
Sonata: Flexible Connections between Interaction and
Business Spaces

Guillaume Godet-Barb,∗, Sophie Dupuy-Chessab, Dominique Rieub

a University of Grenoble, CNRS, LIG
385, rue de la Bibliothèque

38041 Grenoble Cedex 9, FRANCE

∗Corresponding author
Email addresses: Guillaume.Godet-Bar@imag.fr (Guillaume Godet-Bar),

Sophie.Dupuy-Chessa@imag.fr (Sophie Dupuy-Chessa), Dominique.Rieu@imag.fr
(Dominique Rieu)

Preprint submitted to The Journal of Systems and Software November 5, 2011

Sonata: Flexible Connections between Interaction and
Business Spaces

Guillaume Godet-Barb,∗, Sophie Dupuy-Chessab, Dominique Rieub

b University of Grenoble, CNRS, LIG
385, rue de la Bibliothèque

38041 Grenoble Cedex 9, FRANCE

Abstract

Every interactive system features a functional core and a user interface. Over
the years, several types of software architectures for connecting these concep-
tual elements have been proposed, all of which fail to conciliate two essential
qualities: enabling both business and interaction objects reuse, and limiting the
amount of communication-specific code in reusable objects.

We have described in previous work the Symphony Architecture, which
bridges the gap between the interaction and business spaces, while requiring no
code overhead in either business or interaction objects. Resulting development
features minimal coupling between technology-agnostic business and interaction
constructs, called Symphony Objects, and improves their reusability by clearly
isolating them from the applicative logic and from technical objects.

In this paper, we present an original software framework, called Sonata,
which capitalizes on the conventions used for building and organizing Symphony
Architecture instances, for minimizing the amount of configuration required for
setting up connections between the business and interaction spaces.

Keywords: Framework, information systems, software architecture, HCI,
aspects

1. Introduction

The last decade has seen several new types of devices and interaction appear
on the high tech market. New interface concepts featuring tactile interaction,
augmented reality systems and multimodal mobile devices are now widely acces-
sible at a reasonably low price. Although these technologies are generally aimed
at the consumer marker, entreprise applications may largely benefit from the
intuitive, mobile and pervasive applications that these new interactions permit.

∗Corresponding author
Email addresses: Guillaume.Godet-Bar@imag.fr (Guillaume Godet-Bar),

Sophie.Dupuy-Chessa@imag.fr (Sophie Dupuy-Chessa), Dominique.Rieu@imag.fr
(Dominique Rieu)

Preprint submitted to The Journal of Systems and Software November 5, 2011

Their development is generally supported by rich interaction libraries and
frameworks for easily developing innovative interactive applications. However,
these libraries and frameworks are connected with functional cores using soft-
ware architectures that have seen relatively few evolutions since their description
in the 1980s. In fact, most of these architectures can be seen as variations of
the classical Model-View-Controller (MVC) pattern [17].

When implementing rich interfaces with several execution threads (e.g., for
graphics rendering, sensor integration and audio output), are these architectures
satisfactory?

We have proposed in past papers [11, 10, 5, 12] our own contribution to this
problem: the Extended Symphony Method, whose relevance for efficiently bridg-
ing the gap between Software Engineering, Information Systems and Human-
Computer Interaction development practices was demonstrated. At the analysis
and design levels, our method suggests using a specific combination of architec-
tural patterns for building the application’s business and interaction abstract
logics, and for designing clearly distinct technical layers (e.g., for implementing
the actual graphics), called the Symphony Architecture.

This paper focuses on the implementation level, in which the Symphony
Architecture is directly translated into source code, and is supported by a soft-
ware framework called Sonata, for managing redundant coding efforts induced
by these architectural patterns. Sonata also allows connecting graphics and
sensor input-intensive objects with complex lifecycles and technical layers, with
entreprise objects. This is the contribution that we are presenting in this paper.
In particular, we show how these architectural patterns and framework were
extracted from their specific methodological context and generalized to the field
of interactive software with complex business and interaction logics.

We present in the next section existing works related to the software archi-
tectures for decoupling business and interaction logics, and their integration into
libraries and frameworks. In Section 3, we propose a method-agnostic process
fragment for designing decoupled business and interaction objects. We describe
the Sonata framework, which is the original contribution of this paper, as well
as the software patterns it relies on, in Section 4. Finally, Section 5 focuses on
the ongoing evaluation of our contributions and discussions on the frameworks
comparison with MVC and scalability, before we conclude this paper with some
perspective on future work.

2. Related Work

Software architectures and patterns for decoupling the business and inter-
action spaces are certainly not a recent research topic. Most of the seminal
work on this subject was produced during the 1980–1990 decade, and most of
today’s software architectures of the business–interaction bridge could be de-
scribed as variations of these initial endeavours. We identified three general
types of software architectures: monolithic architectures, distributed architec-
tures and hybrid architectures. We also discuss in this section the existing

3

frameworks, libraries or tools for supporting or integrating the architectures
whenever possible.

Monolithic architectures are based on a tripartite conceptual structure, com-
posed of (1) a business construct; (2) an interaction construct; (3) a control
construct, which is responsible for translating method calls between the two
other constructs. The Seeheim model [13] was chronologically the first software
architecture to feature this decomposition. The Arch model [2] is a refinement
of the Seeheim model, where the business and interaction constructs are both
subdivided into purely conceptual sets of objects, which act as wrappers for the
lower-level sets of technical objects.

Distributed architectures decompose the system’s architecture into finely
grained agents, which manage a limited set of responsibilities, while still guar-
anteeing the business/interaction decomposition. The PAC [6] and MVC [17]
agents feature tripartite structures, composed of (1) a business object (MVC’s
Model and PAC’s Abstraction); (2) an interaction object (MVC’s View and
PAC’s Presentation) and (3) an object acting as a mediator (MVC’s Controller
and PAC’s Control). Apple’s Cocoa graphics framework, which powers desk-
top and mobile devices, features a MVC-based architecture that resembles the
Seeheim model1 (i.e., Model and View elements communicate only with the Con-
troller). However, due to the dynamic nature of the implementation language
(i.e., Objective-C), the actual connection between objects is specified at design
time and automatically negotiated by the language runtime during execution.

The communication pattern between MVC’s facets is constrained for guaran-
teeing both the decoupling of the Model from the Controller and the View, and
from other agents: any software construct wishing to follow the Model facet’s be-
haviour needs to register itself (following the well-known Observer pattern [9]).
Whenever the Model reaches a state that registered agents are listening to,
notifications are sent to the latter for performing their own translations and
reactions.

The communication model of the PAC architectural style is also its main
shortcoming. Whereas MVC is characterized by a non-hierarchical organization
(its agents may interact with one another through the Controller), PAC-based
systems presents a tree-like structure: every agent is itself managed by a parent
agent, up to the root agent. Moreover, two agents interact by sending calls
through the agent tree, which will be re-emitted by each agent on the call’s
path. Therefore, this architectural style generates a large volume of message
overhead, which is both a development and a runtime burden.

AMF [25] extends the PAC model by integrating facets that address a wider
variety of concerns, such as security or auto-diagnostic, which may be dynam-
ically loaded and administered. To this extent, AMF shares several character-
istics with service-oriented frameworks, while keeping the tree structure of the
original PAC model. Additionally, a tooling support has been developed for

1http://developer.apple.com/iphone/library/documentation/Cocoa/Conceptual/

CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html

4

http://developer.apple.com/iphone/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html
http://developer.apple.com/iphone/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html

AMF, for facilitating the design and composition of agents and facets.
Apart from Apple’s adaptation, there are several other variations of the MVC

model, generally with different levels of coupling between the Controller and
the View. For example, Sun’s Swing library2 relies on a MVC variation where
both the Controller and the View are encapsulated into graphical widgets. The
MVC2 alternative, which is adopted by several web application frameworks such
as Struts or Ruby on Rails3, integrates all the controllers into a single entity,
which is responsible for dispatching requests between the Models and the Views.

