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ABSTRACT 
Multimodal interaction can play a dual key role in 
pervasive environments because it provides naturalness for 
interacting with distributed, dynamic and heterogeneous 
digitally controlled equipment and flexibility for letting the 
users select the interaction modalities depending on the 
context. The DynaMo (Dynamic multiModality) framework 
is dedicated to the development and the runtime 
management of multimodal interaction in pervasive 
environments. This paper focuses on the autonomic 
approach of DynaMo whose originality is based on partial 
interaction models. The autonomic manager combines and 
completes partial available models at runtime in order to 
build multimodal interaction adapted to the current 
execution conditions and in conformance with the predicted 
models. We illustrate the autonomic solution by considering 
several running examples and different partial interaction 
models.  
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INTRODUCTION 
Pervasive environments lead people to reconsider the way 
they interact with digitally controlled equipment. Indeed, 
facing the proliferation of communicating devices in the 
environments, the users will express their needs or desires 
with any available interaction modalities, expecting the 
environment and its equipment to react accordingly [26]. 
As motivated in [2], multimodal interaction fits very well in 
pervasive environments because multimodality offers (i) a 
natural way to interact with equipment including gesture, 
speech and direct manipulation [6] (ii) flexibility in letting 

the users select the modalities according to different 
contexts (tasks to be performed, interaction devices 
availability, social context, etc.). 

In order to develop and autonomically manage multimodal 
interaction in service-based pervasive settings, we designed 
and developed the DynaMo framework. Autonomic in the 
context of DynaMo means that management decisions are 
taken and realized by the framework itself.  The overall 
architecture of the underlying platform of DynaMo is 
described in [2] and a simple scenario illustrating the 
appearance of an interaction device and therefore a new 
interaction modality is presented in [3]. After a declarative 
description of the underlying platform and its software 
layers in [2], this paper focuses on the management of 
multimodal interaction by the autonomic manager (i.e., the 
platform in action). We describe a complete example 
highlighting the dynamic aspect of multimodal interaction 

Based on the dynamic capabilities of the underlying 
platform, the DynaMo autonomic manager creates and 
modifies the multimodal processes at runtime. A 
multimodal process for input multimodality defines the 
interpretation function and is made of a sequence of input 
transformations: Information acquired by input digital 
channels (physical interaction devices) is transformed and 
abstracted to obtain a meaningful application task through 
multiple process activities characterized with four 
intertwined ingredients: level of abstraction, context, 
fusion/fission, and parallelism [21].  In order to create and 
update these multimodal processing chains, the autonomic 
manager contains domain-specific knowledge. The 
originality of our approach relies on the definition of partial 
interaction models in order to specify the autonomic 
manager knowledge and constraints. The interaction models 
are characterized as partial with respect to the complete 
multimodal transformation chain which ranges from raw 
data captured by devices to elementary tasks. A partial 
interaction model will thus define a sub-part of this 
transformation chain. In this paper we present these partial 
interaction models organized according to the ARCH 
software architectural model [1] and illustrate how they are 
used by the autonomic manager. 

The structure of the paper is as follows: first, we motivate 
the adopted approach for designing DynaMo at the 
intersection of two domains, multimodal engineering and 
pervasive computing. We then recall the overall 
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architecture of DynaMo fully specified in [2] before 
describing and illustrating the autonomic manager and the 
manipulated partial interaction models. 

DYNAMO: PERVASIVE COMPUTING FOR MULTIMODAL 
ENGINEERING 
On the one hand, several frameworks have been defined for 
developing multimodal interaction including ICON [11], 
ICARE [5], OpenInterface [24], Squidy [18] and MUDRA 
[16]. Such frameworks are mainly based on a component-
based approach, which allows the easy and rapid 
development of multimodal interfaces. Indeed the designer 
specifies multimodal interaction dedicated to a given task of 
the interactive system under development by assembling 
components, the corresponding code being automatically 
generated.  Such frameworks predominantly take on a data-
flow approach that has been shown to be adapted for 
specifying multimodal interaction: indeed the assembling of 
components defines the data-flow from interaction devices 
to application tasks. Figure 1 presents an example of a data-
flow as an assembly of generic and tailored software 
components from the OpenInterface framework [23].  

