design, Human Factors.

INTRODUCTION
User Interfaces (UIs) must deal with new features such as
the capacity of adaptation to the context of use (<user,
platform, environment>). As designers cannot anticipate
all the contexts of use at design time, UIs are generated
dynamically giving rise to lacks of quality. This lack can
be overcome through explanations. Self-Explanatory UIs
(SE-UIs) aim at answering end-user questions about the
UI. One of the SE-UIs approaches [16] is based on
Model-Driven Engineering (MDE): explanations are
generated from design models such as the Task and
Domain Models used for UI generation. Good
explanations about the UI need additional crucial
information such as justification of design decisions or
quality measures of the UI. Thus, we need an
argumentation model to convey this information. This
paper proposes a solution for explaining design decisions
through quality models in the context of SE-UIs. The

proposition is illustrated on a Seats Booking System.

The paper is fourfold. In the first section, it provides a
short vision of related works about Quality and Design
Rationale. Then, the Quality Metamodel is introduced and
depicted through an example. Third part deals with design
rationale. Finally, the fourth part is devoted to the case
study that combines all the necessary pieces for self-
explanation: a quality model, a design rationale, and a UI
through a MDE approach.

RELATED WORKS
As we need quality models to explain design decisions,
we relate existing quality models in the first section.
Then, we review some design rationale representations
explaining which one we use and why.

Quality Models
Different quality models have been proposed in the
literature. McCall’s hierarchical quality model [12]
focuses on product quality, organizing it in two views: the
external view for end-users and the internal view for
developers. Boehm's model [13] adds a third level named
primitive characteristics to deal with metrics and
evaluation. The ISO/IEC 9126 standard series divides
metrics into internal, external and quality-in-use.

This quality-in-use, also called usability or perceived
quality, has been the main focus of the HCI community.
Usability has evolved through standards such as the ISO
9241-110 [9], ISO/IEC 9126-1 [10] and ISO/IEC 25010
[11] among others. As a synthesis, Seffah encompasses
most of the usability works in QUIM [14].

However Software Engineering quality models are more
than usability. They deal with other important aspects of
general quality in the whole System Development Life
Cycle. ISO standards deal also with these aspects. To
cover them, different quality metamodels have been
proposed such as [18] for data quality, [19] as a quality
metamodel for MDE, or [20] that defines a five step
process for building product-specific quality models.

However, whilst several quality models exist in Software
Engineering, most of them are oriented to evaluating
source code or final products and not models or modeling
activities. Other models don't deal with evaluation aspects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EICS’11, June 13–16, 2011, Pisa, Italy.
Copyright 2011 ACM 978-1-4503-0670-6/11/06...$10.00.

(evaluation methods, results...) or they just miss the
different quality perspectives, as elicited in section two.

We propose QUIMERA, a quality metamodel, to take
benefit from both HCI and Software Engineering while
covering their requirements as well as our needs for UI
quality. QUIMERA will be used to support design
rational.

Design Rationale
Design Rationale is defined in [3] as: “An explanation of
why a designed artifact (or some feature of an artifact) is
the way it is.”

Design rationale approaches like PHI [5] or QOC [6] (for
Questions, Options and Criteria) are metamodel based.
Non metamodel based approaches exist such as PDR [8].
For our purposes, we reuse QOC because it is the more
expressive design rationale representation to work with
different alternatives at the same time. QOC focuses
directly on the discussion between those alternatives as
shown in figure 4.

QUIMERA: THE QUALITY METAMODEL
In order to use a quality model to justify design decisions,
we introduce a Quality Metamodel from which a quality
model can be instantiated. QUIMERA stands for

“QUality metamodel to IMprove the dEsign RAtionale”.
The first section shows the relations between QUIMERA
and the system under study (SUS). The second section
explains QUIMERA in detail. The final section shows an
instantiation of QUIMERA that is put in practice later in
the case study.

Quality Perspectives
QUIMERA (figures 1 and 2) has been designed to cover
the needs of both Software Engineering and HCI. Quality
can be expressed regarding four different perspectives
[1]:

Expected Quality, or the quality the client needs. It is
defined through the specification of the SUS.

Wished Quality is the degree of quality that the quality
expert wants to achieve for the final version of the SUS.
It is derived from the Expected Quality.

Achieved Quality is the quality obtained for a given
implementation of the SUS. Ideally, it must satisfy the
Wished Quality.

Perceived Quality is the perception of the results by the
client, once the SUS has been delivered.

