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Abstract 
 
In pattern recognition-based myoelectric control, high accuracy for multiple discriminated 
motions is presented in most of related literature. However, there is a gap between the 
classification accuracy and the usability of practical applications of myoelectric control, 
especially the effect of long-term usage. This paper proposes and investigates the behavior of 
fifty time-domain and frequency-domain features to classify ten upper limb motions using 
electromyographic data recorded during 21 days. The most stable single feature and multiple 
feature sets are presented with the optimum configuration of myoelectric control, i.e. data 
segmentation and classifier. The result shows that sample entropy (SampEn) outperforms 
other features when compared using linear discriminant analysis (LDA), a robust classifier. 
The averaged test classification accuracy is 93.37%, when trained in only initial first day. It 
brings only 2.45% decrease compared with retraining schemes. Increasing number of features 
to four, which consists of SampEn, the fourth order cepstrum coefficients, root mean square 
and waveform length, increase the classification accuracy to 98.87%. The proposed 
techniques achieve to maintain the high accuracy without the retraining scheme. 
Additionally, this continuous classification allows the real-time operation. 
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1. Introduction 
 
Myoelectric control systems (MCSs) have been used to control assistive and rehabilitation 
devices for many years by conducting the classified patterns of surface electromyography 
(EMG) signal (Oskoei & Hu, 2007; Peerdeman et al., 2011; Zecca, Micera, Carrozza & 
Dario, 2002). Most of related literature on EMG pattern recognition focuses on the 
improvement of classification accuracy and the number of discriminated motions (Oskoei & 
Hu, 2007; Zecca et al., 2002). Although accuracy has achieved above 90% for multiple 
discriminated motions using various combinations of advanced techniques in feature 
extraction, dimensionality reduction and pattern classification (Peerdeman et al., 2011), the 
usability of MCSs is still challenged by some issues (Boschmann, Kaufmann, Platzner & 
Winkler, 2010; Chen, Geng & Li, 2011; Fougner, Scheme, Chan, Englehart & Stavdahl, 
2011; Kaufmann, Englehart & Platzner, 2010; Tkach, Huang & Kuiken, 2010; Young, 
Hargrove & Kuiken, 2011, 2012; Zhang et al., 2007). These problems need to be solved for 
realizing practical applications of MCSs, such as effects of electrode location shift (Tkach et 
al., 2010; Young et al., 2010, 2011), variations in muscle contraction effort (Tkach et al., 
2010), variations in limb position (Chen et al., 2011; Fougner et al., 2011), and changes in 
EMG patterns over time (Boschmann et al., 2010; Kaufmann et al., 2010). 

Recently, the effect of long-term/prolonged usage has been emphasized in a few works 
(Boschmann et al., 2010; Kaufmann et al., 2010; Phinyomark, Phukpattaranont & Limsakul, 
2012a; Zhang et al., 2007). The conditions controlled for collecting training and testing data 
in most of related literature are only from one or a few days. On the other hand, EMG data 
measured in one day are relatively different from that in another day even on the same 
subjects (Jain, Singhal, Smith, Kaliki & Thakor, 2012). In addition, the EMG data recorded in 
the laboratory are likely different from what would be expected in the real-world usage. 
Therefore, the classification accuracies that are measured and reported in the published 
literature and in the clinically observed results tend to be different. 

To demonstrate the real-world use of MCSs, EMG data recorded under realistic 
conditions are required in order to provide the real classification accuracy. The long-term 
effect of fluctuating EMG signals in state-of-the art classification algorithms, with training 
and testing EMG data recorded from 21 days is presented clearly in Kaufmann et al. (2010). 
The results show that the classification accuracies decrease with increasing time difference 
between training and testing data and decrease gradually (>10%), if not being retrained, for 
four effective algorithms: multi-layer perceptron neural networks (MLP-NN) (Hudgins, 
Parker & Scott, 1993), support vector machine (SVM) (Oskoei & Hu, 2008), k-nearest 
neighbor (KNN) (Kim, Choi, Moon & Mun, 2011), and decision tree (DT) (Geethanjali & 
Ray, 2011) (Kaufmann et al., 2010). On the 
other hand, the classification accuracy drops only 3.6% for linear discriminant analysis 
(LDA) classifier, thus LDA is recommended as the robust classifier and it has been employed 
in several recent literatures (Tkach et al., 2010; Young et al., 2010, 2011) for developing 
robust pattern recognition-based MCSs. 