 

Figure 1: Multimodal processing as an assembly of 
components describing the data-flow from devices to tasks. 

(from [23]). 

Some existing frameworks include a graphical editor that 
allows direct manipulation and assembling of components 
in order to specify multimodal interaction. Figure 2 presents 
a screenshot of the Squidy graphical editor [18].  

 
Figure 2: Screenshot of the graphical editor of Squidy  

(from [18]).  
 

To fully understand the scope of these frameworks we show 
in Figure 3 where the corresponding code is located within 
the complete code of the interactive multimodal system 
structured along the ARCH software architectural model 
[1].  

 
(a) 

 
(b) 

Figure 3: (a) Multimodality and the ARCH software 
architectural model: An interaction modality is defined by the 
couple: (device, language). The Physical Interaction 
component is device dependent and the Logical Interaction 
component is device independent but language dependent. (b) 
Existing frameworks for multimodal interaction within an 
ARCH software architecture. 

Finally some frameworks support the dynamic discovery of 
input devices. Such frameworks therefore provide some 
flexibility by defining adaptable multimodal interaction. 
Such adaptation is made possible by defining at design time 
equivalence modalities for a given task. Equivalence of 
modalities for a given task is defined in [21] as one of the 
CARE properties. But multimodal adaptable interaction is 
completely defined at design time. One example is the 
COMET interactors [10]. COMET interactors are dedicated 
to plastic user interfaces. In particular for input 
multimodality, a COMET interactor includes a facet called 
physical model that describes input and output. For input, 
several equivalent devices can be defined at design time. At 
runtime the user can then switch between modalities.  



Such approaches, however, are made for well-delimited 
environments where application tasks to be controlled and 
interaction devices to be used are known in advance. The 
existing frameworks cannot handle highly dynamic 
environments where devices, applications, and the way 
multimodal interactions unfold, are rapidly evolving. For 
multimodal interaction not fully defined at design time, 
more dynamic features are needed both at the design 
language level and the runtime execution framework level. 
Figure 4 schematizes the highly dynamic context that we 
addressed with DynaMo according to the ARCH software 
architectural model.  

 
Figure 4: Dynamic context addressed by the DynaMo 

framework. 

On the other hand, pervasive computing is influenced by 
advances in service-oriented computing [22] whose purpose 
is to build systems through the late composition of 
independent software elements called services. Service-
oriented computing allows us to manage highly dynamic 
pervasive environments. Our approach then considers 
service-based applications (Functional Core of ARCH in 
Figure 4) and service-based interaction devices (Physical 
Interaction of ARCH in Figure 4). Multimodal interaction 
with pervasive applications is then a truly illuminating case. 
It requires us to dynamically bind service-based interaction 
devices like mobile phones, TV remote controls and 
wiimotes and service-based applications like media players 
and games. Composition is context aware in the sense that 
it relies on the available interaction devices and on the 
currently  running applications. The situation can change at 
anytime. It is not possible to anticipate all the eventualities 
in a design time composition, even through abstraction. 
Multimodal interactions between service-based devices and 
applications require the integration of heterogeneous 
information sources in a timely fashion implying a number 
of operations, including communication, synchronization, 
fusion, syntactic and semantic alignments as defined in the 
previous section (i.e., the interpretation function [21]).  In 
the pervasive computing field, these operations are called 
mediation operations [27], and demand some middleware 
support to be correctly developed, executed, and 
maintained. Enterprise Service Buses (ESBs) have been 

developed in order to allow richer and better controlled 
interactions between clients and servers. An ESB appears as 
a communication bus providing a unique interface to 
service providers and consumers. It can host mediation 
operations organized as processing chains transporting 
requests from consumers to providers and back. Mediation 
chains are generally decomposed into specific components 
that implement mediation operations. A number of products 
have been recently developed, including open source 
versions such as Apache ServiceMix or Codehaus Mule for 
instance. Many existing solutions are built on dynamic 
platforms like OSGi, which allows for runtime adaptation.  

