
Autonomic Management of Multimodal Interaction:
DynaMo in action

Pierre-Alain Avouac, Philippe Lalanda and Laurence Nigay
Université Joseph Fourier Grenoble 1

Laboratoire d’Informatique de Grenoble LIG UMR 5217, Grenoble, F-38041, France
{Pierre-Alain.Avouac, Philippe.Lalanda, Laurence.Nigay}@imag.fr

ABSTRACT
Multimodal interaction can play a dual key role in
pervasive environments because it provides naturalness for
interacting with distributed, dynamic and heterogeneous
digitally controlled equipment and flexibility for letting the
users select the interaction modalities depending on the
context. The DynaMo (Dynamic multiModality) framework
is dedicated to the development and the runtime
management of multimodal interaction in pervasive
environments. This paper focuses on the autonomic
approach of DynaMo whose originality is based on partial
interaction models. The autonomic manager combines and
completes partial available models at runtime in order to
build multimodal interaction adapted to the current
execution conditions and in conformance with the predicted
models. We illustrate the autonomic solution by considering
several running examples and different partial interaction
models.

Author Keywords
Multimodal interaction; Autonomic computing; Model-
based engineering; Service-oriented components.

ACM Classification Keywords
D.2.2 Software Engineering: Design Tools and Techniques
– User interfaces.

General Terms
Algorithms; Human Factors.

INTRODUCTION
Pervasive environments lead people to reconsider the way
they interact with digitally controlled equipment. Indeed,
facing the proliferation of communicating devices in the
environments, the users will express their needs or desires
with any available interaction modalities, expecting the
environment and its equipment to react accordingly [26].
As motivated in [2], multimodal interaction fits very well in
pervasive environments because multimodality offers (i) a
natural way to interact with equipment including gesture,
speech and direct manipulation [6] (ii) flexibility in letting

the users select the modalities according to different
contexts (tasks to be performed, interaction devices
availability, social context, etc.).

In order to develop and autonomically manage multimodal
interaction in service-based pervasive settings, we designed
and developed the DynaMo framework. Autonomic in the
context of DynaMo means that management decisions are
taken and realized by the framework itself. The overall
architecture of the underlying platform of DynaMo is
described in [2] and a simple scenario illustrating the
appearance of an interaction device and therefore a new
interaction modality is presented in [3]. After a declarative
description of the underlying platform and its software
layers in [2], this paper focuses on the management of
multimodal interaction by the autonomic manager (i.e., the
platform in action). We describe a complete example
highlighting the dynamic aspect of multimodal interaction

Based on the dynamic capabilities of the underlying
platform, the DynaMo autonomic manager creates and
modifies the multimodal processes at runtime. A
multimodal process for input multimodality defines the
interpretation function and is made of a sequence of input
transformations: Information acquired by input digital
channels (physical interaction devices) is transformed and
abstracted to obtain a meaningful application task through
multiple process activities characterized with four
intertwined ingredients: level of abstraction, context,
fusion/fission, and parallelism [21]. In order to create and
update these multimodal processing chains, the autonomic
manager contains domain-specific knowledge. The
originality of our approach relies on the definition of partial
interaction models in order to specify the autonomic
manager knowledge and constraints. The interaction models
are characterized as partial with respect to the complete
multimodal transformation chain which ranges from raw
data captured by devices to elementary tasks. A partial
interaction model will thus define a sub-part of this
transformation chain. In this paper we present these partial
interaction models organized according to the ARCH
software architectural model [1] and illustrate how they are
used by the autonomic manager.

The structure of the paper is as follows: first, we motivate
the adopted approach for designing DynaMo at the
intersection of two domains, multimodal engineering and
pervasive computing. We then recall the overall

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’12, June 25–26, 2012, Copenhagen, Denmark.
Copyright 2012 ACM 978-1-4503-1168-7/12/06...$10.00.

architecture of DynaMo fully specified in [2] before
describing and illustrating the autonomic manager and the
manipulated partial interaction models.

