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Abstract—To develop an advanced muscle–computer interface 
(MCI) based on surface electromyography (EMG) signal, a 
suitable signal processing and classification technique has a key 
role to play, particularly the selection of EMG features. Two 
sufficient and well-known methods to extract signal amplitude 
are root mean square (RMS) and mean absolute value (MAV). 
Their classification performance is comparable to an advanced 
and high computational time-scale feature, e.g. discrete wavelet 
transform. The performance of RMS and MAV, however, 
depends on a probability density function (PDF) of EMG signals, 
i.e., Gaussian or Laplacian, and the PDF of motions associated 
with EMG signals is still not clear yet. In addition, both features 
provide the same distribution in feature space, thus only one of 
them should be used to avoid redundancy in a classification 
scheme. This study investigated the PDFs of eight hand, wrist 
and forearm motions and then estimated the signal-to-noise ratio 
(SNR), defined as a mean value divided by its fluctuation, of both 
amplitude detectors. On average, the experimental EMG density 
was closer to the Laplacian density, and MAV had slightly higher 
SNR than RMS for both forearm extensor and flexor muscles 
and both genders. Lastly, the accuracy of both features in MCI-
based EMG classification was reviewed. For MCI applications, 
MAV is recommended to be used as an optimal EMG amplitude 
detector. 

Keywords—electromyography (EMG) signal; feature extraction; 
motion recognition; probability distribution function; signal-to-
noise ratio (SNR). 

I. INTRODUCTION 
Many human-computer interaction (HCI) techniques have 

been proposed over the last few decades, particularly a hand-
free interaction technique such as speech or computer vision. 
However, a major limitation of these interaction techniques is 
about background/environmental noise, which is hard to avoid. 
Another advanced hand-free HCI technique is a muscle-
computer interface (MCI) [1], [2]. This technique measures 
electrical potentials generated by a target muscle during 
human gestures, as called “electromyography (EMG) signal”. 
The MCI has been conventionally used in the controlling 
prosthetic devices [2]. More research has explored the use of 

EMG-based MCI for controlling electric-powered wheelchair 
[3] and computer mouse cursor [4]. In addition, MCI can be 
used together with other interface such as computer vision and 
tabletop to provide complementary information and introduce 
a novel multimodal interaction [5], [6]. 

In order to enable EMG-based MCI, signal processing and 
pattern matching algorithms are developed and can be broken 
down into three algorithmic components: feature extraction, 
dimensionality reduction and pattern classification [2]. In the 
extraction of features, continuous EMG time waveforms are 
divided into an analysis data window which must be kept 
below 300 ms to response real-time decision control [7]. A set 
of features is extracted from each window based on EMG 
amplitude and/or frequency information [8]. Then, a next 
window is selected and the feature extraction scheme is 
repeated. In the second step if a proposed feature vector has a 
high dimension, a dimensionality reduction technique is 
further used to reduce the dimensions of a feature vector by 
selecting or projecting original features [9]. In the last step, a 
pattern classification method is applied to match an input 
feature set to an output class [10]. 

The success of the proposed algorithm, however, depends 
almost entirely on the choice of features used to represent the 
actions associated with EMG amplitude [11]–[13]. Generally, 
EMG feature extraction can be broken down into three groups: 
the amplitude/time-domain (TD) features, spectral/frequency-
domain (FD) features, and time-frequency/time-scale (TS) 
features [2]. TD features can be computed directly from raw 
EMG signal amplitude [13]. On the other hand, FD and TS 
methods require an additional transformation, e.g. fast Fourier 
transform (FFT) or discrete wavelet transform (DWT), before 
calculating features [9], thus the computation of features in 
these groups is more complex and higher than that of the TD 
features. To be easily and possibly computed by any low 
performance embedded processor, the TD features are widely 
used in MCI and their performance is comparable to TS 
features, i.e., DWT [7], [14], in the classification of dynamic 
motions from both transient and steady-state portions. 