However, the classification accuracy achieved with LDA and 
approximately 80%. Moreover, due to a lack of evaluating the optimal robust EMG features 
(Boschmann et al., 2010; Kaufmann et al., 2010; Zhang et al., 2007), this paper proposes and 
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investigates the behavior of fifty TD and frequency domain (FD) features to classify ten 
upper limb motions using EMG data recorded during 21 days, in order to fulfill the 
completion of the previous study (Kaufmann et al., 2010) on finding the most stable 
combination between EMG feature extraction and classification algorithm. All features were 
evaluated with LDA when trained on the initial data, most recent data, and all preceding data. 
In addition, the optimum configuration of MCSs for the robust features is explored. 
 
2. Background 
 
In the past deca  (Englehart, Hudgins & Parker, 2001), myoelectric 
pattern recognition is often divided to three components: feature extraction, dimensionality 
reduction, and pattern recognition. The success of this system to achieve a high classification 
performance depends almost entirely on the selection of EMG features (Oskoei & Hu, 2007, 
2008). 
 
2.1 EMG Feature Extraction 
 
Feature extraction is a technique to transform raw input data into a reduced representation set 
of features, which is called a feature vector. A suitable feature vector should contain the 
useful information and discard the irrelevant/noise information (Zardoshti-Kermani, Wheeler, 
Badie & Hashemi, 1995). Based on the literature, EMG features can be separated into several 
groups: TD, FD or spectral domain, and time-scale or time-frequency domain (TFD) (Oskoei 
& Hu, 2007). In other words, features of EMG can be computed based on both linear and 
nonlinear analysis. 

TD features are extracted directly from raw EMG time series without any transformation, 
thus features in this group are easy to implement and require low computational load. On the 
other hand, FD features are usually statistical properties of power spectral density of EMG 
signal. 

Fifty features are proposed in this study. They are based on TD and FD and also linear 
and nonlinear analysis, as shown in Table 1 with the specific parameters and references for 
mathematical definition. All of these features have been previously used in the analysis of 
surface EMG signal. TD features are presented in the first 33 rows in Table 1 and remaining 
17 rows in the table are features in FD. 

The optimal parameters for the EMG features that were implemented in this study are 
based on the suggestion of related works and the preliminary experiments, as presented in 
Table 1. For instance, the m and r parameters of approximation entropy and sample entropy 
are based on the suggestion in the literature (Zhao, Jiang, Cai, Liu & Hirzinger, 2006a; Zhao, 
Xie, Jiang, Cai, Liu & Hirzinger, 2006b), or the threshold value which is used in slope sign 
change and Willison amplitude is based on the preliminary experiments in this study. 

However, features in the TFD group, e.g. discrete wavelet transform (DWT) and wavelet 
packet transform (WPT), are not included in this study based on two reasons: 

(1) TD features achieve higher accuracy than TFD features for the LDA classifier, 
whereas TFD features achieve higher accuracy than TD features for the SVM classifier 
(Lorrain, Jiang & Farina, 2011; Phinyomark et al., 2012a). Due to a robustness of LDA over 



4 

SVM as described (Kaufmann et al., 2010), the development of EMG pattern recognition 
should be based on the LDA classifier. 

(2) TD features show a better performance than TFD features in the classification of both 
transient and steady-state EMG signal using LDA (Lorrain et al., 2011). Due to a drawback 
of classifying only transient signal or only steady-state signal, the development of EMG 
pattern recognition should be based on the continuous classification of the both signal types 
(Yang, Zhao, Jiang & Liu, 2012). 