Figure 1: The Quality Metamodel

As stated in [2], these four perspectives can be related to
the Systems Development Life Cycle by three
dimensions. These dimensions are the Specification
(related to the Expected and Wished Qualities),
Implementation (related to the Achieved Quality) and Use
(related to the Perceived Quality).

QUIMERA deals with these four perspectives as shown
in figure 2. Here, the System entity represents the product
to consider. SysEval represents a specific evaluation for
that product. The four quality perspectives are four
different uses of the same quality model. The attribute
standard means that, when true, the quality model is not
linked to System and SysEval as it only represents a
quality standard such as ISO9241-110 or QUIM. In other
words, the quality of these standards is not defined in
terms of a product. Some internal parts of QUIMERA are
not necessarily defined when standard is true.

Once the standard has been set, QUIMERA can be
extended with the classes that are needed for each quality
perspective, as we will see in the next section.

The Metamodel
Figure 1 shows QUIMERA in detail. A quality model is
composed of criteria, that can be recursively decomposed
into subcriteria through the class CriterionAssociation.
Different recommendations can be specified for each
criterion. A Recommendation is a positive assessment that
characterizes Criteria. We can specify a weight for each
recommendation to define which of them are more
important than others for the considered system.
Evaluations can be performed through
EvaluationMethods that are specified by Metrics and/or
Practices. In the first case, the measure is given by a
NumericalResult that can be comprised between some
Limits when defined. In the case of Practices, the result is

a logical value, true or false, indicating if the Practice has
been followed or not. Note that a Practice can be either a
pattern or an anti-pattern, applied at the process level, or
on a product. Metrics and Practices are directly evaluated
on Artifacts through Recommendations. An Artifact can
be no matter what element of the Software Development
Life Cycle, such as code, classes of a model or the model
itself.

Once a quality standard has been defined through
Criteria, the metamodel can be reused with the
association relatedTo, and extended with several classes
such as EvaluationMethods, Transformations or Artifacts,
to represent the four quality perspectives. For instance,
Metrics can be defined in order to obtain some desired
values (Wished Quality). The importance of every
Recommendation can be customized using Weights. This
allows designers to adjust the global quality precisely.
Then, evaluations of the current quality of the SUS can be
performed. When a Result of the evaluation (Numerical
from Metrics or Logical from Practices) does not satisfy
the expectations of the quality expert, this is, the Achieved
Quality does not satisfy the Wished Quality (for instance,
the value for a metric is not within the desired Limits), the
designer will need to increase the quality. This can be
done by setting a Transformation or a set of
Transformations. These Transformations are performed
on the related Artifacts on which the Result has been
previously calculated. Iterations can be done until the
desired values defined by the quality expert (Wished
Quality) are reached.

A Quality Model for the Ergonomic Criteria of UIs
Figure 3 shows a quality model representing Ergonomic
Criteria in HCI [9]. For the sake of brevity, we explain
only the three of them that are used later in the example:

Figure 3: A part of the quality model of ergonomic criteria

Figure 2: Quality perspectives in the Quality Metamodel

Suitability for the task: A dialog is suitable for the task if
the dialog helps the user to complete her/his task in an
effective and efficient manner.

Self descriptiveness: A dialog is self descriptive if every
single dialog step can immediately be understood by the
user based on the information displayed by the system.

Error tolerance: A dialog is fault tolerant if a task can be
completed without erroneous inputs with minimal
overhead for corrections by the human user.

A Recommendation is a positive assessment that
corresponds to one or more criteria. Figure 3 shows how
different metrics are used for the same recommendation.
For instance, in figure 3, the recommendation says that
good quality can be achieved by maximizing the number
of criteria that are satisfied by the UI. To evaluate
Criteria, two different EvaluationMethods are defined. A
detailed explanation about the left part of figure 3
including the Recommendation, the Metrics, the
EvaluationMethods and the Result, is given later in the
case study.

DESIGN RATIONALE
The main objective of QOC is the discussion of
alternatives on specific artifact features. For our purposes,
we consider only the following QOC elements:

Options that are artifact features under discussion.

Questions that are means of organizing the various
Options, since every artifact feature responds to a specific
design issue that can be framed as a Question.

Criteria that are used to determine the choice between
Options. Equivalently, they can be seen as requirements
or goals that have to be accomplished.

Assessments are links between Options and Criteria. If
they satisfy a Criterion then the link is represented with a
normal line. If not, a dotted line is used.

Figure 4 shows an example of QOC in which designers
propose several interactors to let the user enter a date. The
first interactor is composed of three input fields for the
day, month and year respectively, and a label indicating
format notations. The second interactor is a calendar. As
shown in figure 4, the first interactor does satisfy the
three criteria whilst the first interactor does not. This

example is taken from the case study depicted in the next
section.