Root mean square (RMS) and mean absolute value (MAV) 
are two well-known and sufficient methods to extract signal 
amplitude in TD, as known the “EMG amplitude detector” [2]. 
Both RMS and MAV features provide the same distribution in 
feature space [11], thus only one of them should be used to 
avoid redundancy in a classification scheme. The performance 
of RMS and MAV, however, depends on a probability density 
function (PDF) of surface EMG signals which can be a 
Gaussian or a Laplacian density, and the PDF of surface EMG 
signals is still not clear yet until now [15]–[19]. In this paper, 
the PDF of upper-limb motions associated with surface EMG 
signals was investigated. 

In order to evaluate an optimal EMG amplitude detector, a 
signal-to-noise ratio (SNR), which is defined as the mean 
value divided by its fluctuation [19], was estimated from 
surface EMG recorded from eight motions and two forearm 
muscles for both RMS and MAV. The relationship between 
the experimental EMG PDF and the SNR of both features was 
discussed together with their classification accuracies. 

II. METHODOLOGY 
MCI has usually been developed based on upper-limb 

motions consisting of hand, wrist, and forearm motions 
recorded from forearm extensor and/or flexor muscles [20]. In 
this paper, eight motions selected were forearm pronation (FP), 
forearm supination (FS), wrist extension (WE), wrist flexion 
(WF), wrist radial deviation (WR), wrist ulnar deviation (WU), 
hand open (HO) and hand close (HC), and two muscles 
selected were extensor carpi ulnaris (ECU) and flexor carpi 
radialis (FCR). The EMG PDF and also SNR of the features 
were calculated and reported as an average value for each 
possible combination between motion and muscle by gender. 
EMG data were measured from nine males and nine females. 

A. EMG Data Acquisition and Experiments 
In experiments, the volunteers performed eight proposed 

motions by maintaining each motion for 2 s in duration and 
separating each motion by a rest period of 2 s. Fifteen sessions 
were performed for each subject per day with a random order 
of the proposed motions in a session. These 15 sessions per 
day were employed on 4 separate days to include the effect of 
fluctuating EMG (60 sessions in total per subject for each 
motion-muscle combination). 

EMG data were collected from two proposed muscles on 
the right forearm using bipolar Ag/AgCl electrodes (H124SG, 
Kendal ARBO) with a diameter of 24 mm and an inter-
electrode distance of 20 mm. A common ground reference 
was placed on the wrist using an Ag/AgCl electrode (Red Dot 
2223, 3M) with a diameter of 43.1 mm. All electrodes were 
attached after suitable preparation of the skin with alcohol. 

Measured surface EMG signals were sampled at 1024 Hz 
with a high resolution of 24 bits and were amplified with a 
gain of 19.5x using an EMG measurement system (Mobi6-6b, 
TMS International B.V.). Movement artefact (< 20 Hz), 
power-line interference (50 Hz) and high-frequency noise 
(>500 Hz) were removed. More details about the experiments 
and the pre-processing of EMG data can be found in Ref. [21]. 

B. EMG Amplitude Detectors 
Based on theoretically, an optimal EMG amplitude detector 

based on Gaussian model is RMS [22] (SNRRMS,Gauss = (2N)1/2 

> SNRMAV,Gauss = (1.7519N)1/2), whereas an optimal detector 
based on Laplacian model is MAV [17] (SNRRMS,Laplace = 
(0.8N)1/2 < SNRMAV,Laplace = N1/2). It should be noted that N is 
the number of statistical degrees of freedom and SNR is a 
standard metric used to compare the amplitude detectors. 
More details about the relationship between EMG amplitude 
detector, EMG probability density model, and SNR 
performance in theoretical basis can be found in Ref. [17]. 

The mathematical definition of RMS and MAV methods 
can be expressed respectively as 

  (1) 

	    (2)	   

where xri represents the ith EMG amplitude sample and L 
denotes a length of analysis data window. Adjacent disjoint 
windows with a fixed L of 256 samples (250 ms) were used 
for both RMS and MAV. Furthermore, RMS feature is similar 
to standard deviation (SD) value of EMG signal [11], where 
mean value of EMG signal amplitude is naturally nearly zero. 
There are many given names for calling MAV feature such as 
average rectified value, averaged absolute value, integrated 
absolute value and the first order of v-Order feature [11]. 