DYNAMO: PERVASIVE COMPUTING FOR MULTIMODAL
ENGINEERING
On the one hand, several frameworks have been defined for
developing multimodal interaction including ICON [11],
ICARE [5], OpenInterface [24], Squidy [18] and MUDRA
[16]. Such frameworks are mainly based on a component-
based approach, which allows the easy and rapid
development of multimodal interfaces. Indeed the designer
specifies multimodal interaction dedicated to a given task of
the interactive system under development by assembling
components, the corresponding code being automatically
generated. Such frameworks predominantly take on a data-
flow approach that has been shown to be adapted for
specifying multimodal interaction: indeed the assembling of
components defines the data-flow from interaction devices
to application tasks. Figure 1 presents an example of a data-
flow as an assembly of generic and tailored software
components from the OpenInterface framework [23].

Figure 1: Multimodal processing as an assembly of
components describing the data-flow from devices to tasks.

(from [23]).

Some existing frameworks include a graphical editor that
allows direct manipulation and assembling of components
in order to specify multimodal interaction. Figure 2 presents
a screenshot of the Squidy graphical editor [18].

Figure 2: Screenshot of the graphical editor of Squidy

(from [18]).

To fully understand the scope of these frameworks we show
in Figure 3 where the corresponding code is located within
the complete code of the interactive multimodal system
structured along the ARCH software architectural model
[1].

(a)

(b)

Figure 3: (a) Multimodality and the ARCH software
architectural model: An interaction modality is defined by the
couple: (device, language). The Physical Interaction
component is device dependent and the Logical Interaction
component is device independent but language dependent. (b)
Existing frameworks for multimodal interaction within an
ARCH software architecture.

Finally some frameworks support the dynamic discovery of
input devices. Such frameworks therefore provide some
flexibility by defining adaptable multimodal interaction.
Such adaptation is made possible by defining at design time
equivalence modalities for a given task. Equivalence of
modalities for a given task is defined in [21] as one of the
CARE properties. But multimodal adaptable interaction is
completely defined at design time. One example is the
COMET interactors [10]. COMET interactors are dedicated
to plastic user interfaces. In particular for input
multimodality, a COMET interactor includes a facet called
physical model that describes input and output. For input,
several equivalent devices can be defined at design time. At
runtime the user can then switch between modalities.

Such approaches, however, are made for well-delimited
environments where application tasks to be controlled and
interaction devices to be used are known in advance. The
existing frameworks cannot handle highly dynamic
environments where devices, applications, and the way
multimodal interactions unfold, are rapidly evolving. For
multimodal interaction not fully defined at design time,
more dynamic features are needed both at the design
language level and the runtime execution framework level.
Figure 4 schematizes the highly dynamic context that we
addressed with DynaMo according to the ARCH software
architectural model.

Figure 4: Dynamic context addressed by the DynaMo

framework.

On the other hand, pervasive computing is influenced by
advances in service-oriented computing [22] whose purpose
is to build systems through the late composition of
independent software elements called services. Service-
oriented computing allows us to manage highly dynamic
pervasive environments. Our approach then considers
service-based applications (Functional Core of ARCH in
Figure 4) and service-based interaction devices (Physical
Interaction of ARCH in Figure 4). Multimodal interaction
with pervasive applications is then a truly illuminating case.
It requires us to dynamically bind service-based interaction
devices like mobile phones, TV remote controls and
wiimotes and service-based applications like media players
and games. Composition is context aware in the sense that
it relies on the available interaction devices and on the
currently running applications. The situation can change at
anytime. It is not possible to anticipate all the eventualities
in a design time composition, even through abstraction.
Multimodal interactions between service-based devices and
applications require the integration of heterogeneous
information sources in a timely fashion implying a number
of operations, including communication, synchronization,
fusion, syntactic and semantic alignments as defined in the
previous section (i.e., the interpretation function [21]). In
the pervasive computing field, these operations are called
mediation operations [27], and demand some middleware
support to be correctly developed, executed, and
maintained. Enterprise Service Buses (ESBs) have been

developed in order to allow richer and better controlled
interactions between clients and servers. An ESB appears as
a communication bus providing a unique interface to
service providers and consumers. It can host mediation
operations organized as processing chains transporting
requests from consumers to providers and back. Mediation
chains are generally decomposed into specific components
that implement mediation operations. A number of products
have been recently developed, including open source
versions such as Apache ServiceMix or Codehaus Mule for
instance. Many existing solutions are built on dynamic
platforms like OSGi, which allows for runtime adaptation.