Current ESBs are not adapted to the management of 
multimodal interfaces. There are at least two reasons for 
that. First, current solutions are big in size. They target 
Information Systems, not pervasive infrastructures. Also, 
current solutions are still very technical and technology-
driven. The development, deployment and management of 
mediation chains generally require highly skilled people. 
Last, but not least, current solutions are not autonomic. 
Adaptations cannot be decided and performed by ESBs 
themselves. Towards this goal of flexibility to be managed 
by autonomic managers, we have designed and developed a 
service mediation framework for dynamic applications 
called Cilia [14]. We added mechanisms in order to build 
adaptable mediation solutions (i.e. adaptable multimodal 
interpretation processes) based on structural and behavioral 
reflection [13] that can be used by external managers in 
charge of performing adaptations at runtime. Cilia is the 
mediation framework of DynaMo and is built on top of a 
service integration platform called iPOJO [12].  

The design and development of the DynaMo framework is 
therefore based on results from both multimodal 
engineering and pervasive computing. DynaMo combines 
recent advances in component-based multimodal 
engineering, service-oriented component engineering as 
well as adaptable service mediation mechanisms. In the 
following sections, we recall the overall architecture of 
DynaMo before describing the model-based autonomic 
manager and its models. 

DYNAMO: OVERALL ARCHITECTURE 
As shown in Figure 5, DynaMo is made of three main parts. 

First DynaMo relies on a service integration platform 
(based on OSGi and IPOJO [12]) that monitors the 
environment in order to trace any computing evolution. In 
particular the ROSE module [4] captures services (i.e., 
interaction devices or applications) in the computing 
environment and reifies them as iPOJO components in an 
advanced service registry. Various protocols are supported 
including Web services, Zigbeee, Bluetooth, UPnP and 
DPWS. 

Second DynaMo includes a lightweight component-based 
mediation framework called Cilia as introduced above. 
Cilia allows the execution of adaptable multimodal 



processes. An assembly of Cilia mediators also called Cilia 
mediation chain corresponds to the data-flow from 
interaction devices to application tasks as specified at 
design time with the existing multimodal frameworks 
(Figures 1 and 2). 

The third constituent of DynaMo is a model-based 
autonomic manager that creates and adapts the multimodal 
interaction using the dynamic capabilities of the underlying 
Cilia component model. 
 

 
 

Figure 5: DynaMo overall archiecture. 

As a conclusion, the DynaMo framework is built on top of 
readily available and proven software elements, which is 
required in order to attain the expected level of quality. 
OSGi is an industrial framework providing flexibility and 
service orientation on top of Java. We are using Felix, the 
reference open source implementation hosted by Apache. 
IPOJO is a service-oriented component model facilitating 
the development of OSGi-based applications. It is also 
available on Apache and is widely used today. CILIA 
leverages OSGi and iPOJO to provide a dynamic Enterprise 
Service Bus and, more generally a solution for data 

mediation. Cilia is also available in open source and is 
successfully used in collaborative projects (including 
industrial projects with France Telecom and Schneider 
Electric). Finally, ROSE is an iPOJO-based framework 
conceived to handle distribution in dynamic and 
heterogeneous environments. ROSE is made available on 
the OW2 forge and used in industrial settings (to provide 
eBooks for instance).  All these software elements have 
been designed by the same team in the last decade and are 
carefully integrated. 

While the two first constituents of DynaMo, the service 
integration platform and the mediation framework are fully 
described in [2], the following section focuses on the 
autonomic manager and its models. We articulate the 
presentation of the autonomic management of interaction 
by adopting an original point of view based on the levels of 
abstraction of the Arch model: Arch provides us with a 
structured way (i) to explain the different cases for the 
autonomic manager and (ii) to present a complete example. 

AUTONOMIC MANAGER AND ITS MANIPULATED 
MODELS 
Autonomic systems are made of managed artifacts and an 
autonomic manager. Managed artifacts are the software 
entities that are automatically administered by the system. 
Here the managed artifacts are clearly the mediation chains 
implementing multimodal processes. The autonomic 
manager is the module in charge of the runtime 
administration of the managed artifacts. The purpose of the 
DynaMo autonomic manage is to build and maintain 
multimodal interactions at runtime. To make its decisions, 
the manager uses semantics-related knowledge defined by 
interaction experts and contextual information provided by 
the execution machine. It builds multimodal interaction 
through the composition of predefined components 
conforming to the component model of Cilia presented in 
[2]. When a modification occurs in the environment (e.g., a 
new device or a new application) the manager is reactive 
and computes a new mediation chain or adapts the current 
one. Based on the dynamic capabilities of the Cilia 
mediation framework, the autonomic manager can manage 
a mediation chain at a very fine grain (i.e. the component 
level): when a component is replaced, the new component  
receives the state of the replaced one. 