C. Evaluating Functions 
Firstly, the absolute area difference (ADD) between a 

sample histogram via the EMG density estimate (Px) and a 
Gaussian/Laplacian density (Pt) was used to decide the PDF 
of the EMG signals. The AAD was computed for each motion 
in a session (2048 samples, 2 s), and the results were analyzed 
by gender and by muscle. A sample histogram was computed 
by using 501 bins (B = 501) equally space (∆s = 0.2) on a 
normalized EMG (x), in which the sample mean adjusted to 
zero and the sample variance adjusted to one. The ADD can 
be defined as 

 . (3)	   

Secondly, SNR was used to judge the quality of amplitude 
detectors [17]. As previously mentioned that SNR was defined 
as the square root of the squared mean value of RMS (or 
MAV) divided by its variance, it means that the term “signal” 
refers to the expected EMG amplitude estimate and the term 
“noise” refers to the variation about the mean value of the 
amplitude detector. Therefore, the term “noise” in this paper is 
distinct from noise residing in the EMG signal measurement, 
e.g., power-line interference [23]. 



   
         (a)                                    (b) 

Fig. 1  Normalized composite PDF estimates for (a) male subjects and (b) female subjects. Experimental density (solid black line) is the average of 8640 
recordings (9 subjects × 2 muscles × 8 motions × 60 sessions). Shaded region indicates one standard deviation above and below the average. Solid gray line 
indicates the Gaussian density and dashed gray line indicates the Laplacian density. 

TABLE I 
DENSITY AREA DIFFERENCES AND CLOSEST DENSITY SHAPE TABULATED BY 
MOTION FROM EXTENSOR MUSCLE (ECU) AND MALE SUBJECTS. EACH ROW 

POOLS NINE-MALE-SUBJECT TRIALS FROM THE INDICATED MOTION. 

Male 
/ECU 

Mean ± SD Area Difference 
Between Experimental PDF 

and: 

Number of Times 
with PDF Closest in 

Shape to: 
Motion Gauss Laplace Gauss Laplace 

FP 0.219±0.067 0.139±0.042 133 407 
FS 0.249±0.083 0.158±0.053 166 374 
WE 0.152±0.069 0.173±0.053 342 198 
WF 0.209±0.075 0.160±0.048 203 337 
WR 0.194±0.060 0.154±0.044 230 310 
WU 0.168±0.051 0.156±0.035 262 278 
HO 0.152±0.048 0.170±0.035 338 202 
HC 0.212±0.092 0.163±0.030 226 314 

Total 0.194±0.068 0.159±0.045 1900 2420 

TABLE II 
DENSITY AREA DIFFERENCES AND CLOSEST DENSITY SHAPE TABULATED BY 

MOTION FROM FLEXOR MUSCLE (FCR) AND MALE SUBJECTS. EACH ROW 
POOLS NINE-MALE-SUBJECT TRIALS FROM THE INDICATED MOTION. 

Male 
/FCR 

Mean ± SD Area Difference 
Between Experimental PDF 

and: 

Number of Times 
with PDF Closest in 

Shape to: 
Motion Gauss Laplace Gauss Laplace 

FP 0.347±0.115 0.143±0.078 24 516 
FS 0.433±0.184 0.233±0.148 13 527 
WE 0.321±0.176 0.213±0.135 124 416 
WF 0.293±0.094 0.122±0.063 31 509 
WR 0.314±0.107 0.126±0.060 31 509 
WU 0.285±0.108 0.152±0.064 94 446 
HO 0.325±0.095 0.130±0.058 15 525 
HC 0.315±0.129 0.159±0.075 60 480 

Total 0.329±0.126 0.160±0.085 392 3928 

TABLE III 
DENSITY AREA DIFFERENCES AND CLOSEST DENSITY SHAPE TABULATED BY 

MOTION FROM EXTENSOR MUSCLE (ECU) AND FEMALE SUBJECTS. EACH 
ROW POOLS NINE-FEMALE-SUBJECT TRIALS FROM THE INDICATED MOTION. 