What could be considered as hybrid architectures have been proposed as a
solution to some of the issues encountered with the other types of architectures.
The PAC-Amodeus model [22] merges the PAC and Arch models, with a PAC
tree of agents serving as a fine-grained controller, its Abstraction facets point-
ing to elements of the business domain, and its Presentation facets pointing to
elements of the interaction domain. While the coordination of agents still in-
duces large message overheads, PAC-Amodeus reduces the constraints imposed
on software interactions between elements of the same domain.

The architectures we have presented conceive the UI as a set of objects
subordinated to the business space. However, rich interfaces feature their own
execution processes (e.g. for handling the rendering of a 3D scene, as well as
multimodal inputs), which may not be synchronized with the business space’s.
Moreover, because interaction processes are not clearly incarnated in these ar-
chitectures, the interaction logics are scattered amongst the control and rep-
resentation constructs. This compromises the maintainability of applications,
which is not sustainable for large (entreprise) applications.

In this paper, we demonstrate how the Symphony Architecture, which ad-
dresses the problem of business/interaction decoupling, and whose instantiation
is guided by the Symphony method, can be efficiently and effectively supported
by the software framework Sonata.

3. Symphony Architecture

Our contributions were constructed during our work on the Symphony method.
After a summary of the past contributions related to this method, and the pre-
sentation of an example application that is used throughout the paper, we focus
on the description of the Symphony Architecture.

3.1. History of the Symphony Method

Symphony is an iterative and incremental, user-oriented, business component-
driven development process originally proposed by the Umanis company. It has
been first extended and formalized by Hassine et al. [14], to improve the reusabil-
ity of components, in a by and for reuse approach. Obviously, these components
do not reflect operational choices, and are thus not related to the concept

2http://java.sun.com/products/jfc/tsc/articles/architecture/
3http://www.rubyonrails.org

5

http://java.sun.com/products/jfc/tsc/articles/architecture/
http://www.rubyonrails.org

of component as defined by the CBSE domain. Components used in this
context refer to a definition from the Information Systems domain, as “a partial
representation of the information system[,] from the requirements engineering
to the deployment and the execution[, which] has to be adapted [either] to the
domain [or] to the application” [14]. As a matter of fact, from a purely orthogo-
nal Software Engineering perspective, business and interaction components are
structured using Object-Oriented concepts, and described using almost standard
UML class diagrams.

In [12, 11], we envisaged the involvement of different development cultures
in the method’s process, and described collaboration mechanisms between de-
velopment experts. We also described the principles of a method integrating
Human-Computer Interaction and business practices for augmented reality sys-
tems, focusing on the concept of “Interactional Object” as counterparts of the
already existing Business Objects. Our following concern was to present the
principles of business evolution, when triggered by interaction choices [10].

Finally, we described some aspects of the method’s sub-process for designing
the software’s technical architecture, as well as its merging with its analysis (i.e.,
functional) model in [7]. Details concerning HCI design were also addressed
in [7]. The quality of the analysis model that the method enables developers to
produce was evaluated in [5].

Fig. 1 describes the main phases of the Symphony development cycle. Over-
all, while past publications focused on the conceptual and organizational steps of
the Symphony method (i.e., the left branch of the method), this article focuses
on its operational concerns (in particular, the “Design” and “Implementation”
phases, where functional constructs are integrated with technical decisions).
Therefore, although we summarize in Section 3.3 the main characteristics of
the methodology, interested readers are invited to consult given references, in
particular [11], for details on its earliest steps.

3.2. Example Application

To facilitate the understanding of our approach, we chose a very simple (and
non innovative) example application implemented using the Symphony Archi-
tecture, called “TeamAvatars”. This toy application consists in displaying the
members of a research team along concentric circles and following an arbitrary
rule: the team leader is at the center of the wheel, the permanent members on
the first circle, PhD students on the second circle, engineers and interns on the
third circle. Mentorship relations are materialized using dotted lines. When
the user selects a team member, the property box that contains his/her name is
extended so as to show his/her office and email, while the other team members
are dimmed.

3.3. Symphony Architecture’s Characteristics

From the Symphony architecture’s point of view, the business and interac-
tion conceptual spaces are described as conceptual constructs, called Business
Objects and Interactional Objects.

6

Figure 1: Symphony Development Cycle

We refer to both Business Objects and Interactional Objects under the
general term of “Symphony Objects”. Specific constructs, called Translation
classes, manage the conversion of business semantics into interaction semantics,
and conversely. For example, our example application is composed of:

• a business space that describes the organization of research teams and
provides methods for adding and deleting members. The business space
also integrates applicative rules: for instance, a Ph.D student must be
mentored by at least one permanent member of the team, interns must
be mentored by either a Ph.D student, a permanent member or the team
leader.

• an interaction space that details the human-computer interface of the
application, such as the position of the avatars and their property boxes,
or the layout of the scene. It features specific rules, such as the fact that
the avatars should be laid out so as not to cover each other, the fact that

7

Business Process

Business Entity

Manage

Translation
(Business to Interaction)

Data
update

Interactional
Process

Call Manage

Interactional Entity

Translation
(Interaction to Business)

User actionCall

Business space Translation space Interaction space

Figure 2: Symphony architecture (conceptual view)

a mouse click on the property box extends it (for displaying additional
information), or the description of the animations that may take place
when a member is added or deleted.

• a translation space that expresses the conversion of the semantics of
the triggering event (e.g., the adding of a new member to the team, in
the business space) into the other conceptual space’s domain language
(e.g., the creation of new avatar and of an associated property box, in the
interaction space, and the translation of the new member’s position in the
team into a position on a corresponding circle of the GUI).

Fig. 2 illustrates the three conceptual spaces (business on the left, interaction
on the right, translation in the middle), and shows that Symphony Objects may
be refined into:

• Entity Objects, which describe essential concepts of the application,
for instance the “Team” and “Member” from the business space, and the
concept of “Avatar” (i.e., the team members’ photographs, as well as their
attributes such as size, position, orientation, transparency etc.) from the
interaction space.

• Process Objects, which describe the rules and constraints for managing
Entity Objects that are specific to the application. For example, the
Interactional Object Entities are managed by the “ManageAvatarScene”
Interactional Object Process, and the “ManageTeamMembers” Business
Object Process describes the applicative rules for adding or deleting team
members.

3.4. Symphony Objects and Translation Classes

The analysis model corresponds to the system’s functional architecture that
addresses business and interaction rules, and ignores at first technical concerns.

8

<< BO Process >>
ManageTeamMembers

+createTeamMember
+createTeam
+deleteTeamMember
+loadTeamData
+setTeamMemberPhotograph
+setTeamOffices

<<Interface>>
ManageTeamMembers

<<Master>>
ManageTeam
MembersImpl

<<Role>>
TeamRole*

<< BO Entity >>
Team

+addMember
+deleteMember
+getOfficeList
...

<<Interface>>
Team

-isValidOffice

-officeList
-teamName

<<Master>>
TeamImpl

+createMember
+setOffice
+getOffice

-office

<<Role>>
MemberRole

*

<< BO Entity >>
Member

+getEMail
+getFirstName
+getLastName
+getPhotograph
+getTeamPosition
+setEMail
+setFirstName
...

<<Interface>>
Member

-eMail
-firstName
-lastName
-photograph
...

<<Master>>
MemberImpl

<< IO Process >>
ManageAvatarScene

+addDiskToScene
+addAvatar
+initializeScene
+setSceneSize
+setShadowBlur
...

<<Interface>>
ManageAvatarScene

-diskDiameters
-disks
-sceneSize
...

<<Master>>
ManageAvatar

SceneImpl

<<Role>>
AvatarRole*

<< IO Entity >>
Avatar

+setPosition
+setOrientation
+setTransparency

<<Interface>>
Avatar

-transparency
-position
...