The manager is first driven in its decisions by high-level 
goals, namely policies, that can be set by the user. 
Moreover the user can modify the policy at runtime.  Two 
policies are currently defined: <simple> and <bind-all>. 
With the <simple> policy, the goal of the manager is to 
bind each task of the current active application with 
available devices. With the <bind-all> policy, the manager 
starts from the devices and its goal is to bind all the devices 
to the tasks. This <bind-all> policy likely implies that 
multiple equivalent modalities (Equivalence of the CARE 
properties [21]) are defined for a given task.   



 

 
Figure 6: Models used by the autonomic manager within an 

ARCH software architecture.  

The developers first create proxies in Java (Figure 7) and 
proxy models expressed in a xml language (Figure 8). The 
proxy meta-model is described in [2].  

// Called by iPOJO when the instance becomes valid 
private void start() { 
 
 conn = DBusConnection.getConnection 
 (DBusConnection.SESSION); 
 
 remoteVlc=conn.getRemoteObject("org.mpris.vlc",  
  "/Player",MediaPlayer.class); 
} 
 
// Called by iPOJO when the instance becomes 
invalid 
private void stop() { 
  conn.disconnect(); 
}  
 
public void playPause() { 
  remoteVlc.Pause(); 
} 
 
public void volume(int vol) { 
  remoteVlc.VolumeSet(vol); 
}   

Figure 7: Java proxy of VLC media player (downloadable at 
www.videolan.org/vlc) that includes the life-cycle related code 
that handles the connection with VLC, and the two entry 
points “playPause” and “volume”. 

A proxy model contains information used by ROSE to track 
the services (devices or applications) and to start the 
corresponding proxies. A proxy model also contains 

information about the protocol (e.g., inter-process 
communication system D-Bus in Figure 8) as well as the 
ports and their types (e.g., port playPause and type 
event in Figure 8). Based on the proxy models, the 
autonomic manager is able to bind the proxies to the 
endpoints (i.e., an application or an interaction device) of 
the mediation chain. Figure 9 graphically presents the proxy 
models of the application VLC and the device Wiimote as 
endpoints of the mediation chain. 

  <name>vlc</name> 
   
  <discovery> 
    <discriminator>org.mpris.vlc</discriminator> 
    <factory>VLC</factory> 
    <location>vlc-0.1.jar</location> 
    <protocol>dbus</protocol> 
  </discovery> 
   
  <port> 
    <codereference>playPause</codereference> 
    <datatype>event</datatype> 
    <direction>in</direction> 
    <name>playPause</name> 
  </port> 
  … 
</dynamo> 

Figure 8: Excerpt of the xml proxy model of VLC: description 
of the communication protocol and the port playPause. VLC 
being an existing application, the xml proxy model describes 

the ports and types defined in VLC. 

 
Figure 9: Excerpt of VLC and Wiimote proxy models 

represented as endpoints in the mediation chain.   

Based on only the proxy models, the autonomic manager 
will generate a mediation chain from information about data 
type. Based on the ARCH model, this corresponds to the 
case where the manager directly links the Physical 
Interaction component to the Functional Core component as 
depicted in Figure 10-a. For example, the autonomic 
manager will bind the port x of the wiimote to the port 
volume of VLC, and the port a of the wiimote, to the port 
playPause of VLC. By moving the Wiimote 
horizontally, the volume will be increased or decreased, and 
the user must select the button “a” of the wiimote to stop 
the movie. In this case, the autonomic manager only 