Female
/ECU 

Mean ± SD Area Difference 
Between Experimental PDF 

and: 

Number of Times 
with PDF Closest in 

Shape to: 
Motion Gauss Laplace Gauss Laplace 

FP 0.158±0.048 0.171±0.033 310 230 
FS 0.159±0.048 0.170±0.034 312 228 
WE 0.132±0.036 0.180±0.034 380 160 
WF 0.166±0.058 0.166±0.036 278 262 
WR 0.158±0.042 0.159±0.031 274 266 
WU 0.155±0.055 0.171±0.037 333 207 
HO 0.153±0.047 0.173±0.035 331 209 
HC 0.197±0.082 0.170±0.051 215 325 

Total 0.160±0.052 0.170±0.036 2433 1887 

TABLE IV 
DENSITY AREA DIFFERENCES AND CLOSEST DENSITY SHAPE TABULATED BY 
MOTION FROM FLEXOR MUSCLE (FCR) AND FEMALE SUBJECTS. EACH ROW 

POOLS NINE-FEMALE-SUBJECT TRIALS FROM THE INDICATED MOTION. 

Female
/FCR 

Mean ± SD Area Difference 
Between Experimental PDF 

and: 

Number of Times 
with PDF Closest in 

Shape to: 
Motion Gauss Laplace Gauss Laplace 

FP 0.327±0.105 0.168±0.075 68 472 
FS 0.312±0.157 0.204±0.116 124 416 
WE 0.241±0.137 0.177±0.094 194 346 
WF 0.219±0.077 0.144±0.047 165 375 
WR 0.269±0.088 0.144±0.054 91 449 
WU 0.262±0.102 0.155±0.064 124 416 
HO 0.275±0.104 0.151±0.061 95 445 
HC 0.232±0.088 0.148±0.056 135 405 

Total 0.267±0.107 0.161±0.071 996 3324 
 

III. RESULTS AND DISCUSSION 
In the literature, the experimental EMG PDFs at different 

isometric muscle contraction levels tend to have a shape 
between the Gaussian and Laplacian densities [15]–[17]. In 
addition to the EMG PDF of isometric contraction, it has been 
experimentally found that the EMG PDFs of isotonic muscle 
contraction levels during gait cycle or lower-limb motions can 
be best adjusted to the Laplacian distribution [18], [19]. 

However, the EMG PDFs of upper-limb motions, i.e., hand, 
wrist and forearm motions, have not been investigated yet. 
EMG recorded from the subjects during upper-limb motions, 
which combined short transient portions at the beginning and 
the end and a steady-state portion at the middle of motion, are 
widely used in most of MCI application. 

Normalized composite EMG PDFs of eight motions and 
two muscles by gender, male and female, are shown in Fig. 
1(a) and 1(b), respectively. For male subjects, the absolute 



area difference between the composite experimental density 
and the theoretical Gaussian density was 0.2478, while this 
difference for the theoretical Laplacian density was 0.0466. 
For female subjects, the absolute area difference between the 
composite experimental density and the theoretical Gaussian 
density was 0.2007, while this difference for the theoretical 
Laplacian density was 0.0909. The absolute area differences 
and the number of times each recording’s estimated density 
best described the data were presented by gender and by 
muscle in Tables I-IV. 

It was clearly seen that the experimental EMG PDFs of 
flexor muscle from all motions and both genders were close to 
the Laplacian density (Tables II and IV). The experimental 
EMG PDFs of extensor muscle from male subjects were also 
close to the Laplacian density (Table I). However, the EMG 
PDFs of extensor muscle from female subjects were close to 
the Gaussian density (Table III). 