Current ESBs are not adapted to the management of
multimodal interfaces. There are at least two reasons for
that. First, current solutions are big in size. They target
Information Systems, not pervasive infrastructures. Also,
current solutions are still very technical and technology-
driven. The development, deployment and management of
mediation chains generally require highly skilled people.
Last, but not least, current solutions are not autonomic.
Adaptations cannot be decided and performed by ESBs
themselves. Towards this goal of flexibility to be managed
by autonomic managers, we have designed and developed a
service mediation framework for dynamic applications
called Cilia [14]. We added mechanisms in order to build
adaptable mediation solutions (i.e. adaptable multimodal
interpretation processes) based on structural and behavioral
reflection [13] that can be used by external managers in
charge of performing adaptations at runtime. Cilia is the
mediation framework of DynaMo and is built on top of a
service integration platform called iPOJO [12].

The design and development of the DynaMo framework is
therefore based on results from both multimodal
engineering and pervasive computing. DynaMo combines
recent advances in component-based multimodal
engineering, service-oriented component engineering as
well as adaptable service mediation mechanisms. In the
following sections, we recall the overall architecture of
DynaMo before describing the model-based autonomic
manager and its models.

DYNAMO: OVERALL ARCHITECTURE
As shown in Figure 5, DynaMo is made of three main parts.

First DynaMo relies on a service integration platform
(based on OSGi and IPOJO [12]) that monitors the
environment in order to trace any computing evolution. In
particular the ROSE module [4] captures services (i.e.,
interaction devices or applications) in the computing
environment and reifies them as iPOJO components in an
advanced service registry. Various protocols are supported
including Web services, Zigbeee, Bluetooth, UPnP and
DPWS.

Second DynaMo includes a lightweight component-based
mediation framework called Cilia as introduced above.
Cilia allows the execution of adaptable multimodal

processes. An assembly of Cilia mediators also called Cilia
mediation chain corresponds to the data-flow from
interaction devices to application tasks as specified at
design time with the existing multimodal frameworks
(Figures 1 and 2).

The third constituent of DynaMo is a model-based
autonomic manager that creates and adapts the multimodal
interaction using the dynamic capabilities of the underlying
Cilia component model.

Figure 5: DynaMo overall archiecture.

As a conclusion, the DynaMo framework is built on top of
readily available and proven software elements, which is
required in order to attain the expected level of quality.
OSGi is an industrial framework providing flexibility and
service orientation on top of Java. We are using Felix, the
reference open source implementation hosted by Apache.
IPOJO is a service-oriented component model facilitating
the development of OSGi-based applications. It is also
available on Apache and is widely used today. CILIA
leverages OSGi and iPOJO to provide a dynamic Enterprise
Service Bus and, more generally a solution for data

mediation. Cilia is also available in open source and is
successfully used in collaborative projects (including
industrial projects with France Telecom and Schneider
Electric). Finally, ROSE is an iPOJO-based framework
conceived to handle distribution in dynamic and
heterogeneous environments. ROSE is made available on
the OW2 forge and used in industrial settings (to provide
eBooks for instance). All these software elements have
been designed by the same team in the last decade and are
carefully integrated.

While the two first constituents of DynaMo, the service
integration platform and the mediation framework are fully
described in [2], the following section focuses on the
autonomic manager and its models. We articulate the
presentation of the autonomic management of interaction
by adopting an original point of view based on the levels of
abstraction of the Arch model: Arch provides us with a
structured way (i) to explain the different cases for the
autonomic manager and (ii) to present a complete example.

AUTONOMIC MANAGER AND ITS MANIPULATED
MODELS
Autonomic systems are made of managed artifacts and an
autonomic manager. Managed artifacts are the software
entities that are automatically administered by the system.
Here the managed artifacts are clearly the mediation chains
implementing multimodal processes. The autonomic
manager is the module in charge of the runtime
administration of the managed artifacts. The purpose of the
DynaMo autonomic manage is to build and maintain
multimodal interactions at runtime. To make its decisions,
the manager uses semantics-related knowledge defined by
interaction experts and contextual information provided by
the execution machine. It builds multimodal interaction
through the composition of predefined components
conforming to the component model of Cilia presented in
[2]. When a modification occurs in the environment (e.g., a
new device or a new application) the manager is reactive
and computes a new mediation chain or adapts the current
one. Based on the dynamic capabilities of the Cilia
mediation framework, the autonomic manager can manage
a mediation chain at a very fine grain (i.e. the component
level): when a component is replaced, the new component
receives the state of the replaced one.