PUTTING THE PIECES TOGETHER: A CASE STUDY
Figure 5 shows a booking system dialog inspired from
[17]. With this UI, the end-user can book seats for a
cinema session by entering the name, address, date of the
session, time of the session (morning or evening) and the
desired number of seats. The dialog has been derived in a
MDE process from the task model shown in the same
figure. The connection of various artifacts such as
prototypes and tasks has also been proposed by previous
authors [4,7]. The information provided in this UI is not
clear enough. Some of its main problems are:

1. The prompting is insufficient. For instance, the
label Name stands for First and Last names. (Self
descriptiveness)

2. The guidance is ambiguous. Should the user type
a ’,’ between names? (Self descriptiveness)

3. There is no prevention against errors. Users can
enter any value because the verification is done
in a later step. (Error tolerance)

This particular design has also two negative implications:

1. In case there is no seat available, the end-user
has entered useless information.

2. If the end-user needs to book several seats at
different times, for instance one in the morning
and one in the evening, then the end-user needs
to enter the same data several times.

A good design should ask for the information related to
the seats first, and only if there are enough seats available,
ask the end-user to provide the personal information.

Figure 4: QOC notation for the example of the date

Figure 5: The UI of a Seats Booking System is obtained from a Task Model through a MDE process

In order to explain design decisions through quality
models, designers use our approach as follows. First, the
designers define a quality model based on QUIMERA.
For this case study, we consider the quality model of
ergonomic criteria of figure 3. Once the quality model is
set, designers can keep trace of the design rationale
through QOC. They need to describe the design rationale
through questions, options and criteria. Designers write
down the necessary questions to cover all the precedent
problems that they have identified on the UI in figure 5,
in the same way as it has been done in figure 4 for the
question Which interactor for the date?

Our proposition is to use the quality model as the Criteria
when describing the design rationale with QOC. Figure 6
shows this principle. With this approach, the three
problems listed before about Self descriptiveness and
Error tolerance are directly related to quality through the
quality model. Note that the quality model is not a merely
representation of the ergonomic criteria from [9], as it has
been shown in other works like [15,21]. Ergonomic
criteria play different roles becoming active for each
quality perspective. For instance, the UI in figure 7 is
better than UI in figure 5. The comparison between both
UIs is based on EvaluationMethods depicted in the left
part of figure 3. These methods use the specific formulas:
"Satisfied Criteria minus Unsatisfied Criteria" for Eval1,
and "Number of Satisfied Criteria" for Eval2". For Eval1
and regarding figure 6, we have Eval1(Calendar) = 3 - 0

= 3 and Eval1(Text-Fields) = 3 - 3 = 0, showing that the
Calendar is better (3>0). The same conclusion is obtained
for Eval2.

Advantages
The main advantages of this approach are:

1. Quality in design decisions becomes measurable.

2. Design decisions can be explained directly
through quality models.

3. As a design rationale can be directly evaluated,
two different solutions can be compared.

4. The quality model can be used not only for
evaluation purposes, but as an active agent of the
design rationale and the MDE process. As
QUIMERA can launch transformations if the
desired quality is not achieved, the MDE process
for generating UIs can take benefit of it
regarding how a transformation increases or
decreases the achieved quality. For instance,
figure 7 shows an improved version of the Seats
Booking System. In this figure, two UIs have
been generated to avoid the problem of typing
personal information when there are no seats
available. Here, the Task Model has been
transformed (operator >>) and two UIs are
generated now, maximizing the criterion
Suitability for the task. Note that in figure 7, the
task Specify Name is transformed into two sets of

Figure 7: Two UIs are derived from the Task Model

Figure 6: The quality model is used as the Criteria of QOC

Label + Text-Fields based on the two concepts
(First name, Last name) that are manipulated in
the task.

5. As a consequence of the previous point,
adaptation of UIs can be quality driven.

Following this approach, designers can easily quantify
design decisions regarding quality, and quality standards
become active agents of the design process.

CONCLUSION AND FUTURE WORK
This paper presents QUIMERA, a quality metamodel that
unifies quality aspects from HCI and Software
Engineering, setting the bases for a quality driven
adaption of UIs through quality models. Although
QUIMERA is used to explain design decisions through
quality models, it is domain independent, i.e. not only
devoted to HCI.

We have detailed our approach through a case study, in
which the metamodel is instantiated first, and used later
as an active agent of the design rationale. The main
advantages of this approach have been listed.

Future work will focus on implementing the proposed
approach for evaluation purposes.

ACKNOWLEDGMENTS
The work is funded by the european ITEA UsiXML
project (2009-2012).