TABLE V 
SNR’S TABULATED BY MOTION AND MUSCLE FROM MALE SUBJECTS. EACH 
ROW POOLS NINE-MALE-SUBJECT TRIALS FROM THE INDICATED MOTION. 

Male 
Mean ± SD  

SNR of ECU  
Using Processor: 

Mean ± SD  
SNR of FCR  

Using Processor: 
Motion RMS MAV RMS MAV 

FP 5.53±2.59 5.74±2.52 3.06±1.41 3.28±1.56 
FS 4.87±2.39 4.93±2.22 2.86±1.78 3.07±1.86 
WE 5.74±2.19 5.53±2.01 3.69±1.68 3.81±1.76 
WF 5.56±2.48 5.76±2.52 3.05±1.22 3.14±1.21 
WR 5.49±2.55 5.71±2.60 3.72±1.85 3.88±1.89 
WU 4.97±1.86 5.10±1.96 4.35±2.21 4.84±2.55 
HO 6.99±2.78 6.64±2.71 3.89±1.88 4.24±2.00 
HC 4.37±1.93 4.64±2.01 2.99±1.65 3.26±1.84 

Total 5.40±2.34 5.51±2.32 3.45±1.71 3.69±1.84 

TABLE VI 
SNR’S TABULATED BY MOTION AND MUSCLE FROM FEMALE SUBJECTS. 
EACH ROW POOLS NINE-FEMALE-SUBJECT TRIALS FROM THE INDICATED 

MOTION. 

Female 
Mean ± SD  

SNR of ECU  
Using Processor: 

Mean ± SD  
SNR of FCR  

Using Processor: 
Motion RMS MAV RMS MAV 

FP 5.09±1.91 5.26±1.99 3.27±1.29 3.45±1.43 
FS 4.88±1.87 4.97±1.90 3.91±2.02 4.15±1.95 
WE 5.35±1.72 5.22±1.72 3.94±1.92 4.17±1.90 
WF 5.10±2.10 5.35±2.14 4.06±1.64 4.17±1.68 
WR 4.72±1.43 4.91±1.62 3.67±1.49 3.95±1.64 
WU 4.55±1.58 4.63±1.46 3.69±1.46 3.84±1.56 
HO 5.25±2.00 5.37±2.06 3.72±1.80 4.08±2.00 
HC 4.09±1.49 4.17±1.56 3.43±1.24 3.69±1.37 

Total 4.88±1.76 4.98±1.81 3.71±1.61 3.94±1.69 
 

Based on the experimental EMG PDFs, MAV is an optimal 
EMG amplitude detector for MCIs based on flexor muscle for 
male and female subjects and on extensor muscle for male 
subjects. This finding is confirmed by SNR performance, as 
presented in Tables V and VI. Average SNR performance for 
flexor muscle of male subjects was 3.69 using MAV versus 
3.45 using RMS and that of female subjects was 3.94 using 

MAV versus 3.71 using RMS. For extensor muscle of male 
subjects, average SNR performance using MAV was also 
higher than that using RMS (5.51 > 5.40). 

Although the experimental EMG PDFs of flexor muscle 
from female subjects were close to the Gaussian density, the 
average SNR performance for extensor muscle of female 
subjects using MAV was higher than that using RMS (4.98 > 
4.88). Based on the experiments of Clancy and Hogan [17] on 
a simulated EMG sequence y, it means that a weight 
parameter w in Eq. 4 is in the region 0.375 ≤ w ≤ 0.525. In this 
region, the EMG PDF (the density of y) is closer to Gaussian 
but MAV has a higher SNR. 

 , (4) 

where 0 ≤ w ≤ 1, xG is a sequence generated by a Gaussian 
model, and xL is a sequence generated by a Laplacian model. 
Both sequences are unit-variance. Hence, MAV is an optimal 
EMG amplitude detector for MCIs based on extensor muscle 
for female subjects. On average, the MAV is an optimal EMG 
amplitude detector for the upper-limb motions and the forearm 
muscles although the EMG PDF of some motions from the 
extensor muscle of female subjects is close to the Gaussian 
density. 