In addition, it is clearly shown that raw wavelet coefficients are not possible to be used if 
additional feature extraction and/or feature projection is not applied. For instance, feature 
extraction that is applied for wavelet coefficients is usually TD techniques (Hariharan, Fook, 
Sindhu, Ilias & Yaacob, 2012; Phinyomark, Nuidod, Phukpattaranont & Limsakul, 2012b). 
Principle component analysis (PCA) and uncorrelated LDA (ULDA) are two popular used 
feature projection in EMG signal classification (Englehart et al., 2001; Phinyomark et al., 
2012a). The classification performance of these features also depends on wavelet parameters 
such as mother families and decomposition level (Hariharan et al., 2012; Phinyomark et al., 
2012b). 

 
2.2 Dimensionality Reduction and Pattern Classification 
 
Dimensionality reduction is a technique to reduce the dimension of an original feature vector, 
while preserving the most discriminative information and removing the remaining irrelevant 
information, for reducing the computational time in a classifier. This technique is mostly 
applied for TFD features (Englehart et al., 2001) which provide a high vector dimension. 
Additionally, it improves small accuracy of classification for the TD and FD features 
(Phinyomark et al., 2012a). Hence, the dimensionality reduction technique is not applied in 
this study. 

LDA is used as a pattern classification algorithm in this study. In addition to the robust 
property of LDA, this classifier was chosen based on several reasons (Englehart et al., 2001; 
Jain et al., 2012; Kaufmann et al., 2010), i.e. it is a simple statistical approach and does not 
require any parameter adjustment. LDA is also a computationally efficient real-time 
operation. The classification performance of LDA is similar to more complex classification 
algorithms such as MLP-NN and SVM (Kaufmann et al., 2010; Oskoei & Hu, 2008). 
 
3. Data Collection 
 
The EMG dataset used to test the proposed EMG features was provided by the University of 
Paderborn in Germany. It is the same EMG dataset that is used in the evaluation of EMG 
classification algorithms (Kaufmann et al., 2010). The data were obtained using a portable 
EMG data recording device (NeXus-10, Mind Media BV). The EMG data were collected 
from a male non-amputee subject from four electrode-pair positions on the top, bottom, 
medial, and lateral sides of the forearm (ch0-ch3) with the reference (r) at the wrist, as shown 
in Fig. 1. These signals were sampled at 2048 Hz with a high resolution of 24 bits. 

The EMG data were collected as the volunteer performed eleven upper limb motions 
including (m1) extension, (m2) flexion, (m3) ulnar deviation, (m4) radial deviation, (m5) 
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pronation, (m6) supination, (m7) open, (m8) close, (m9) key grip, (m10) pincer grip, and 
(m11) extract index finger. Because, the energy of the pincer grip grows considerably over 
the trials, thus only ten motions (m1-m9, m11) were included for the data analysis 
(Kaufmann et al., 2010). 

To investigate the long-term EMG effect, the EMG data were recorded for 21 days with 
five to six trials per day. In total, 121 trials are obtained from 21 days. Within each trial, all 
motions were performed in the same sequence by the subject and each motion is maintained 
for five seconds. At the start, the end, and between motions, the rest periods were introduced 
as can be observed from the example of one trial in Fig. 2. Each contraction period can be 
divided roughly into a one-second onset phase and a four-second subsequent steady-state 
phase. Therefore, only the data of the steady-state phase were used for the classification 
experiments (Kaufmann et al., 2010). 

It should be emphasized that the exact electrode positions were marked specifically for 
the subject in order to be able to reestablish the experimental setup on different days. 
Furthermore, to approximate realistic conditions of MCSs, the recordings were performed 
under various subject conditions, such as after sleep and meals, and after periods of high and 
low physical activity. 
 
4. Data Analysis 
 
4.1 Investigation of Robust Single EMG Feature 
 
All EMG features in Table 1 were used to investigate the effect of long-term usage of the 
pattern recognition-based myoelectric control. Three experiments that are proposed in the 
evaluating EMG classification algorithms (Kaufmann et al., 2010) were used. 