REFERENCES
1.Carlier A. Management de la qualité pour la maîtrise du

SI, Paris, Hermès, p. 28, 2006.
2.Si-Saïd Cherfi S., Akoka J., Comyn-Wattiau I. Conceptual

Modeling Quality - From EER to UML Schemas
Evaluation, Lecture Notes in Computer Science, Vol.
2503, p 414-428, January 2002.

3.Moran, T. P. and Carroll, J. M. Overview of design
rationale. In Design Rationale: Concepts, Techniques,
and Use, T. P. Moran and J. M. Carroll, Eds. LEA
computers, cognition, and work series. Lawrence
Erlbaum Associates, Inc., Mahwah, NJ, p 1–19, 1996.

4.Palanque P. and Lacaze, X. DREAM-TEAM: A Tool and
a Notation Supporting Exploration of Options and
Traceability of Choices for Safety Critical Interactive
Systems. In Proceedings of INTERACT 2007, Rio,
Brazil, Lecture Notes in Computer Science, Springer
Verlag, September 2007.

5.McCall, R. J. PHI: A conceptual foundation for design
hypermedia. Des. Stud. 12, 1, p 30 – 41, 1991.

6.MacLean, A., Young, R. M., Bellotti, V. M. E., and
Moran, T. P. Questions, options, and criteria: Elements
of design space analysis. Human-Comput. Interact. 6, 3-
4, p 201–250, 1991.

7.Bramwell, C. Formal Development Methods for
Interactive System: Combining Interactors and Design
Ratio- nale. Ph.D. Thesis. University of York. 1995.

8.Carroll, J. M. and Rosson, M. B. Getting around the task-
artifact cycle: How to make claims and design by

scenario. ACM Trans. Inf. Syst. 10, 2 (Apr.), p 181–
212, 1991.

9.ISO 9241-110:Ergonomics of human-system interaction -
Part 110: Dialogue principles. ISO, 2006.

10. ISO/IEC 9126-1: Software engineering. Product quality
- Part 1: Quality model. ISO, 2001.

11. ISO/IEC CD 25010.3: Systems and software
engineering - Software product Quality Requirements
and Evaluation (SQuaRE) - Software product quality
and system quality in use models. ISO, 2009.

12. McCall, J. A., Richards, P. K., and Walters, G. F.
Factors in Software Quality, Nat'l Tech. Information
Service, no. Vol. 1, 2 and 3, 1977.

13. Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M.,
McLeod, G., and Merritt, M. Characteristics of
Software Quality, North Holland, 1978.

14. Seffah, A., Donyaee, M., Kline, R. and Padda, H.
Usability measurement and metrics: A consolidated
model. Software Quality Journal, 14(2), p 159–178,
June 2006.

15. Lacaze, X., Palanque, P., Barboni, E., Bastide, R.,
Navarre, D. From DREAM to Realitiy: Specificities of
Interactive Systems Development with respect to
Rationale Management. In: Dutoit, A.H., McCall, R.,
Mistrik, I., Paech, B. (eds.) Rationale Management in
Software Engineering, pp. 155–172. Springer,
Heidelberg, 2006.

16. García Frey, A. Self-explanatory user interfaces by
model-driven engineering. In Proceedings of the 2nd
ACM SIGCHI symposium on Engineering interactive
computing systems (EICS '10). ACM, New York, NY,
USA, p 341-344, 2010.

17. Nogier, J.F. De l'ergonomie du logiciel au design des
sites Web, Third edition, Dunod 2005.

18. Kashif M, Si-Saïd Cherfi S., Comyn-Wattiau I. Data
Quality Through Conceptual Model Quality-
Reconciling Researchers and Practitioners Through a
Customizable Quality Model. In International
Conference on Information Quality (ICIQ), 2009.

19. Mohagheghi, P. and Dehlen, V. A Metamodel for
Specifying Quality Models in Model-Driven
Engineering. Nordic Workshop on Model Driven
Engineering NW-MoDE '08, Reykjavik Iceland, p 20-
22, August 2008.

20. Dromey, R.G. Concerning the Chimera. IEEE
Software 13 (1), p 33- 43, 1996.

21. Martinie De Almeida, C., Ladry, J.F., Navarre D.,
Palanque P., Winckler, M. A. Embedding
Requirements in Design Rationale to Deal Explicitly
with User eXperience and Usability in an “intensive”
Model-Based Development Approach (regular paper).
In: Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI 2010), Atlanta
Georgia USA, Vol. 617, (Eds.), CEUR Workshop
Proceedings, p. 29-32, 2010.