The manager is first driven in its decisions by high-level
goals, namely policies, that can be set by the user.
Moreover the user can modify the policy at runtime. Two
policies are currently defined: <simple> and <bind-all>.
With the <simple> policy, the goal of the manager is to
bind each task of the current active application with
available devices. With the <bind-all> policy, the manager
starts from the devices and its goal is to bind all the devices
to the tasks. This <bind-all> policy likely implies that
multiple equivalent modalities (Equivalence of the CARE
properties [21]) are defined for a given task.

Figure 6: Models used by the autonomic manager within an

ARCH software architecture.

The developers first create proxies in Java (Figure 7) and
proxy models expressed in a xml language (Figure 8). The
proxy meta-model is described in [2].

// Called by iPOJO when the instance becomes valid
private void start() {

 conn = DBusConnection.getConnection
 (DBusConnection.SESSION);

 remoteVlc=conn.getRemoteObject("org.mpris.vlc",
 "/Player",MediaPlayer.class);
}

// Called by iPOJO when the instance becomes
invalid
private void stop() {
 conn.disconnect();
}

public void playPause() {
 remoteVlc.Pause();
}

public void volume(int vol) {
 remoteVlc.VolumeSet(vol);
}

Figure 7: Java proxy of VLC media player (downloadable at
www.videolan.org/vlc) that includes the life-cycle related code
that handles the connection with VLC, and the two entry
points “playPause” and “volume”.

A proxy model contains information used by ROSE to track
the services (devices or applications) and to start the
corresponding proxies. A proxy model also contains

information about the protocol (e.g., inter-process
communication system D-Bus in Figure 8) as well as the
ports and their types (e.g., port playPause and type
event in Figure 8). Based on the proxy models, the
autonomic manager is able to bind the proxies to the
endpoints (i.e., an application or an interaction device) of
the mediation chain. Figure 9 graphically presents the proxy
models of the application VLC and the device Wiimote as
endpoints of the mediation chain.

 <name>vlc</name>

 <discovery>
 <discriminator>org.mpris.vlc</discriminator>
 <factory>VLC</factory>
 <location>vlc-0.1.jar</location>
 <protocol>dbus</protocol>
 </discovery>

 <port>
 <codereference>playPause</codereference>
 <datatype>event</datatype>
 <direction>in</direction>
 <name>playPause</name>
 </port>
 …
</dynamo>

Figure 8: Excerpt of the xml proxy model of VLC: description
of the communication protocol and the port playPause. VLC
being an existing application, the xml proxy model describes

the ports and types defined in VLC.

Figure 9: Excerpt of VLC and Wiimote proxy models

represented as endpoints in the mediation chain.

Based on only the proxy models, the autonomic manager
will generate a mediation chain from information about data
type. Based on the ARCH model, this corresponds to the
case where the manager directly links the Physical
Interaction component to the Functional Core component as
depicted in Figure 10-a. For example, the autonomic
manager will bind the port x of the wiimote to the port
volume of VLC, and the port a of the wiimote, to the port
playPause of VLC. By moving the Wiimote
horizontally, the volume will be increased or decreased, and
the user must select the button “a” of the wiimote to stop
the movie. In this case, the autonomic manager only

performs syntactic alignments to generate this mediation
chain. For instance, when dealing with interaction devices
providing numbers, adaptors are often necessary to align
the provided values and the ones expected by the
applications. In the example, the Wiimote x port provides
values in [-180, +180] and the VLC volume port needs
values in [0, +100], so an adaptor is introduced to perform
linear transformation.
Finally in order to go beyond syntactic alignment, the
manager relies on semantics-related knowledge called
interaction models. An interaction model contains
information about data processing, data path and data
semantics. They describe the way an application and a
device can be used from an interaction point of view. As
opposed to proxy models, no programming skill is required
for defining interaction models in a xml language. A
graphical editor of interaction models is provided. An
interaction model describes a partial interaction that has to
be completed by the autonomic manager. An interaction
model is partial because it describes only a sub-part of the
transformation chain which ranges from raw data captured
by devices to elementary tasks. In structuring this
transformation chain along the levels of abstraction of
ARCH, we defined two partial interaction models. Indeed
Application interaction models and Device interaction
models respectively correspond to the Functional Core
Adapter component and the Logical Interaction component
of ARCH (Figure 6). According to the availability of the
interaction models, Figure 10-(b,c,d) depicts three cases for
the autonomic manager when building a mediation chain.