performs syntactic alignments to generate this mediation 
chain. For instance, when dealing with interaction devices 
providing numbers, adaptors are often necessary to align 
the provided values and the ones expected by the 
applications. In the example, the Wiimote x port provides 
values in [-180, +180] and the VLC volume port needs 
values in [0, +100], so an adaptor is introduced to perform 
linear transformation. 
Finally in order to go beyond syntactic alignment, the 
manager relies on semantics-related knowledge called 
interaction models. An interaction model contains 
information about data processing, data path and data 
semantics. They describe the way an application and a 
device can be used from an interaction point of view. As 
opposed to proxy models, no programming skill is required 
for defining interaction models in a xml language. A 
graphical editor of interaction models is provided. An 
interaction model describes a partial interaction that has to 
be completed by the autonomic manager. An interaction 
model is partial because it describes only a sub-part of the 
transformation chain which ranges from raw data captured 
by devices to elementary tasks. In structuring this 
transformation chain along the levels of abstraction of 
ARCH, we defined two partial interaction models. Indeed 
Application interaction models and Device interaction 
models respectively correspond to the Functional Core 
Adapter component and the Logical Interaction component 
of ARCH (Figure 6). According to the availability of the 
interaction models, Figure 10-(b,c,d) depicts three cases for 
the autonomic manager when building a mediation chain. 

 
Figure 10: Four cases for the autonomic manager according to 

the availability of interaction models. 

For applications, the interaction model plays the role of the 
ARCH Functional Core Adapter as described in [7]. For 
instance semantic reparation can be performed by adding a 
new application task. By considering the VLC example, the 
application interaction model can add a new task to mute 
the volume of VLC. Figure 11 presents an excerpt of the 
VLC interaction model.  It includes a constant generator 
that generates the value 0 sent to the port volume of 
VLC. Constant generator is one example of a generic 

function that can be used by the designer, for defining 
interaction models.  

<dynamo> 
  
 <interactionClass>mediaplayer</interactionClass> 
  
 <proxy>vlc</proxy> 
  
 <component> 
   
  <baseComponent>constantGenerator</baseComponent> 
     
    <port> 
      <name>in</name> 
      <connectedPort>mute</connectedPort> 
    </port> 
 
    <port> 
      <name>out</name> 
      <connectedPort>volume</connectedPort> 
    </port> 
 
    <property> 
      <key>constant</key> 
      <value>0</value> 
    </property> 
 
 </component> 
… 
</dynamo> 

 

Figure 11: Excerpt of the interaction model of VLC. 

For devices, the interaction model plays the role of the 
ARCH Logical Interaction component. It describes how to 
abstract events from devices. It is the right place to abstract 
or standardize different types of events from devices 
(identifier and/or parameters of a command). It depends on 
the syntax of the interaction language. It does not, however, 
depend on the semantic level of the application. As for 
application interaction models, the designer can use 
predefined processing functions within a device interaction 
model. For example, a triggering function sends an event as 
soon as it receives a value greater than a specified value. In 
addition generic fusion functions are provided based on the 
CARE properties (Redundancy and Complementarity). 
These generic functions are implemented by mediators 
developed with reuse concerns in mind and are similar to 
the generic components manipulated in the OpenInterface 
framework [23] (e.g., the Filter and Complementary generic 
components of Figure 1). Moreover more complex 
components can be used including gesture or speech 
recognition. The designer declares which components are to 
be used and bind their ports within the graphical editor. At 



this stage of the specification, data types can generally be 
ignored because the autonomic manager will be able at 
runtime to infer each port data type. Such inference leads to 
the completion of component configuration, and adds a data 
type converting component if necessary. For example, we 
have developed the multimodal map navigator as described 
in [23] (Figure 1) using a generic speech recognizer and a 
complementarity component, two mediators specific to 
multimodal processing. These components can be directly 
inserted in the interaction models, with a given 
configuration. 

Application and device interaction models not only contain 
information about data processing (mediator class) and data 
path (bindings) but also data semantics. Indeed the 
autonomic manager needs to match meanings defined in the 
different interaction models. The current state of DynaMo 
supports simple semantics matching by defining interaction 
classes. An interaction class defines several meanings that 
make sense together. For example in Figure 11 and 12-a, 
we use the interaction class MediaPlayer that defines the 
two meanings pause and mute. Another interaction class is 
called GamePad and defines the meanings: up, down, left 
and right. Only one interaction class is referenced by an 
interaction model. The interaction designer can nevertheless 
define several interaction models based on different 
interaction classes for a given device for example, as shown 
in Figure 12 for the TV remote control.  