One interesting result is about the difference of EMG PDFs 
from the extensor muscle between genders. Based on the same 
motions, the EMG PDFs of female subjects tend to be more 
Gaussian density than that of male subjects (Tables I and III). 
As mentioned in the literature that when muscle contraction 
level increases the EMG PDF tends to a Gaussian distribution 
(using kurtosis and negentropy analysis) [15], [24]. It may be 
because female subjects have to use more muscle contraction 
level than male subjects to perform and maintain the same 
upper-limb motions (Fig. 1). Furthermore, Kaplanis et al. [16] 
found that the Gaussianity results depend on the electrode 
positions too, thus in future works the EMG PDFs of other 
useful forearm muscles should be examined. 

In order to confirm an optimal EMG amplitude detector in 
classifying upper-limb motions using forearm muscles for 
MCIs, the classification accuracies of MAV and RMS using 
different EMG data sets were presented in Table VII. On 
average the classification accuracies of the MAV feature are 
slightly higher than that of the RMS feature based on various 
hand, wrist, and forearm motions [11], [25]. The classification 
accuracies are obtained from state-of-the-art classifiers, i.e., 
the linear discriminant analysis (LDA) and the artificial neural 
networks (ANN). 

However, if only directions of wrist motions, e.g., forward, 
backward, left and right, are considered and the EMG are 
measured from extensor muscles more than flexor muscles, 
the classification accuracies of RMS are slightly higher than 
that of the MAV, as found in Yu et al. [26] and Kim et al. [27] 
by using the maximum likelihood estimation (MLE) and the 
LDA classifiers, respectively. This finding can be explained 
by the EMG PDFs of wrist motions from extensor muscle, as 
can be observed in Tables I and III that tend to a Gaussian 



distribution more than hand and forearm motions and also 
flexor muscle. 

TABLE VII 
A SURVEY OF CLASSIFICATION ACCURACIES OF MAV AND RMS IN THE 

CLASSIFICATION OF UPPER-LIMB MOTIONS. NOTE THAT EDC IS EXTENSOR 
DIGITORUM COMMUNIS MUSCLE, ECRL IS EXTENSOR CARPI RADIALIS 

LONGUS MUSCLE, BB IS BICEPS BRACHII, ECR IS EXTENSOR CARPI RADIALIS, 
FCU IS FLEXOR CARPI ULNARIS, BCR IS BRACHIORADIALIS, AE IS ARM 

EXTENSION, AF IS ARM FLEXION, AND 4WD IS FOUR DIRECTIONS OF WRIST 
MOTION INCLUDING FORWARD, BACKWARD, LEFT AND RIGHT. 

Accuracy, % Ref. Muscle Motion Classi-
fier RMS MAV 

[11] ECU,FCR,EDC,
ECRL,BB 

WE,WF,HO,HC, 
FP,FS,WR,WU LDA 86.21 86.49 

[25] ECU,FCR,ECR,
FCU,BCR,BB 

WE,WF,HO,HC,
AE,AF LDA 88.12 88.55 

[25] ECU,FCR,ECR,
FCU,BCR,BB 

WE,WF,HO,HC,
AE,AF ANN 85.43 88.84 

[26] ECU(both arms), 
FCR,ECRL 4WD MLE 96.40 95.98 

IV. CONCLUDING REMARKS 
The PDF of surface EMG recorded from forearm muscles 

associated with hand, wrist, and forearm motions was 
examined experimentally. It was found that the observed 
densities fell in between the Gaussian and the Laplacian 
densities, but the experimental EMG PDF can be adjusted 
with less error (the absolute area difference) to the Laplacian 
density on average. Based on the EMG PDF and the SNR 
performance, MAV is suggested to be an optimal EMG 
amplitude detector for EMG-based MCIs, in which EMG data 
are measured from forearm muscles during various upper-
limb motions. This finding is confirmed by the classification 
results obtained from several state-of-the-art classifiers, i.e., 
LDA and ANN. 
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