Figure 10: Four cases for the autonomic manager according to

the availability of interaction models.

For applications, the interaction model plays the role of the
ARCH Functional Core Adapter as described in [7]. For
instance semantic reparation can be performed by adding a
new application task. By considering the VLC example, the
application interaction model can add a new task to mute
the volume of VLC. Figure 11 presents an excerpt of the
VLC interaction model. It includes a constant generator
that generates the value 0 sent to the port volume of
VLC. Constant generator is one example of a generic

function that can be used by the designer, for defining
interaction models.

<dynamo>

 <interactionClass>mediaplayer</interactionClass>

 <proxy>vlc</proxy>

 <component>

 <baseComponent>constantGenerator</baseComponent>

 <port>
 <name>in</name>
 <connectedPort>mute</connectedPort>
 </port>

 <port>
 <name>out</name>
 <connectedPort>volume</connectedPort>
 </port>

 <property>
 <key>constant</key>
 <value>0</value>
 </property>

 </component>
…
</dynamo>

Figure 11: Excerpt of the interaction model of VLC.

For devices, the interaction model plays the role of the
ARCH Logical Interaction component. It describes how to
abstract events from devices. It is the right place to abstract
or standardize different types of events from devices
(identifier and/or parameters of a command). It depends on
the syntax of the interaction language. It does not, however,
depend on the semantic level of the application. As for
application interaction models, the designer can use
predefined processing functions within a device interaction
model. For example, a triggering function sends an event as
soon as it receives a value greater than a specified value. In
addition generic fusion functions are provided based on the
CARE properties (Redundancy and Complementarity).
These generic functions are implemented by mediators
developed with reuse concerns in mind and are similar to
the generic components manipulated in the OpenInterface
framework [23] (e.g., the Filter and Complementary generic
components of Figure 1). Moreover more complex
components can be used including gesture or speech
recognition. The designer declares which components are to
be used and bind their ports within the graphical editor. At

this stage of the specification, data types can generally be
ignored because the autonomic manager will be able at
runtime to infer each port data type. Such inference leads to
the completion of component configuration, and adds a data
type converting component if necessary. For example, we
have developed the multimodal map navigator as described
in [23] (Figure 1) using a generic speech recognizer and a
complementarity component, two mediators specific to
multimodal processing. These components can be directly
inserted in the interaction models, with a given
configuration.

Application and device interaction models not only contain
information about data processing (mediator class) and data
path (bindings) but also data semantics. Indeed the
autonomic manager needs to match meanings defined in the
different interaction models. The current state of DynaMo
supports simple semantics matching by defining interaction
classes. An interaction class defines several meanings that
make sense together. For example in Figure 11 and 12-a,
we use the interaction class MediaPlayer that defines the
two meanings pause and mute. Another interaction class is
called GamePad and defines the meanings: up, down, left
and right. Only one interaction class is referenced by an
interaction model. The interaction designer can nevertheless
define several interaction models based on different
interaction classes for a given device for example, as shown
in Figure 12 for the TV remote control.

(a)

(b)

Figure 12: Excerpt of two interaction models of the BDRC TV
remote control: (a) MediaPlayer interaction class (b)

GamePad interaction class.

 (a) (b)

(c)

Figure 13: VLC - Generated mediation chains (a) without interaction model (b) with an application interaction model (c) with
application and device interaction models.

Figure 13 illustrates how the interaction models guide the
autonomic manager by considering the VLC example.
Figure 13-a shows the case of Figure 10-a without
interaction models. The autonomic manager only performed
syntactic alignments to generate this mediation chain that
links the wiimote to control VLC. Figure 13-b shows the
case of Figure 10-c, with a VLC interaction model only.
Since no interaction model is defined for the wiimote, the
autonomic manager links port b of the wiimote to the new
port mute of VLC that extends the tasks that can be
performed with VLC. Finally Figure 13-c considers the
case of Figure 10-b with application and device interaction
models. We consider that the BDRC TV remote control has
been activated. The autonomic manager receives a
discovery notification about BDRC, hence it downloads the
BDRC binary proxy from the repository and starts it.
Amongst the interaction models of BDRC, it selects the one
that uses the MediaPlayer interaction class (Figure 12-a)
since VLC also has a MediaPlayer interaction model.
Simple semantics matching is then performed by the
autonomic manager in order to define the complete
mediation chain, since the application and the device
interaction models belong to the same class, namely
MediaPlayer. If the interaction policy is set to <bind-all>,
the wiimote will still be connected to VLC and the user can
select one of the two equivalent modalities for specifying
VLC tasks.