The fluctuating EMG data, which are used as training and testing data, contained 121 trials 
in total from 21 days. All experiments used the EMG trials (i = 2-121) as the testing set, 
whereas the training set trials are different in each experiment: (1) training on the initial data 
(only the first day), (2) training on the most recent data (five recent preceding trials), and (3) 
all preceding data. For a test trial i i aining set can be defined 
respectively as follows: 

1) , ..., min( , 1)i s i , 
2) max( ,1), ..., 1i s i , 
3)1, ..., 1i . 

where the number of trials s is set at 5, because five trials corresponded to the EMG data 
collected from one day and were enough to gain high classification accuracy for the 
classifiers (Kaufmann et al., 2010). 

The classification accuracies were obtained from LDA with a segment length of 250 ms 
(512 samples). An overlapped segmentation with an increment of 125 ms (256 samples) was 
applied. 

The selection of the most robust EMG features is based on the result of the first 
experiment. The stable feature should succeed in maintaining high classification accuracy 
(>80%) (Peerdeman et al., 2011), whether the time difference between training and testing 
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data increased. Furthermore, the differences between accuracies obtained from three 
experiments can be observed in order to find the suitable training approach. 
 
4.2 Investigation of Robust Multiple EMG Feature Sets 
 
Using a single feature for the continuous classification may make it difficult to reach a high 
accuracy. Multiple feature sets have been employed and succeeded in the classification of 
multiple motions-based EMG signal (usually more than 4 motion classes) in many recent 
researches (Oskoei & Hu, 2007; Peerdeman et al., 2011). 

The possible combinations of two to four features were applied to the LDA classifier. 
The number of multiple features in this study is based on the finding result in previous study 
(Phinyomark, Phukattaranont & Limsakul, 2012c) that many TD and FD features provide 
similar information and patterns in feature space. Thus, increasing the number of redundant 
features would improve a little classification performance and four features are enough to 
gain high classification accuracy. The features were computed from overlapped segments 
with a length of 250 ms and an increment of 125 ms. The possible combinations of two, 
three, and four multiple features from a total of 50 features are 1225, 19600, and 230300 
feature sets. 
 
4.3 Optimum Configuration of MCSs for Robust Features 
 
The optimum configuration of robust features based MCSs was investigated consisting of the 
classification algorithm and the data segmentation. 

For the classification algorithm, LDA shows more robust when not being trained 
iteratively compared to MLP-NN, SVM, KNN, and DT using the same EMG dataset 
(Kaufmann et al., 2010). In this study, two new state-of-the art classifiers, namely random 
forests (RFS) (Breiman, 2001) and quadratic discriminant analysis (QDA) (Kim et al., 2011), 
were compared with LDA. 

The QDA classifier can be seen as a more general version of LDA, which separates the 
classes of objects by a quadratic surface instead of linear, as implemented in LDA classifier. 
The RFS classifier is closely related to DT. It is an ensemble classifier of DTs. RFS also 
shows better performances than LDA, QDA, KNN, MLP-NN and SVM in the classification 
of grasping of objects (Liarokapis, Artemiadis, Katsiaris, Kyriakopoulos & Manolakos, 
2012). 

For the data segmentation, a segment length which is used to compute features in the 
previous experiments is set at 250 ms. This segment length contains enough information to 
estimate a motion and can performs real-time operation (Oskoei & Hu, 2008). However, a 
segment smaller than 250 ms could reduce the computation time, while leads to increase the 
variation in estimated feature. On the other hand, a segment larger than 250 ms could 
decrease the variance of estimation, while it leads to increase the computational load. 

To use a larger segment, the overlapped segmentation is applied instead of the disjoint 
segmentation. The accuracy of classification with a segment length of 125, 250, and 500 ms 
(256, 512, and 1024 samples) and an increment of 62.5, 125, and 250 ms (128, 256, and 512 
samples) were examined for both types of segmentation. The increment can be defined as an 
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interval of time between two consecutive segments and should be less than 300 ms to 
avoiding failure in real-time operation.  

In total, eight options of segmentation (segment length, increment) were proposed: (125 
ms, 62.5 ms), (125 ms, 125 ms), (250 ms, 62.5 ms), (250 ms, 125 ms), (250 ms, 250 ms), 
(500 ms, 62.5 ms), (500 ms, 125 ms), and (500 ms, 250 ms). 
 