<<Master>>
AvatarImpl

<< IO Entity >>
PropertyBox

+displayPanels
+addTextToPanel
+addPanel
+hidePanel
...

<<Interface>>
PropertyBox

-transparency
-position
...

<<Master>>
PropertyBoxImpl

<<use>> <<use>>

<<use>>

<<Role>>
PBoxRole

<<use>>

<<Part>>
Panel

*

<<represent>>

...

...

<<Translation>>
MemberTranslation

*

<<represent>>

Business space Translation space Interaction space

Figure 3: Organization of the Symphony Objects of the TeamAvatars application

This functional architecture is described following systematic rules, as illustrated
in Fig. 3.

Symphony Objects are described as tripartite packages. Each package con-
tains conceptual elements whose roles are identified using four stereotypes:
<<Interface>>, <<Master>>, <<Part>> and <<Role>>. The left part of
the package describes the methods provided by the object, using an <<Interface>>
class (e.g., the “Avatar” interface). The central part of the package describes
the implementation of these methods (using a <<Master>> class, for instance
the “AvatarImpl” class), as well as a subdivision of complementary concepts
(using <<Part>> classes, such as the “Panel” class). Finally, the right part is
composed of <<Role>> classes, which encapsulate required methods (following
a classic delegation pattern [9]) with their adaptation to the object’s context
(for instance, the “Team” Business Object Entity adapts the “Member” Busi-
ness Object Entity by overloading it with the concept of office that may be set
and retrieved).

Additionally, Symphony Objects can be linked using relations stereotypes as
<<use>> or <<represent>>:

• The use relationships permit to specify dependency relationships between
a Process or Entity Object, and an Entity Object. For example, the
“Team” Entity Object depends on the “Member” Entity Object for car-
rying out its responsibilities.

• The represent relationships are drawn between one or several Interac-
tional Object Entities and a single Business Object Entity. They indicate
that the Interactional Object(s) correspond to a projection of business
concepts into the interaction space. For instance, the “PropertyBox” and

9

“Avatar” Interactional Objects are projections of the “Member” Business
Object.

Although the actual implementation-level architecture of Symphony appli-
cations closely matches their functional models, the concept used for describing
Symphony Objects in the analysis model (as well as at the specifications level)
is related to the organizational stages of the method, and reflects the core mo-
tivations of the original Symphony method, which is to build abstractions of
business concerns, by and for reuse. As mentioned previously, one of our con-
tributions to the method was in fact to adapt this approach to human-computer
interaction concerns.

This conceptualization of the system as a set of independent and intercon-
nected Symphony Objects encourages their modularity and reuse, as well as
that of their specifications.

In order to describe the Translation classes, the <<represent>> relation-
ships are first refined by studying what type of event (e.g. in a Business Object)
may trigger a modification (e.g., in an Interactional Object). We adopted a
simple grammar inspired by the Aspect-Oriented Programming paradigm [16]
for modeling the characteristics of a “connection event”, called Symphony Ad-
vice. This grammar was also translated into a UML profile. Fig. 4 presents
an extract from such a model, in which the “createMember” method from the
“MemberRole” Role triggers a connection event identified by the “createAvatar-
FromMember” name, as soon as it returns (“AFTER” keyword).

Once all the connection events are identified, developers describe their be-
haviour. A “Translation” class is associated to every Symphony Object that
triggers connection events. Likewise, at runtime, a “Translation” object is cre-
ated for every Symphony Object instance that triggers connection events. For
instance, Fig. 5 describes the behaviour of the “createAvatarFromMember” con-
nection event identified in Fig. 4. Whenever a “Member” Business Object is
created (through its “MemberRole” Role), a new “Avatar” Interactional Object
and its “PropertyBox” are instantiated for representing the actual member in
the interactional space (i.e., using its name and photograph).

However, Translation objects should not modify the target Entity Objects,
which are considered in this case as “read-only” constructs. Instead, a Pro-
cess Object is used as a proxy, which guarantees the correct application of the
interactional applicative rules (e.g., the relative movement of the avatars and
their property boxes). Thus, in Fig. 5, the trans1 MemberTranslation object

+createMember
+setOffice
+getOffice

-office

<<Role>>
MemberRole

advice is { AFTER, createAvatarFromMember }

Figure 4: Method identified as triggering a connection event

10

<<Translation>>
trans1:

MemberTranslation
<<BO Entity>>
mem: Member

<<IO Process>>
ManageAvatarScene

name:= getName()

photo:= getPhotograph()

pos:= getTeamPosition()

addAvatar(photo, name, circleID)

circleID:= teamPosToCircle(pos)

Avatar Creation(photo, name, circleID) :
avatarID

ref

avatarID

Figure 5: “createAvatarFromMember” connection event semantics, handled by a ‘Member-
Translation’ instance

calls the “ManageAvatarScene” Process Object for creating the Avatar and the
PropertyBox that will represent the “Member” Business Object.

Although the software development practices presented in this section em-
anate from a specific development method, evaluations made in previous work [5]
lead us to believe that the software architecture these practices enable develop-
ers to build may be used outside of the method’s scope.

3.5. Relevance of the Development Approach

The following properties of the software architectures that our methodology
enables developers to construct may be used as the basis for defining architec-
tural patterns:

• The dependencies between elements within the same conceptual space are
simple to manage: every relation is mediated by a <<Role>> class, which
bears all the weight of the coupling between each pair of objects.

• There is a strong decoupling between business and interaction Symphony
Objects: there is no direct relationship between the two conceptual spaces,
both at the analysis and implementation levels. There is an indirect de-
pendency, however, which is managed by the Translation classes, but only
as an efferent coupling (that is, the Translation class may call either Busi-
ness or Interactional Process Objects).

• The Translation classes are the only loci in the implementation code
that manage the relation between the business and interaction concep-
tual spaces.

We consider that these elements advocate for a generalization of the Sym-
phony architecture to any type of interactive system that features non-trivial

11

interaction objects. Indeed, this architecture allows developers to construct the
business and interaction spaces in relative isolation, while the bridge between
the two spaces is clearly separated from either spaces.

Additionally, our experience shows [11] that structuring the interaction as
a consistent organization of elements that are not directly business-dependent,
and deferring the description of the interaction-business link, enables HCI de-
velopers to explore innovative interaction solutions early in the design process.
Once translated into an implementation model, the resulting software architec-
ture facilitates the connection of interaction object with complex lifecycles, with
entreprise business objects and information systems.

3.6. Synthesis

The Symphony Architecture addresses the problem of business/interaction
decoupling. It features a semi-hierchical organization of business and inter-
action objects, and capitalizes on the assets of the different types of existing
architectures, such as the separation of abstract logics from technical objects
(Arch/Pac-Amodeus), the tripartite structure of the business–interaction link,
and the clear separation of the logics for converting interaction data to business
data (and conversely) from PAC. Our architectural pattern manages to avoid
most of the inconveniences of anterior patterns, such as inter-object messaging
overhead and the scattering of the application’s business and interaction logic.

Moreover, the implementation of Business and Interactional Objects, of the
aspects for interfacing Symphony Objects with their Translation classes, follows
regular, systematic rules. For this reason, we have developed two UML profiles
for describing Symphony constructs at the specification and analysis levels, and
a profile for annotating UML class diagrams (exemplified in Fig. 4) with aspect-
related information. This formalization of the Symphony Architecture enabled
us to automate large parts of the development cycle and of the runtime. While
we rely on model transformations [15] for handling the transition between spec-
ification and analysis models, most of the development and runtime automation
relies on an original software framework, called Sonata.

In the following section, we describe the main software entities that constitue
Sonata, as well as their interactions. We also describe how technical objects
may be integrated into the architecture and connected to Symphony Objects
(which are functional and library-agnostic), for permitting the rendering of rich,
multithreaded user interfaces featuring innovative interaction techniques.