To conclude on the autonomic manager, we focus on the
complementarity of modalities that imply fusion
mechanisms. In DynaMo complementary modalities can be
defined by using a fusion component. The complementarity
generic mediator combines events close in time based on a
temporal window that is a configuration parameter of the
component. On the one hand, such a component can be
declared within an interaction model as explained above for
the example of the multimodal map navigator that combines
speech with pointing gestures. On the other hand, the
complementary component can be automatically added to
the mediation chain by the manager.

Figure 14: KStars application (downloadable at
http://edu.kde.org/kstars/): Automatically generated combined
usage of two knobs for selecting a point on the night sky map.

Figure 14 illustrates this case: We consider another
application, KStars, that is a downloadable application that
simulates the night sky, including stars and planets. The
proxy of this service includes a port jumpTo with two
integers as parameters. We consider that we have two
control knobs as interaction devices for interacting with
KStars. The two control knobs provide an orientation as
output (the two ports orientation1 and
orientation2). Without interaction models, the
autonomic manager will define a multimodal interaction
corresponding to the combined usage of the two knobs for
manipulating the night sky map. The corresponding
generated mediation chain includes a complementarity
component.

CONCLUSION AND RESEARCH AGENDA
The autonomic DynaMo framework is dedicated to the
development and the runtime management of pervasive
multimodal interaction. In pervasive environments with
highly dynamic and heterogeneous applications and
interaction devices, DynaMo is able to analyze and
understand multiple communication means and reconfigure
itself in real-time. To do so the autonomic manager uses
Proxy models and Interaction models to generate and
maintain a mediation chain that defines multimodal
interaction techniques. The underlying execution machine
then concretely realizes the mediation chain.

The clear distinction between the management of the
dynamic computing infrastructure and that of multimodal
interaction enables us to identify two distinct roles:

• that of the developers that define proxies so that
applications and devices can be managed by DynaMo,
and,

• that of the interaction designers that define interaction
models at a high level of abstraction without knowing the
implementation of the applications and device drivers.

Proxy models as well as interaction models guide the
autonomic manager in order to define the mediation chain
corresponding to the multimodal interaction processes. On
the one hand, the autonomic manager has all the
information to build a mediation chain: the interaction
models are then complete and defined at design time.
DynaMo then corresponds to the existing multimodal
frameworks for which multimodal interaction is defined at
design time. On the other hand, the autonomic manager is
also able to build a mediation chain with incomplete
interaction models. This is the case of multimodal
interaction not fully defined at design time: for example a
device not initially planned to be used to control a particular
application is now linked to a task of this application.

DynaMo is fully operational and stable. In particular the
execution machine is robust and used by our industrial
partners (Schneider Electric and France Telecom
especially). Its robustness and its clear distinction of
concerns within its architecture enable us to build a

research agenda on pervasive multimodal environments that
we organize along three main axes.

Populate the DynaMo framework for experimental
evaluation: We plan to add new devices and new
applications to DynaMo by defining new proxies. The goal
is to be able to perform experimental evaluation. DynaMo
is currently studied within the Medical project
(medical.imag.fr). Medical is a project that focuses on
smart homes for the elderly. Its overall purpose is to
provide a middleware, based on iPOJO and Cilia, allowing
the development of pervasive applications. Applications are
hosted by so-called “Internet boxes” and can be extended to
the cloud. Interaction needs are immense in such contexts.
In current settings, we are using remote control, speech
commands, mouse and tactile tablets as input modalities.
For instance one primary need is the configuration of
applications on a tablet. While several equivalent modalities
are defined at design time for configuring the applications
on the tablet, it also possible to interact with applications on
the tablet from far away, by using the remote control. Such
interaction was not fully defined at design time. Moreover
for Health applications for which values of physiological
parameters must be regularly captured, multiple modalities
based on different sensors (passive or active modalities) are
defined. The autonomic manager may make this
multimodal process of capturing values of physiological
parameters more efficient, robust and safe.