5. Results and Discussion 
 
5.1 Robust Single EMG Feature 
 
The averaged classification accuracies obtained from LDA of all test trials for 50 features for 
3 experiments are presented in Table 2. SampEn has the highest classification accuracy, 
followed by ApEn and MFL. Without retraining scheme, the accuracy of SampEn is 93.37%. 
It drops only by 3.24% and 2.45% compared with training in recent preceding data and all 
preceding data, respectively. The SampEn provides 8.69% accuracy higher than ApEn, the 
second rank of the 50 features. The accuracy of ApEn is 84.68%. Furthermore, the results 
clearly show that the best single feature, SampEn achieves better classification performance 

increases from 78.73% to 93.37% (Kaufmann et al., 2010). 
The SampEn also has better classification performance than the other EMG features 

using five recent preceding trials for training, followed closely by the MFL and DASDV. On 
the other hand, the MFL has a bit improved classification accuracy than the SampEn using all 
receding trials for training. However, the accuracy of MFL and DASDV degrades with rising 
time difference between training and testing data (when test trial i > 30 or > 6 days), as can 
be seen in Fig. 3. Note that the horizontal axis in Fig. 3 shows the test trial i and the vertical 
axis shows the corresponding test accuracy. 

Based on the discriminating ten upper limb motions using four forearm EMG channels, 
the SampEn performs the best in both classification accuracy and stability. 

There are several interested issues from the experimental results that could be discussed 
as follows: 

(1) The difference of classification accuracies when trained in recent preceding five trials 
and all preceding trials, as shown in Table 3, is not statistically significant in 40 features and 
the accuracy of using five recent trials (T1) for training is higher than the another scheme 
(T2) for 35 features. It means that it is not necessary to use all preceding data as a training set 
and we can reduce the size of training set by using only the recent EMG data. This may be 
due to the variation in muscle contraction effort and the difference in subject conditions 
between days, thus the excluded trials would have provided less relevant information for the 
classification system. 

(2) SampEn shows a success as the robust muscle activity onset detection against the 
spurious spikes in surface EMG signal by using global tolerance r (Zhang & Zhou, 2012). 
The global tolerance scheme is also recommended to use in the estimation of grasping force 
(Kamavuako, Farina, Yoshida & Jensen, 2012) compared to the local tolerance scheme or 
standard SampEn. In this study, the global tolerance scheme is applied. This scheme sets a 
uniform tolerance for the signal of all the analysis segments instead of each analysis segment, 
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as implemented in the local tolerance scheme. This parameter is critical in reducing the effect 
of large variations in motions-based EMG signal. 

The tolerance r is set as 0.20 × , in this study, where  is the standard deviation of the 
EMG time series. This value is based on the suggestion of Richman and Moorman (2000). 
The global tolerance r, which was set as 0.20 × , also provides good performances in the 
classification of finger motions-based surface EMG signal (Zhao et al., 2006a) and the 
estimation of grasping force-based intramuscular EMG signal (Kamavuako et al., 2012). 
More details about the theory of SampEn are presented in the Appendix. 

(3) As mentioned above that SampEn with global tolerance scheme showed a success as 
both the onset detection method (compared to the amplitude thresholding and Teager-Kaiser 
Energy operation-based methods (Zhang & Zhou, 2012) and force estimation method 
(compared to the global discharge rate and RMS methods (Richman & Moorman, 2000), the 
SampEn feature would be useful not only in continuous classification, as presented in this 
study, but also in discrete classification. In other words, it would be useful to classify and 
estimate both type and force level of movements simultaneously, while improve the 
robustness to noise. 

(4) The stable single features i.e. SampEn, ApEn, and MFL are nonlinear signal 
processing methods (Arjunan & Kumar, 2010; Phinyomark, Phukpattaranont & Limsakul, 
2012d; Zhang & Zhou, 2012; Zhao et al., 2006a, 2006b). As mentioned in several studies, 
one of the major properties of surface EMG signal is nonlinearlity. Nonlinear analysis 
techniques can extract the real hidden information from surface EMG data and these 
techniques are robust to the low-level muscle contraction (Phinyomark et al., 2012d) and 
noise (Zhang & Zhou, 2012). These features contain the complexity information and can be 
used to highlight bursts of surface EMG signal. 