4. The Sonata Framework

4.1. Goals

The Sonata framework was initially designed for facilitating the implemen-
tation of Java applications developed with the Symphony method. It was later
extracted from the method and built as an independent entity, which neverthe-
less borrows some concepts from the Symphony method, such as its decompo-
sition of an application into Business and Interactional Objects, mediated by
Translation classes.

12

Sonata permits to easily setup the connections between the business and the
interaction parts of an application. It was also designed for directly implement-
ing the Symphony Architecture analysis model, with a minimum effort over-
head, while maintaining its properties (i.e. strong decoupling between Business
and Interactional Objects, and clear location of the translation and applicative
logics).

Sonata also allows designing the abstract and technical objects layers using
heterogeneous architectural styles. While the abstract layer adopts the Sym-
phony Architecture described in the previous section, the technical layer may
include intensive rendering loops or sensor integration threads that are classi-
cal features of complex interfaces (e.g., OpenGL based interfaces with camera
input, such as can be found in ARToolkit4) 5.

This approach enables developers to adapt the application’s architecture to
the interactional requirements (i.e. user and environment input, and rendering
loops), while keeping an information systems-like integration with the business
space.

For achieving these goals, Sonata relies on a “Convention over Configuration”
approach, that is, fixed practices for object structure and organization. Provided
that these conventions are followed by developers, the framework guarantees
decoupling and automatic connection properties.

Sonata is composed of a development-time model-driven tool-chain and a
runtime library. The runtime library’s architecture is described in Section 4.3,
the Software Engineering conventions that should be followed for integrating
Sonata into a Java application are described in Section 4.4, and the tool-chain
for automating this effort is described in Section 4.5.

4.2. Functional Concepts of the Framework

While some of the Symphony Architecture’s concepts are conceptual and do
not correspond to any functionality (e.g., the notions of Business Object and
Interactional Object, which are purely organizational), 6 of its constructs are
operational: (1) Process Object; (2) Entity Object; (3) Symphony Role; (4)
Translation class; (5) Symphony Advice; (6) Symphony Connection.

The first five concepts were extensively discussed in the previous section.
Symphony Connections gather Entity Objects and Translation classes into a
description of all the elements responsible for a given association between one
or several source Symphony Objects, and a target Symphony Object, mediated
by a Translation class. A Symphony Connection may therefore be defined as a
tuple such that:

[source1, source2, . . . , sourcen], target, translation
These constructs are integrated into the Sonata framework as Java abstract

classes, interfaces and/or handled by utility classes. They provide developers

4http://www.hitl.washington.edu/artoolkit/
5 Although Sonata does not formally address the integration of low-level languages for

handling rendering loops, such as C or C++, experimentations with the Java Native Access
library (http://github.com/twall/jna) have given good results.

13

http://www.hitl.washington.edu/artoolkit/
http://github.com/twall/jna

with elegant mechanisms for bridging the business/interaction gap and manag-
ing technical objects. Sonata also relies on three entities, which are described
in the next paragraphs.

4.3. Main Entities of the Runtime Library

We focus in this section on the three essential objects on which the Sonata
runtime library is built: the Initializer, the Entity Factory and the Invoker.
Fig. 6 presents a simplified view of the runtime library’s architecture, as well as
some of the minor classes that are used by the main entities. The development
practice that allows designers to interact with these objects is described in the
following section.

4.3.1. Initializer

The Initializer extracts all the relevant data from the few configuration files
that are required by the framework, i.e.:

• It registers Symphony Objects with the Entity Factory (see below).

• It registers basic properties for each Symphony Object, i.e., attributes that
will be set when the Symphony Object is instantiated. The underlying
mechanism is similar to the one used for setting JavaBeans6 properties in
that it uses the name of the property (for instance, ’name’) for generating
its setter method name (for instance, setName).

• It loads and registers the technical objects identified in configuration files
or in the source code for connecting them with the appropriate Symphony
Objects, when the latter are instantiated, using a Dependency Injection
mechanism [18].

• It loads the configuration of the Symphony Connections, that is, a set of
Symphony Connection tuples.

4.3.2. Entity Factory

The Entity Factory manages the Symphony Objects’ lifecycles, as well as
common functionality such as searching by object ID, adding and removing
objects from a list of registrations. It ensures that the complex initialization
process is carried out along the following steps:

1. The Symphony Object’s constructor is loaded and executed for producing
a new object instance.

2. If any registered technical object implements one of the Symphony Ob-
ject’s technical interfaces, then it is instantiated and its reference is asso-
ciated to the Symphony Object’s instance.

6http://java.sun.com/javase/technologies/desktop/javabeans/

14

http://java.sun.com/javase/technologies/desktop/javabeans/

+ bind(object: SymphonyObject)
+ createRequest(proc: EntityObject,
methodName: String): Request
+ sendRequest: boolean
+ loadConnections

Invoker

+ pushParameter(param: Object)
+ popParameter: Object
+ getAssociatedSymphonyObject:
SymphonyObject
+ getProxy: ProcessObject
+ setReturnValue(value: Object)

Request
* requestStack

+ createEntity(Class klazz): EntityObject
+ register(Class klazz, Properties prop): boolean
+ search(Class klazz, int ID): EntityObject
+ delete(Class klazz, int ID): boolean
+ instances(Class klazz): EntityObject[]

EntityFactory

<< use >>

+ addDestination(klazz: Class<SymphonyObject>,
destination: SymphonyObject)
+ getDestination(klazz: Class<SymphonyObject>):
SymphonyObject
+ getSource: SymphonyObject
+ getProxy: ProcessObject

ConnectionTranslation

source: EntityObject

connectionTable

+ loadSymphonyObjects
+ loadProperties
+ loadTechnicalClasses
+ getProperties(String objectName): Properties
+ getTechnicalClasses: List<Class>
+ setupFactory
+ getClass(String className): Class

Initializer

<< use >>

Figure 6: Sonata’s simplified architecture

15

3. If any property was registered with the Initializer, it is injected in the
new object instance (and therefore, if necessary, it is transferred to the
relevant technical objects; for example, the dimensions of an “Avatar”
instance should be transferred to the technical object that manages its
graphical rendering).

4. An identifier is computed, whose uniqueness over the object’s Java Virtual
Machine (JVM) is guaranteed.

5. The object is added to the list of registered instances held by the Entity
Factory.

6. The Entity Factory calls the Invoker (using a bind method) for checking
whether the object should be bound to another Symphony Object for
satisfying a Symphony Connection (see below).

4.3.3. Invoker

The Invoker essentially manages Symphony Connections, that is, Transla-
tion class instances. Fig. 6 presents the ConnectionTranslation class that
Translation classes must extend.

Symphony Objects interact with the Invoker using Request objects, which
are created whenever a Symphony Connection is triggered. The creation of Re-
quest objects occurs within an aspect [16], which is woven into the corresponding
Symphony Objects at runtime. A Request object keeps track of the Symphony
Object that triggered the Symphony Connection, as well as the name of the
Translation method that should be called.

Upon receiving the Request, the Invoker either creates or completes a Sym-
phony Connection, depending on the following criteria: (1) when no Request is
currently being treated, a Symphony Connection instance is created for every
new Symphony Object instance (through the call to the bind method). The
latter is considered as the source element of the Symphony Connection instance;
(2) if a Request is currently being treated, then the Symphony Object was cre-
ated during the execution of a method from a Translation class (this is actually
verified by inspecting the JVM’s call stack). Therefore, it is considered as the
target element of the Symphony Connection instance.

The Invoker borrows some aspects of its behaviour from the Broker pattern
[4], as it uses the Request object for determining which Translation object should
be called, using the introspection mechanisms integrated into the Java language.