 
(a) 

 
(b) 

Figure 12: Excerpt of two interaction models of the BDRC TV 
remote control: (a) MediaPlayer interaction class (b) 

GamePad interaction class. 

 

 
                                                       (a)                                                                                        (b)  

 
(c) 

Figure 13: VLC - Generated mediation chains (a) without interaction model (b) with an application interaction model (c) with 
application and device interaction models. 



Figure 13 illustrates how the interaction models guide the 
autonomic manager by considering the VLC example. 
Figure 13-a shows the case of Figure 10-a without 
interaction models. The autonomic manager only performed 
syntactic alignments to generate this mediation chain that 
links the wiimote to control VLC. Figure 13-b shows the 
case of Figure 10-c, with a VLC interaction model only. 
Since no interaction model is defined for the wiimote, the 
autonomic manager links port b of the wiimote to the new 
port mute of VLC that extends the tasks that can be 
performed with VLC. Finally Figure 13-c considers the 
case of Figure 10-b with application and device interaction 
models. We consider that the BDRC TV remote control has 
been activated. The autonomic manager receives a 
discovery notification about BDRC, hence it downloads the 
BDRC binary proxy from the repository and starts it. 
Amongst the interaction models of BDRC, it selects the one 
that uses the MediaPlayer interaction class (Figure 12-a) 
since VLC also has a MediaPlayer interaction model. 
Simple semantics matching is then performed by the 
autonomic manager in order to define the complete 
mediation chain, since the application and the device 
interaction models belong to the same class, namely 
MediaPlayer. If the interaction policy is set to <bind-all>, 
the wiimote will still be connected to VLC and the user can 
select one of the two equivalent modalities for specifying 
VLC tasks.  

To conclude on the autonomic manager, we focus on the 
complementarity of modalities that imply fusion 
mechanisms. In DynaMo complementary modalities can be 
defined by using a fusion component. The complementarity 
generic mediator combines events close in time based on a 
temporal window that is a configuration parameter of the 
component. On the one hand, such a component can be 
declared within an interaction model as explained above for 
the example of the multimodal map navigator that combines 
speech with pointing gestures. On the other hand, the 
complementary component can be automatically added to 
the mediation chain by the manager.  

 

Figure 14: KStars application (downloadable at 
http://edu.kde.org/kstars/): Automatically generated combined 
usage of two knobs for selecting a point on the night sky map. 

 

Figure 14 illustrates this case: We consider another 
application, KStars, that is a downloadable application that 
simulates the night sky, including stars and planets. The 
proxy of this service includes a port jumpTo with two 
integers as parameters. We consider that we have two 
control knobs as interaction devices for interacting with 
KStars. The two control knobs provide an orientation as 
output (the two ports orientation1 and 
orientation2). Without interaction models, the 
autonomic manager will define a multimodal interaction 
corresponding to the combined usage of the two knobs for 
manipulating the night sky map. The corresponding 
generated mediation chain includes a complementarity 
component.  

CONCLUSION AND RESEARCH AGENDA 
The autonomic DynaMo framework is dedicated to the 
development and the runtime management of pervasive 
multimodal interaction. In pervasive environments with 
highly dynamic and heterogeneous applications and 
interaction devices, DynaMo is able to analyze and 
understand multiple communication means and reconfigure 
itself in real-time. To do so the autonomic manager uses 
Proxy models and Interaction models to generate and 
maintain a mediation chain that defines multimodal 
interaction techniques. The underlying execution machine 
then concretely realizes the mediation chain. 

The clear distinction between the management of the 
dynamic computing infrastructure and that of multimodal 
interaction enables us to identify two distinct roles:  

• that of the developers that define proxies so that 
applications and devices can be managed by DynaMo, 
and, 

• that of the interaction designers that define interaction 
models at a high level of abstraction without knowing the 
implementation of the applications and device drivers.  

Proxy models as well as interaction models guide the 
autonomic manager in order to define the mediation chain 
corresponding to the multimodal interaction processes. On 
the one hand, the autonomic manager has all the 
information to build a mediation chain: the interaction 
models are then complete and defined at design time. 
DynaMo then corresponds to the existing multimodal 
frameworks for which multimodal interaction is defined at 
design time. On the other hand, the autonomic manager is 
also able to build a mediation chain with incomplete 
interaction models. This is the case of multimodal 
interaction not fully defined at design time: for example a 
device not initially planned to be used to control a particular 
application is now linked to a task of this application.  