(5) TD features imposed relatively high performance of classification and low load of 
computation compared to FD features. All FD features provided weak performance during 
classification (< 67%), except three FD features (i.e. MNP, TTP, and SM), that have the same 
discrimination in feature space as TD features. It means that the patterns of FD features are 
not sufficiently discriminative to identify the upper limb motions. However, the patterns of 
the TD and FD features are different, and multiple TD and FD features may increase the class 
separability, as can be observed in Table 4, such as SampEn + MNF and SampEn + FR. 
 
5.2 Robust Multiple EMG Feature Sets 
 
Based on the results in the previous study (Phinyomark et al., 2012c), most of TD and FD 
features are redundant. In other words, they share similar properties and information. Hence, 
it does not guarantee that combinations of several good robust single features would provide 
good robust multiple-feature sets. For instance, both SampEn and ApEn are entropy 
estimation techniques (Richman & Moorman, 2000), or TD features like IAV, MAV, and 
RMS are based on the energy information (Phinyomark et al., 2012c). 

In this study, the classification performance obtained with all the possible combinations 
of 50 features to make two, three and four multiple-features are evaluated and the best ten 
combinations in each multiple-feature type are presented in Table 4. 
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Classification accuracies obtained from the multiple feature sets increase compared to 
the single features. They reach 97-98%, while the variation in the accuracy during test trials 
decreases (<3%) for the robust multiple feature sets.  The best feature sets for two, three, and 
four features are respectively SampEn + CC, SampEn + CC + MAV2, and SampEn + CC + 
RMS + WL/AAC. 

Based on the discriminating ten upper limb motions using four forearm EMG channels, 
the best feature set (i.e. SampEn, CC, RMS and WL) provides 97.75% accuracy with the real-
time operation and stability of classification performance. It should be noted that WL is 
chosen instead of AAC because WL and AAC provide the same feature space when WL 
requires less computational cost than AAC. The dimension of feature vector is 7 (one value 
from each of SampEn, RMS and WL, and four values from CC). Moreover, the patterns in 
space of four features in the best robust set are different. These four features provide the 
useful information based on the similarity, the energy, the complexity, and the predicting 
model (Phinyomark et al., 2012c). 
 
5.3 Optimum Configuration for Robust Features 
 
The accuracies of LDA with the robust single feature and multiple-feature sets are compared 
with RFS and QDA. The results are shown in Fig. 4. The features were computed with a 
segment length of 250 ms and an increment of 125 ms and all classifiers were trained in the 
first five trials or only the first day. It can be clearly seen that the LDA classifier yields better 
performance than the RFS and QDA classifiers. Among the proposed classifiers, LDA 
performs the best in classification accuracy, stability, and computational load. 

Table 5 shows the performance of classification in different segment lengths. The results 
show that accuracy increases by increasing the segment length from 125 ms to 500 ms. This 
is because a larger segment provides additional information and yields small bias and 
variance in the estimation of feature. The optimal segment length is 500 ms. The results also 
show that it does differ significantly by changing the segment length from 125 ms to 250 ms 
(about 2-3%), but it does not largely differ by changing the segment length from 250 ms to 
500 ms (<1%). In addition, the performance of the overlapped segmentation has no 
improvement of classification accuracy, but it is significant to employ the large segment 
(greater than 200 ms) in order to avoiding a delay time. 
 
6. Conclusion 
 
For realizing practical applications of MCSs, the effect of long-term usage or reusability is 
carefully considered in this study. Fifty EMG features in TD and FD are evaluated by using 
EMG recorded from 21 days. From the results, four main points are summarized as in the 
following: 

(1) SampEn is the best robust single feature and SampEn + CC + RMS + WL set is the 
best robust multiple-feature set. 

(2) Features based on TD show a better performance than FD features for robust EMG 
pattern classification. 
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(3) LDA shows a better performance in the classification of fluctuating EMG signals 
compared to several classifiers i.e. RFS, QDA, MLP-NN, SVM, KNN, and DT. 