The execution of the Translation methods occurs in the same thread as
the Symphony Object that triggered the Symphony Connection. Thus all the
Symphony Object instances exist within the same thread; this guarantees a
certain level of consistency between the lifecycles of Business and Interactional
Objects: any connection event must be fully resolved before another one may be
taken into account. This restriction does not apply to technical objects, which
may operate on several threads (including their parent Symphony Object’s), for
instance for using graphics rendering loops or multimodal integration engines.

In our example, let us suppose that a Request reaches the Invoker with a
reference to a “Member” Business Object Entity, the createAvatarFromMember

16

Translation method name and a list of arguments that should be transferred
to the Translation’s method. The Invoker first identifies the Translation class
instance that is associated to the “Member” instance. By introspecting the
Translation class, the Invoker generates a call to the method identified in the
Request object by its name, using the list of arguments that are encapsulated in
the Request. During the execution of the createAvatarFromMember method, a
new “Avatar” instance is created (using the Entity Factory), which is bound to
the “Member” instance by the Invoker.

4.4. Application Development for Sonata

From the developper’s point of view, the Sonata framework stands as a set of
helpers and tools, and a Java runtime library whose API allows connecting with
the Sonata system. We describe in this section every step of the development
process, as well as the services that are offered by Sonata for each of these steps.

4.4.1. Symphony Objects Implementation

Figure 3 shows that Symphony Objects should feature at least an Interface
class and a Master class, and that it may optionally feature an unlimited number
of Role classes. For implementing these features, Sonata provides developers
with marker interfaces, that is, empty Java interfaces whose only function is to
specify the role that the implementing class should play, in order for software
frameworks to apply specific behaviours when manipulating instances of these
classes. For instance, the Serializable Java interface is a marker interface,
which indicates to the JVM that its implementing classes should be part of the
serialization processes.

Concerning the Sonata framework, the marker interfaces enable the frame-
work to add several sets of helper methods to the object instances. The rules
for implementing Symphony Objects are as follows:

• The Interface class is implemented using the Java language’s construct
for interfaces. The name of the interface must match the name of the
Symphony Object.

• The Master class must implement the interface identified as the Interface
class, as well as either the EntityObject or ProcessObject marker inter-
faces, depending on the Symphony Object’s applicative role. Additionally,
the Master class’s name must match the Interface class’s, suffixed by Impl.
For instance, given the “Avatar” Entity Object, then its Interface class
should be named Avatar and its Master class AvatarImpl.

• Each Role class must implement the SymphonyRole marker interface.

Fig. 7 illustrates these rules, using an excerpt from Fig. 3. Figure 7(a) shows
the analysis level description of the “Team” Entity Object; Figure 7(b) shows its
design level description and Figure 7(c) shows the services that are consequently
woven into the Symphony Object instances.

17

Team

TeamImpl

MemberRole

*

(a) Initial structure of the “Team” Sym-
phony Object (Analysis level)

Team

TeamImpl

MemberRole

*

EntityObject

SymphonyRole

(b) Marker interfaces (manually added by the
designer, at Design/Implementation level)

Team

/setID(int id)
/getID(): int

-id: int
TeamImpl

/getTargetSObject(): EntityObject
/setTargetSObject(EntityObject obj)
/search(int objectID): EntityObject

-delegate: EntityObject
MemberRole

*

EntityObject

SymphonyRole

+setID(int id)
+getID(): int

EntityObjectServices

+getTargetSObject(): EntityObject
+setTargetSObject(EntityObject obj)
+search(int objectID): EntityObject

SymphonyRoleServices

(c) Automatic weaving of services

Figure 7: Weaving of services into Symphony Object instances

The latter mechanism corresponds to an aspect-based Java implementation
of the “Mixin” mechanism, which was introduced in the Flavors language [20]

18

and that may now be found in Object-Oriented languages such as Ruby or C++.
It is used for adding sets of methods and attributes to object instances. The
following code sample describes how an “ObjectA” instance may be created,
and how its identifier may be obtained, using the services that are accessed
through the EntityObjectServices interface that is woven into it.

ObjectA obj = (ObjectA)EntityFactory

.createEntity(ObjectA.class) ;

int objId = ((EntityObjectServices)obj).getID() ;

Likewise, several methods are woven into Role class instances, and accessed
through the SymphonyRoleServices interface, which are essentially used by
Sonata for managing Symphony Connections (see List. 2).

Symphony Objects are interfaced with technical objects through Java in-
terface classes, following a classic dependency injection pattern [18]. In order
for Sonata to be able to recognize these interface classes, it is required that
they extend the framework’s TechnicalObject marker interface. This allows
the framework to recognize and manage these technical objects, as shown pre-
viously. Finally, technical object instances are associated to Symphony Objects
at runtime, based on a file or source code configuration.

For instance, the “Avatar” Interactional Object Entity includes an inter-
face called AvatarTechnicalLayer, which describes methods for displaying and
moving the team member’s photographs. Therefore, we built a SwingAvatar

class, which implements the AvatarTechnicalLayer interface, and permits in-
tegrating the avatars in Swing-based GUIs.

4.4.2. Symphony Connection Setup

Configuration of the Connections. Developers first describe all the Symphony
Connection tuples (Section 4.2), before they are loaded by the Initializer. These
descriptions may currently be saved as XML or JSON objects, or directly im-
plemented in the application’s source code. Developers may extend the loading
mechanisms by implementing a specific InitializerDAO Java interface. List. 1
presents an excerpt from an XML configuration file, between the “Member”
Business Object Entity and the “Avatar” and “PropertyBox” Interactional Ob-
ject Entities.

Listing 1: XML configuration example

<SOConnection >

<source name="business.entity.Member" />

<destination name="interactional.entity.Avatar" />

<destination name="interactional.entity.PropertyBox" />

<translation name="control.translation.MemberTranslation

" />

</SOConnection >

...

19

Description of the aspects for connecting Symphony Objects with the Invoker.
Once the Symphony Connections are described for the Initalizer to load at
runtime, the methods that trigger connection events should be marked. An
aspect is described for each Symphony Object that acts as the source object of
a Symphony Connnection. For instance, as the “MemberRole” object acts as a
source object (see Fig. 3), a “MemberRoleAspect” aspect should be described
that captures all the method calls that should be translated and transmitted to
the corresponding “Avatar” and “PropertyBox” Interactional Object instances.
This aspect is based on the conceptual advice defined during the analysis phase
(for instance as illustrated in Fig. 4). List. 2 presents an excerpt of the “Mem-
berRoleAspect” aspect, using AspectJ7.

Listing 2: Excerpt of aspect “MemberRoleAspect”

1 public aspect MemberRoleAspect {

2
3 pointcut MemberRoleCalls (): execution(public * MemberRole

.*(..)) ;

4 ...

5 after() returning(MemberRole target): execution(MemberRole

createMember(firstName ,lastName ,office)) {

6 try{

7 Request req = Invoker.getInstance ().createRequest (((

SymphonyObjectServices)target).getTargetSObject (),

8 "createAvatarFromMember");

9 req.pushParameter(firstName) ;

10 req.pushParameter(lastName) ;

11 req.pushParameter(office) ;

12 Invoker.getInstance ().sendRequest ();

13 } catch (Exception e) {...}

14 }

15 }

Every aspect first describes a pointcut (line 3) that limits the weaving to
instances of the Role class (here, the MemberRole class). The advice per se
(lines 5–14) are built following a systematic structure:

• The first line of the advice captures the method that should trigger a
connection event (e.g., the createMember method).

• The Invoker should be called for creating a new Request object, which
should contain the name of the Translation method that will bridge the
business–interaction semantic gap.

• All the method’s arguments should be passed to the Request object.

• The Request should finally be executed (i.e., sent to the Invoker).