DynaMo is fully operational and stable. In particular the 
execution machine is robust and used by our industrial 
partners (Schneider Electric and France Telecom 
especially). Its robustness and its clear distinction of 
concerns within its architecture enable us to build a 



research agenda on pervasive multimodal environments that 
we organize along three main axes. 

Populate the DynaMo framework for experimental 
evaluation: We plan to add new devices and new 
applications to DynaMo by defining new proxies. The goal 
is to be able to perform experimental evaluation. DynaMo 
is currently studied within the Medical project 
(medical.imag.fr). Medical is a project that focuses on 
smart homes for the elderly. Its overall purpose is to 
provide a middleware, based on iPOJO and Cilia, allowing 
the development of pervasive applications. Applications are 
hosted by so-called “Internet boxes” and can be extended to 
the cloud. Interaction needs are immense in such contexts. 
In current settings, we are using remote control, speech 
commands, mouse and tactile tablets as input modalities. 
For instance one primary need is the configuration of 
applications on a tablet. While several equivalent modalities 
are defined at design time for configuring the applications 
on the tablet, it also possible to interact with applications on 
the tablet from far away, by using the remote control. Such 
interaction was not fully defined at design time. Moreover 
for Health applications for which values of physiological 
parameters must be regularly captured, multiple modalities 
based on different sensors (passive or active modalities) are 
defined. The autonomic manager may make this 
multimodal process of capturing values of physiological 
parameters more efficient, robust and safe. 

Enrich the autonomic manager: We identify several 
research avenues to better guide the autonomic manager in 
its decisions. First further contextual information [8] can be 
used by the autonomic manager. For instance the autonomic 
manager could learn from the users’ interaction (inputs): 
her/his preferences in terms of devices and/or coupling of 
devices with applications. This learning approach can be 
directly implemented in DynaMo since our architecture 
supports the sensing and actuating at a fine grain. Moreover 
situational contextual information including spatial 
relationships as in proxemic interactions [15] could guide 
the manager, for instance in selecting the devices closer to 
the user. A more general approach to enrich the autonomic 
manager and its knowledge is also to define ontologies 
instead of interaction classes, which correspond to very 
simple light-weight ontologies. As explained in [25], 
several ontologies for pervasive environments have been 
proposed. For example the European project SOFIA (Smart 
Objects For Intelligent Applications) explored ontology-
based mechanisms for pervasive environments [19]: In this 
context, the Semantic Media Ontology [20] is closely 
related to the interaction class Media Player used in 
DynaMo. By using ontologies, in DynaMo, 
correspondences between application and device ontology 
entities will then be based on ontology matching 
mechanisms (equivalence or subsumption relations between 
ontology entitites).   

Make the decisions observable and controllable by the user: 
The autonomic solution of DynaMo is appealing since 
autonomic adaptation does not require the user to explicitly 
manage her/his pervasive environment and could ideally 
only focus on her/his intention. Nevertheless as stated in 
[9], the user needs at least to understand the state of its 
environment and furthermore control or tune the decisions 
made by the autonomic manager (i.e. mixed initiative 
approach [17]). For these purposes a meta-UI as described 
in [9] must then be defined. The current meta-UI of 
DynaMo is basic and requires further studies: appearance 
and disappearance of a service (i.e., an application or a 
device) are notified to the user by a pop-up window and we 
provide partial observability of the available modalities by 
graphically displaying which sensors of the devices are 
connected to the tasks of the current active application. The 
ReWiRe framework [25] adopts a more advanced mixed 
initiative approach by displaying a “pervasive menu” that 
allows the users to observe and modify the current state of 
the pervasive environment. In DynaMo, the meta-UI to be 
designed must (1) make observable the current application 
tasks and the corresponding available modalities as well as 
show how to perform actions with the modalities (e.g., the 
symbolic 3D gestures that can be perfomed) (2) let the users 
modify the decisions made by the autonomic manager that 
could in turn learn from these modifications. It is a vast 
research agenda that we can explore with the current 
implemented architecture of DynaMo. 
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