(4) The suitable data segmentation is the overlapped segment with a length of 500 ms 
and an increment of 125 ms. This segment condition can be operated in real-time and 
provides high accuracy. 

(5) The performance of the fifty EMG features proposed in this paper has been reported 
before in the literature, but it is difficult to compare their performances due to the difference 
in the experiments. The performance of the fifty features is compared under the same EMG 
dataset in this paper. This could be useful in the selection of EMG features for MCSs in 
future research. 

The findings in this study can be applied in many EMG applications. In human computer 
interaction (HCI) (Saponas et al., 2009), for instance, a novel fusion of an interactive surface 
and EMG signal (Benko, Saponas, Morris & Tan, 2009) would provide useful interaction 
capabilities if the EMG system can be used in many days without retraining schemes as same 
as the interactive surfaces that do not require the retraining procedure. 
 
Appendix 
 

SampEn is feature extracted similarity information in time series. This entropy feature is 
developed from the ApEn in order to avoid the bias caused by self-matching. SampEn can be 
expressed as 

 SampEn , , ln m mm r N A r B r ,  (A1) 

where Bm(r) and Am(r) are the probability that two series will match for m and m+1 points, 
respectively. Hence, the SampEn is the negative natural logarithm of an estimate of the 
conditional probability that the patterns of the time series that are similar to each other within 
a predefined tolerance r will remain similar for the next comparison point (Richman & 
Moorman, 2000). 
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Figure captions 
 
Fig. 1. The electrode placement used in the four-channel EMG acquisition (Anatomy of the 
human body, 1918). 
 
Fig. 2. The example of EMG data from one trial from ch0. 
 
Fig. 3. i 
ApEn, (c) MFL, (d) DASDV, when trained in the first five, recent preceding five, and all 
preceding trials. 
 
Fig. 4. Averaged test classification accuracy (%) of the best single feature and multiple-
feature sets, when trained in the first five trials using the LDA, RFS and QDA classifiers with 
a segment length of 250 ms and an increment of 125 ms. The error bars show the standard 
deviation across trials. 



Highlights 
 
 

 The medium-term robustness of EMG signals for prosthetic control is investigated. 
 

 The effect of 50 EMG features has been extensively examined. 
 

 A single optimal robust EMG feature is sample entropy. 
 
 Linear discriminant analysis is better than other state-of-the-art classifiers in robustness. 

 
 Average accuracy is 98.87% without retraining classifier for EMG recorded for 21 days. 

*Highlights (for review)
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Table 2 A
veraged test classification accuracy (%

) and its standard deviation of fifty features, w
hen trained in the first five, recent preceding five, 

and all preceding trials. Sorting is done based on the first five trials colum
n from
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ean values. B
old num

bers 
represent the highest three classification accuracies achieved in each experim

ent. 
 

Feature 
First 5 trials 

Preceding 5 trials 
A

ll preceding trials 

M
ean 

SD
 

M
ean 

SD
 

M
ean 

SD
 

Sam
pEn 

93.37 
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95.82 
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Table 3 The difference of classification accuracies w
hen trained in recent preceding five (T1) and all preceding (T2) trials. 
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Table 4 H
ighest averaged test classification accuracy (%

) and its standard deviation of ten single features and ten of each m
ultiple-feature 

groups, w
hen trained in the first five trials. 
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Table 5 A
veraged test classification accuracy (%

) of Sam
pEn and Sam

pEn + C
C

 + R
M

S + W
L, w

hen trained in the first five trials using LD
A

 
by changing the segm

ent length and increm
ent. 

 

Segm
ent length (m

s), 
increm

ent (m
s) 
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pEn 
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pEn+C

C
+R

M
S+W

L 

M
ean 

SD
 

M
ean 

SD
 

125, 62.5 
89.93 

5.22 
95.71 

3.71 

125, 125 
90.28 

5.20 
95.49 

3.73 

250, 62.5 
93.39 

5.07 
97.79 

2.77 
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93.37 

5.03 
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93.46 
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2.72 

500, 62.5 
93.31 

5.18 
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2.14 
 

Table 5
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