7http://www.eclipse.org/aspectj

20

http://www.eclipse.org/aspectj

Implementation of the Translation classes. Finally, the developer should imple-
ment the method that will enable the business space’s semantics to be converted
to the interaction space’s (or conversely), into a Translation class. A Transla-
tion class is essentially a class that extends the ConnectionTranslation ab-
stract class (see Fig. 6). List. 3 presents an excerpt from the implementation of
the MemberTranslation class (as described in Fig. 5), which manages all the
translations between “Member” Business Object instances and “Avatar” and
“PropertyBox” Interactional Object instances.

Listing 3: Excerpt from the “MemberTranslation” implementation

public class MemberTranslation extends

ConnectionTranslation {

...

public int createAvatarFromMember () {

String name= ((Member)source).getName ();

Image photo= ((Member)source).getPhotograph ();

TeamPosition pos= ((Member)source).getTeamPosition ();

int circleID= teamPosToCircle(pos);

int avatarID= ((ManageAvatarScene)proxy).addAvatar(

photo , name , circleID);

return avatarID;

}

int teamPosToCircle(TeamPosition pos) {...}

}

As mentioned earlier, the calls to the source Symphony Object (i.e., the
“Member” instance) are read-only actions, while the side-effect inducing code
goes through a Process Object (i.e., a “ManageAvatarScene” instance, which
acts as a proxy) that maintains applicative rules. The actual translation is re-
alized in the teamPosToCircle method. Additionally, the code contained in
the MemberTranslation class is the only locus in the whole application where
the “Member”, “Avatar” and “PropertyBox” implementation code meet, thus
reducing the coupling between the interaction and business spaces to an accept-
able minimum.

Fig. 8 summarizes (and condenses) the main events that occur when the
createMemberRole method is called. The part of the sequence diagram that is
above the dashed box represents the set of calls that are triggered in the busi-
ness space, for creating a new team member. The calls within the dashed box
are woven automatically to the “MemberRole” class, following the constraints
described in Fig. 4, and correspond to the triggering of a connection event: a
request is sent to the Invoker, which calls the “MemberTranslation” class for
creating an “Avatar” and a “PropertyBox” Interactional Objects, as described
in Fig. 5.

4.5. Development Process Automation Using Sonata’s Model-Driven Tool-Chain

The development of the Sonata framework reflects the global automation ef-
forts undertaken to facilitate the execution of the Symphony methodology. This

21

<<Business Object
Process>>

ManageTeamMembers

memberID

tRole1 := getTeam(teamID)

memberID

�

�

Folding

<<create>>
createMember

(firstName, lastName,
office)

:Invoker

<<Translation>>
memberTrans:

MemberTranslation

createAvatarFromMember
(firstName, lastName, office)

<< create >>

bind(sourceSO,
 targetSO)

Member Translation: id
ref

targetSO

sendRequest()

pushParameter(firstName)
pushParameter(lastName)
pushParameter(office)

Member Creation
ref

<< Role >>
mRole1:

MemberRole

Runtime
aspect

weaving

createTeamMember
(teamID, firstName,
 lastName, office)

sourceSO :=
mRole1.getTargetSObject()

createRequest(sourceSO,
"createAvatarFromMember")

:MemberRoleAspect

Figure 8: Runtime weaving realized by Sonata when the createMemberRole method is called

22

includes capitalizing on the models constructed by designers in order to auto-
mate model or code generation, and verify model (or, more generally, method
product) traceability and consistency. In this respect, our approach follows the
principles of Model Driven Engineering [24, 3].

From a technological point of view, we chose to base our tooling on the Eclise
Modeling Framework8 technology: besides being mature and largely adopted,
its integration into the Eclipse IDE allows developers to benefit from modeling
tools, from programming languages, such as Java, and from the cooperation of
modeling tools and programming languages.

Section 4.5.1 provides some technological context surrounding Sonata, and
presents the MDE tools used during the method’s early steps (and outside of
Sonata’s scope), which enable developers to semi-automatically produce models
such as shown in Fig. 3. Section 4.5.2 details the actual model-to-text (M2T)
tool-chains provided by Sonata.

4.5.1. MDE Tools and Techniques for the Method’s Early Steps

In the early steps of the Symphony methodology, the use of model genera-
tions, transformations and queries is encouraged. Indeed, one of the goals of this
approach is to enable an end-to-end traceability of all development products [1],
in order to facilitate the maintenance of these products, signal inter-model in-
consistencies and provide means for developers to easily trace the impact of a
change on the whole development flow. In this context, we used the following
tools:

• The UML profiles that are mentioned in Section 3 were described using
TOPCASED9. Being based on the EMF framework, we were able to use
the resulting models in our model transformation flows.

• Model transformations (e.g., for generating the different stages of the Sym-
phony Objects class diagrams) and consistency checks (e.g., for validating
the consistency of each stage of the Symphony Objects diagram with the
previous development steps) were implemented using the Atlas Transfor-
mation Language (ATL) [15].

The latter point deserves some details:

• Consistency checks were implemented using ATL queries, which execute
the equivalent of an OCL check and return predefined strings used as
booleans. Although technically akward, this approach enabled us to eas-
ily integrate the results of individual checks in a global diagnostic, as a
first step towards maintaining inter-model traceability throughout the de-
velopment process. A more mature approach would rather directly make
use of Eclipse’s OCL interpreter 10.

8http://www.eclipse.org/modeling/emf/
9http://www.topcased.org/

10http://www.eclipse.org/projects/project.php?id=modeling.mdt.ocl

23

http://www.eclipse.org/modeling/emf/
http://www.topcased.org/
http://www.eclipse.org/projects/project.php?id=modeling.mdt.ocl

• ATL model-to-model (M2M) transformations are used for transforming
very early specifications models into analysis models stubs, which are then
completed by designers to produce complete analysis models, such as the
one presented in Fig. 3.

• At the implementation level, ATL queries were first used to generate
Sonata XML configurations (see List. 1), from the analysis model (Fig. 3),
as well as the corresponding aspect files (see List. 2). As demonstrated be-
low, we adopted the Xtext 211 framework for later M2T transformations.

4.5.2. Generation of the Aspect and Translation code

Based on what we presented in the previous sections, one may notice that the
implementation of the aspect code for enabling Symphony Connections (List. 2)
and of the Translation classes (List. 3) is both systematic and tedious: it is
essentially a matter of reproducing the same code patterns, with only a few
variations. Concerning the aspect code, these variations can be summed up to
the Symphony Advice (see Fig. 4).

Consequently, we chose to provide developers using Sonata with two devel-
opment options:

• Developers using model-driven tools for the whole development process
(i.e., including the specifications and analysis phases) may capitalize on
ATL queries (as described earlier) for generating the aspect code from the
analysis model.

• Developers that would rather start working with model-driven tools later
in the development cycle (either because their organization does not sup-
port model-driven processes, or because their early development process
is informal) may use a small DSL aimed at describing Symphony Connec-
tions in a preexisting Java project.

We elaborate on the latter option in the following paragraphs.
This concise textual language expresses the same concerns as the advice

described in Fig. 4. We developed its grammar and its editing environment
using Xtext 2, a powerful framework for designing languages/DSLs, integrated
into the Eclipse IDE. Fig. 9 provides an example of this simple language. In
this example, the connect statement declares a new Symphony Connection,
between the MemberRole and Avatar classes. The createMemberRole() token
corresponds to the signature of the method from the MemberRole class that
triggers the Symphony Connection, while the createAvatarFromMember token
corresponds to the name of the method from the Translation class that will get
called once the Symphony Connection is triggered, as is described in Fig. 8.

The small DSL excerpt presented above is all that’s required for generating
all the aspect code presented in List. 2, as well as the skeleton (i.e, class, method
signatures, and import statements) of the Translation class presented in List. 3.

11http://www.eclipse.org/Xtext

24

http://www.eclipse.org/Xtext

import business.entity.team.MemberRole
import interactional.entity.avatar.Avatar

connect MemberRole to Avatar
after createMemberRole() -> createAvatarFromMember

end

Figure 9: Runtime weaving realized by Sonata when the createMemberRole method is called.