Enrich the autonomic manager: We identify several
research avenues to better guide the autonomic manager in
its decisions. First further contextual information [8] can be
used by the autonomic manager. For instance the autonomic
manager could learn from the users’ interaction (inputs):
her/his preferences in terms of devices and/or coupling of
devices with applications. This learning approach can be
directly implemented in DynaMo since our architecture
supports the sensing and actuating at a fine grain. Moreover
situational contextual information including spatial
relationships as in proxemic interactions [15] could guide
the manager, for instance in selecting the devices closer to
the user. A more general approach to enrich the autonomic
manager and its knowledge is also to define ontologies
instead of interaction classes, which correspond to very
simple light-weight ontologies. As explained in [25],
several ontologies for pervasive environments have been
proposed. For example the European project SOFIA (Smart
Objects For Intelligent Applications) explored ontology-
based mechanisms for pervasive environments [19]: In this
context, the Semantic Media Ontology [20] is closely
related to the interaction class Media Player used in
DynaMo. By using ontologies, in DynaMo,
correspondences between application and device ontology
entities will then be based on ontology matching
mechanisms (equivalence or subsumption relations between
ontology entitites).

Make the decisions observable and controllable by the user:
The autonomic solution of DynaMo is appealing since
autonomic adaptation does not require the user to explicitly
manage her/his pervasive environment and could ideally
only focus on her/his intention. Nevertheless as stated in
[9], the user needs at least to understand the state of its
environment and furthermore control or tune the decisions
made by the autonomic manager (i.e. mixed initiative
approach [17]). For these purposes a meta-UI as described
in [9] must then be defined. The current meta-UI of
DynaMo is basic and requires further studies: appearance
and disappearance of a service (i.e., an application or a
device) are notified to the user by a pop-up window and we
provide partial observability of the available modalities by
graphically displaying which sensors of the devices are
connected to the tasks of the current active application. The
ReWiRe framework [25] adopts a more advanced mixed
initiative approach by displaying a “pervasive menu” that
allows the users to observe and modify the current state of
the pervasive environment. In DynaMo, the meta-UI to be
designed must (1) make observable the current application
tasks and the corresponding available modalities as well as
show how to perform actions with the modalities (e.g., the
symbolic 3D gestures that can be perfomed) (2) let the users
modify the decisions made by the autonomic manager that
could in turn learn from these modifications. It is a vast
research agenda that we can explore with the current
implemented architecture of DynaMo.

REFERENCES
1. A metamodel for the runtime architecture of an

interactive system: the UIMS tool developers workshop.
ACM SIGCHI Bulletin, 24, 1 (1992), 32-37.

2. Avouac, P-A., Lalanda, P., Nigay, L. Service-Oriented
Autonomic Multimodal Interaction in a Pervasive
Environment. In Proc. ICMI 2011, ACM Press (2011),
369-376.

3. Avouac, P-A., Lalanda, P., Nigay, L. Adaptable
multimodal interfaces in pervasive environments. In
Proc. CCNC 2012, IEEE Consumer Communications
and Networking Conference, IEEE (2012).

4. Bardin, J., Lalanda, P., Escoffier, C. Towards an
Automatic Integration of Heterogeneous Services and
Devices. In Proc. APSCC 2010, IEEE Asia-Pacific
Services Computing Conference, IEEE (2010), 171-178.

5. Bouchet, J., Nigay, L., Ganille, T. ICARE software
components for rapidly developing multimodal
interfaces. In Proc. ICMI 2004, ACM Press (2004), 252-
258.

6. Carrino, S., Péclat, A., Mugellini, E., Omar Abou
Khaled, O-A, Ingold, R. Humans and Smart
Environments: A Novel Multimodal Interaction
Approach. In Proc. ICMI 2011, ACM Press (2011),
105-112.

7. Coutaz, J., Balbo, S.Applications: a dimension space for
User Interface Management Systems. In Proc CHI 1991,
ACM Press (1991), 27-32.