Xtext’s advanced import mechanism allowed us to define the scope of method
signatures that may be referenced by the user when describing the connections,
and to integrate the corresponding content assist elements.

Additionally, the editing environment provided by Xtext reconstructs the
EMF model that corresponds to the textual representation defined by the user
(the Ecore metamodel is deduced by the Xtext framework, from the grammar
initially defined by the user). This in-memory model may then be used as the
input of Xtext’s generation (M2T) tool: Xtend (formerly known as Xpand). The
latter interpolates the model’s attributes with metamodel-aware templates, to
produce the final aspect code. The end result is identical to what is achieved
with ATL queries, although the Xtext-based solution is obviously far more effi-
cient.

Consequently, in the small example described above, we managed to reduce
the number of manually written lines of source code describing the Symphony
Connection from approximately 20 to approximately 10.

We describe in the following section the empirical validation process we
adopted for Sonata and the symphony architecture.

5. Evaluation and Discussions

5.1. Early Results

We presented in Cret et al. [5] an evaluation of an early version of Sonata.
Three versions of the same application were developed, two of which used a stan-
dard and an optimized implementation of MVC, while the third implementation
used Sonata. We were then focusing on object coupling and object complex-
ity, with the assumption that, given the same functional scope and Human-
Computer Interface, variations of these properties would reflect the quality of
the underlying implementation patterns or frameworks.

The results presented in the latter article showed that Sonata enabled ap-
plications to feature lower total, average and maximum coupling values than
equivalent MVC implementations. Our implementations’ cyclomatic complexi-
ties (i.e., McCabe complexity [19]) shared the same order of magnitude, between
1.46 and 1.79, which are considered as low (i.e., below a value of 4) complexity
applications.

Since the publication of these results, we focused on further reducing the
coupling and complexity induced by Sonata, as well as on reducing the amount
of code necessary for setting up the framework.

25

5.2. Comparing MVC and Sonata

The prototypes’ and Sonata’s evolutions makes any comparison with previ-
ous MVC implementations inherently flawed. Instead, we chose to compare the
amount of work necessary for setting up Sonata with an MVC implementation.

We compared the smallest functionality possible: the handling of a textual
value. The latter value is defined by the user from an HCI, then transformed12

before it can be handled by the business space. Obviously, any direct change
on the business space requires updating the interaction space with the new,
translated value. For the sake of simplicity, this functionality would not be sup-
ported by any technical (in particular, graphical) framework. Interaction space
modifications would simply be emulated by writing to an appropriate method
in the interaction space, which would then trigger the appropriate callbacks.

We used Nguyen et al.’s Unified CodeCount tool [21] for acquiring source
code metrics. In the following paragraphs, we do not consider the source code
related to the instantiation of MVC’s facets or the instantiation of Sonata’s Pro-
cess Objects. Indeed, Sonata’s initialization relies on reading configuration files,
the evaluation of which would be irrelevant. Additionally, we do not consider
the code related to the benchmarks’ statistics.

From the MVC point of view, this functionality was implemented as a simple
triad, with the business space being implemented as a Model, and the interaction
space being implemented as a View. Also, we chose R. Eckstein’s recommended
Java implementation [8]. While we did not try to evaluate this implementation’s
qualities, we consider that this should be the one considered as the de facto
standard by the Java community.

Our implementation of the MVC triad is 49 logical lines of code (lLOC)
long, out of which 10 lLOCs consist in communication-specific code distributed
between the three facets (Controller registration of the Model and View, noti-
fication calls to the Controller, following the Observer pattern). Additionally,
because the MVC pattern provides no prescription as to how the translations
between the Model and the View should be handled, the corresponding source
code was implemented in the Controller. The latter thus assumes several re-
sponsibilities, which are prone to be interlaced with one another at the source
code level.

The granularity of the implementation pattern supported by Sonata is larger
than MVC: our Sonata implementation of the same functionality features a Busi-
ness Object Entity, a Business Object Process, an Interactional Object Entity
and an Interactional Object Process. The connection between the two concep-
tual spaces is handled by two Translation classes: the first handling methods
triggered by the Business Object Entity, the second methods triggered by the In-
teractional Object Entity. The aspect code for binding the two Entity Objects
was generated automatically, using the small DSL described in Section 4.5.2.
Based on the 8 lines that were required for describing the bidirectional con-

12Actually, the string is simply reversed, for the purpose of illustrating the semantic gap
between the business and interaction spaces.

26

nection, 40 lines of AspectJ code and 25 lines of Translation class code were
generated.

With its 77 lLOCs, the remaining manual implementation is about 1.5 times
the size of the previous one. However, no communication code was implemented
by hand. Moreover, while the MVC implementation defined three software con-
structs in isolation from any operational process, the Sonata implementation
encourages envisaging and defining business and interaction processes that in-
tegrate all classes into a consistent whole.

5.3. Sonata Scalability

We implemented several applications using Sonata, which enabled us to ex-
amine whether the framework allowed applications to scale.

Apart from the TeamAvatar example, two applications were developed us-
ing Sonata: an Augmented Inventory of Fixtures (AIoF), whose development
process was extensively described in other articles [10, 7, 11], and an application
for rendering airport security test campaigns, called EDEMOI.

AIoF was developped as a small (about 2,000 lLOCs) prototype for vali-
dating whether Sonata could scale with a multithreaded, input-intensive appli-
cation. AIoF enables a user’s movements to be translated into high-frequency
accelerometer data, which is input into AIoF for identifying the user’s position in
an OpenGL-rendered virtual model. The user can also execute vocal commands
on AIoF for creating and locking virtual markers that identify housing damages.
Although this application’s business process is very simple (i.e., adding dam-
ages to the housing’s rooms), Sonata enabled us to implement complex technical
layers (where sensory inputs are handled) for the Interactional Object Entities,
while designing simple translations with the much simpler business space.

EDEMOI is a larger application (about 5,000 lLOCs), with equally com-
plex business and interaction spaces (3 Business Object Entities and 5 Inter-
actional Object Entities). The application’s technical layer (XML parsing and
SVG graphics handling) counts about 1,200 lLOCs and 3,800 lLOCs for the
functional layer. 4 Translation classes were implemented (3 of which were a
interaction to business space translation). We used our small connection DSL
for generating the aspect code, as well as translation class stubs. 4 advice files
were defined, amounting to 33 lLOCs. From these descriptions, our generator
automatically produced 135 lLOCs of aspect code (which did not require any
posterior modifcation) and 61 lLOCs of translation code. Once manually com-
pleted, the translation classes amounted to 258 lLOCs (about 5% of the total
application size). This would tend to show that:

• While a basic Sonata implementation starts with what may seem a large
number of lLOCs, this number grows very slowly with the application’s
size.

• Sonata’s MDE tool-chain is an efficient asset for the development of ap-
plications built for running with the Sonata runtime library.

27

Our methodology, as well as Sonata, enabled us to design and implement
the business and interactional processes as almost independent systems (in
fact, parts of both processes were implemented at different periods by differ-
ent teams). We were also able to build and test the Translations independently
from the rest of the system.

Altough no formal conclusion may be deduced from the latter considerations,
we may nevertheless note that Sonata could be considered as an asset with
application scaling issues.

6. Conclusion and future works

We have described in this paper a software architecture for efficiently build-
ing modular business and interactional objects. These practices rely on patterns
for ensuring the reusability of objects, called Symphony Architecture, and on a
software framework called Sonata.

Sonata abstracts developers from common tasks related to the instantiation
and management of Symphony Objects and technical objects, and proposes a
powerful mechanism for transparently connecting the business and interaction
spaces, as well as synchronizing and translating events occurring in either spaces.

Even though its adoption presents several advantages, it is neither the only
way to construct applications following the Symphony method, nor is Java the
only language that can be adopted with the methodology. Reversely, the frame-
work does not substitute itself to the development process: although the inter-
connection of Business and Interactional Objects is facilitated, it is advised to
define and describe these constructs following the principles proposed in Sym-
phony.

Implementing parts or variations of MVC using aspects is not a new idea
[23]. However, our contribution includes both the creation of the link as well as
its realization using a message broker. We consider that this is a powerful ad-
vantage for separating business and interaction concerns, and for connecting rich
user interfaces with information systems. Indeed, Sonata allows distinguishing
the business processes from the interactional processes, while maintaining an ef-
ficient communication strategy between the two sets of constructs. We consider
that this advantage facilitates the construction of innovative user interfaces,
connected to entreprise information systems.

Furthermore, the organization of the application’s objects narrows volatile
code, such as the applicative rules and the code for connecting the interactional
and business spaces, into well-defined constructs: the Process Objects and the
Translation classes. Consequently, Sonata enables developers to build software
objects with very low coupling, thus encouraging their reuse, maintainability
and legibility.

We have presented some elements of past evaluations realized on previous
versions of Sonata, that already showed that the framework provides much
lower coupling values than comparable approaches, such as MVC. Additionally,
we presented several considerations regarding the coding overhead required for

28

implementing a Sonata-driven application, compared to MVC, as well as the
framework’s scalability.

As the Sonata framework gains in maturity, future work should focus on
two interdependent aspects: increasing the tooling support of the framework
and (thus) encouraging its use by developers. The Java libraries for setting up
Sonata applications may be found online at https://github.com/ggodet-bar/
Sonata. Additionally, this tooling support should also include the model trans-
formations and queries used in the early steps of the method.

Concerning Sonata’s instrumentation, we have presented a small DSL aimed
at automating the generation of aspect code and of elements of the Translation
classes, using model-driven engineering (MDE) technologies. Our next effort
in this direction will be the integration of this contribution, and of existing
profiles and model transformations, into a larger scale environment for handling
models, and to a larger extents all products, produced during the development
of applications following the Symphony methodology.

References

[1] Asuncion, H.U., François, F., Taylor, R.N., 2007. An end-to-end indus-
trial software traceability tool, in: ESEC-FSE ’07: Proceedings of the the
6th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering,
ACM, New York, NY, USA. pp. 115–124.

[2] Bass, L., Pellegrino, R., Reed, S., Seacord, R., Sheppard, R., Szezur, M.R.,
1991. The Arch model: Seeheim revisited, in: Proceedings of the User
Interface Developper’s workshop.

[3] Bézivin, J., 2005. On the unification power of models. Software and Systems
Modeling 4, 171–188. 10.1007/s10270-005-0079-0.

[4] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996.
Pattern-Oriented Software Architecture: A System Of Patterns. John Wi-
ley & Sons Ltd.

[5] Céret, E., Dupuy-Chessa, S., Godet-Bar, G., 2010. Using software metrics
in the evaluation of a conceptual component, in: 4th Int. Conf. On research
Challenge in Information Science RCIS’2010.

[6] Coutaz, J., 1987. PAC, an object oriented model for dialog design, in:
Buillinger, H.J., Shackel, B. (Eds.), Proceedings of INTERACT’87.

[7] Dupuy-Chessa, S., Godet-Bar, G., Pérez-Medina, J.L., Rieu, D., 2009. A
software engineering method for the design of mixed reality systems. En-
gineering of Mixed Reality .

[8] Eckstein, R., 2007. Java SE Application Design With MVC. Sun Microsys-
tems Inc.

29

https://github.com/ggodet-bar/Sonata
https://github.com/ggodet-bar/Sonata

[9] Gamma, E., Helm, R., Johnson, R.E., Vlissides, J., 1995. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley.

[10] Godet-Bar, G., Dupuy-Chessa, S., Rieu, D., 2008. Advanced Informa-
tion Systems Engineering. Springer-Verlag Berlin / Heidelberg. volume
5074/2008 of Lecture Notes in Computer Science. chapter When Interaction
Choices Trigger Business Evolution. pp. 144–147.

[11] Godet-Bar, G., Rieu, D., Dupuy-Chessa, S., 2010. HCI and business prac-
tices in a collaborative method for augmented reality systems. Information
and Software Technology, Elsevier 52, 492–505.

[12] Godet-Bar, G., Rieu, D., Dupuy-Chessa, S., Juras, D., 2007. Interac-
tional Objects: HCI concerns in the analysis phase of the Symphony
method, in: 9th International Conference on Enterprise Information Sys-
tems ICEIS’2007, Funchal, Madeira. pp. 37–44.

[13] Green, M., 1985. Report on dialogue specification tools, in: Pfaff, G. (Ed.),
User Interface Management Systems, Springer-Verlag. pp. 9–20.

[14] Hassine, I., Rieu, D., Bounaas, F., Seghrouchni, O., 2002. Symphony:
a conceptual model based on business components, in: SMC’02, IEEE
International Conference on Systems, Man, and Cybernetics.

[15] Jouault, F., Kurtev, I., 2006. On the architectural alignment of ATL and
QVT, in: SAC ’06: Proceedings of the 2006 ACM symposium on Applied
computing, ACM, New York, NY, USA. pp. 1188–1195.

[16] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J., Irwin, J., 1997. Aspect-oriented programming, in: European Conference
on Object-Oriented Programming (ECOOP), pp. 220–242.

[17] Krasner, G., Pope, S., 1988. A description of the model-view-controller user
interface paradigm in the smalltalk-80 system. Journal of Object Oriented
Programming 1, 26–49.

[18] Martin, R.C., 1995. Object Oriented Design Quality Metrics: An Analysis
of Dependencies. volume 2. ROAD.

[19] McCabe, T., 1976. A complexity measure. IEEE Transactions on Software
Engineering SE-2, 308–320.

[20] Moon, D.A., 1986. Object-oriented programming with flavors, in: OOPLSA
’86: Conference proceedings on Object-oriented programming systems, lan-
guages and applications, ACM, New York, NY, USA. pp. 1–8.

[21] Nguyen, V., Deeds-Rubin, S., Tan, T., Boehm, B.W., 2007. A SLOC
Counting Standard. Technical Report. COCOMO Forum.

30

[22] Nigay, L., Coutaz, J., 1995. A generic platform for addressing the multi-
modal challenge, in: CHI ’95: Proceedings of the SIGCHI conference on
Human factors in computing systems, ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA. pp. 98–105.

[23] Piveta, E.K., Zancanella, L.C., 2003. Observer pattern using aspect-
oriented programming, in: Hanmer, R., Andrade, R.M.C. (Eds.), Proceed-
ings of 3rd Latin American Conference on Pattern Languages of Program-
ming SugarloafPLoP’2003, pp. 313–324.

[24] Stahl, T., Völter, M., Bettin, J., von Stockfleth, B., 2006. Model-Driven
Software Development. John Wiley.

[25] Tarpin-Bernard, F., David, B.T., 1997. AMF: A new design pattern for
complex interactive software?, in: HCI (2), pp. 351–354.

31

	Introduction
	Related Work
	Symphony Architecture
	History of the Symphony Method
	Example Application
	Symphony Architecture's Characteristics
	Symphony Objects and Translation Classes
	Relevance of the Development Approach
	Synthesis

	The Sonata Framework
	Goals
	Functional Concepts of the Framework
	Main Entities of the Runtime Library
	Initializer
	Entity Factory
	Invoker

	Application Development for Sonata
	Symphony Objects Implementation
	Symphony Connection Setup

	Development Process Automation Using Sonata's Model-Driven Tool-Chain
	MDE Tools and Techniques for the Method's Early Steps
	Generation of the Aspect and Translation code

	Evaluation and Discussions
	Early Results
	Comparing MVC and Sonata
	Sonata Scalability

	Conclusion and future works