8. Coutaz, J., Crowley, J., Dobson, S., Garlan, D. Context
is Key. Communications of the ACM 48, 3 (2005), 49-
53.

9. Coutaz, J. Meta-User Interfaces for Ambient Spaces. In
Proc. TAMODIA 2006, Springer (2006),1-15.

10. Demeure, A, Calvary, G., Coninx, K. CO-MET(s), A
Software Architecture Style and an Interactors Toolkit
for Plastic User Interfaces. In Proc. DSVIS 2008, LNCS
5136, Springer (2008), 225-237.

11. Dragicevic, P., and Fekete, J. D. ICON: Input Device
Selection and Interaction Configuration. Companion
Proc. UIST 2002, ACM Press (2002), 47-48.

12. Escoffier, C., Hall, R. S., Lalanda, P. iPOJO: an
Extensible Service-Oriented Component Framework. In
Proc. SCC 2007, IEEE Conference on Services
Computing, IEEE (2007), 474-481.

13. Garcia, I., Morand, D., Debbabi, B., Lalanda, P.,
Bourret, P. A reflective framework for mediation
applications. In Proc. ARM 2011, 10th Middleware
Workshop on Adaptive and Reflective Middleware,
ACM Press (2011), 22-28.

14. Garcia, I., Pedraza, G., Debbabi, B., Lalanda, P.,
Hamon, C. Towards a service mediation framework for
dynamic applications. In Proc. APSCC 2010, IEEE
Asia-Pacific Services Computing Conference, IEEE
(2010), 3-10.

15. Greenberg, S., Marquardt, N., Ballendat, T., Diaz-
Marino, R., Wang, M. Proxemic interactions: the new
ubicomp? ACM Interactions, 18, 1 (2011), 42-50.

16. Hoste, L., Dumas, B., Signer B. Mudra: a unified
multimodal interaction framework. In Proc. ICMI 2011,
ACM Press (2011), 97-104.

17. Horvitz, E. Principles of Mixed-Initiative User In-
terfaces. In Proc CHI 1999, ACM Press (1999), 159-
166.

18. König, W. A., Rädle, R., Reiterer, H. Interactive Design
of Multimodal User Interfaces - Reducing technical and
visual complexity. Springer Journal on Multimodal
Interfaces, 3,3 (2010), 197-213.

19. Niezen, G., van der vlist, B., Hu, J., Feijs, L. From
Events to Goals: Supporting Semantic Interaction in
Smart Environments. In Proc. ISCC 2010, IEEE
Symposium on Computers and Communications IEEE
(2010), 1029-1034.

20. Niezen, G., van der vlist, B., Hu, J., Feijs, L. Using
semantic transformers to enable interoperability between
media devices in a ubiquitous computing environment.
In Proc. of S3E 2011, International Workshop on Self-
managing Solutions for Smart Environments at the 6th
International Conference on Grid and Pervasive
Computing (GPC 2011).

21. Nigay, L., Coutaz, J. Multifeature systems: the CARE
properties and their impact on software design.
Multimedia Interfaces: Research and Applications,
chapter 9, AAAI Press (1997).

22. Papazoglou, M. P., Georgakopoulos, D. Service-
Oriented Computing: Introduction. Communications of
the ACM 46, 10 (2003), 24-28.

23. Serrano, M., Nigay, L. A Three-dimensional
Characterization Space of Software Components for
Rapidly Developing Multimodal Interfaces. In Proc.
ICMI 2008, ACM Press (2008), 149-156.

24. Serrano, M., Nigay, L., Lawson, J-Y., Ramsay, A.,
Murray-Smith, R., Denef, S. The openinterface
framework: a tool for multimodal interaction. Ext.
Abstracts CHI 2008, ACM Press (2008), 3501-3506.
www.oi-project.org.

25. Vanderhulst, G., Luyten, K., Coninx, K. ReWiRe:
Creating Interactive Pervasive Systems that cope with
Changing Environments by Rewiring. In Proc. of IE
2008, the 4th International Conference on Intelligent
Environments, IEEE (2008), 1-8.

26. Weiser, M. The computer for the 21st century. Scientific
American, 265, 3 (1991), 66-75.

27. Wiederhold, G., Genesereth, M. 1997. The Conceptual
Basis for Mediation Services. IEEE Expert: Intelligent
Systems and Their Applications 12, 5 (1997), 38-47.

