Manuscript

Click here to view linked References

EMG Feature Evaluation for Improving Myoelectric Pattern Recognition
Robustness

Angkoon Phinyomark™, Franck Quaine?, Sylvie Charbonnier®, Christine Serviere®,
Franck Tarpin-Bemardb, Yann Laurillau®

angkoon.p@hotmail.com, franck.quaine@gipsa-lab.grenoble-inp.fr,
sylvie.charbonnier@gipsa-lab.grenoble-inp.fr, christine.serviere@gipsa-lab.grenoble-inp.fr,
franck.tarpin-bernard@imag.fr, yann.laurillau@imag.fr

* GIPSA Laboratory, CNRS UMR 5216, Control System Department, SAIGA team,
University Joseph Fourier, Grenoble, France
*LIG Laboratory, CNRS UMR 5217, University of Grenoble, Grenoble, France

Abstract

In pattern recognition-based myoelectric control, high accuracy for multiple discriminated
motions is presented in most of related literature. However, there is a gap between the
classification accuracy and the usability of practical applications of myoelectric control,
especially the effect of long-term usage. This paper proposes and investigates the behavior of
fifty time-domain and frequency-domain features to classify ten upper limb motions using
electromyographic data recorded during 21 days. The most stable single feature and multiple
feature sets are presented with the optimum configuration of myoelectric control, i.e. data
segmentation and classifier. The result shows that sample entropy (SampEn) outperforms
other features when compared using linear discriminant analysis (LDA), a robust classifier.
The averaged test classification accuracy is 93.37%, when trained in only initial first day. It
brings only 2.45% decrease compared with retraining schemes. Increasing number of features
to four, which consists of SampEn, the fourth order cepstrum coefficients, root mean square
and waveform length, increase the classification accuracy to 98.87%. The proposed
techniques achieve to maintain the high accuracy without the retraining scheme.
Additionally, this continuous classification allows the real-time operation.
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1. Introduction

Myoelectric control systems (MCSs) have been used to control assistive and rehabilitation
devices for many years by conducting the classified patterns of surface electromyography
(EMQG) signal (Oskoei & Hu, 2007; Peerdeman et al., 2011; Zecca, Micera, Carrozza &
Dario, 2002). Most of related literature on EMG pattern recognition focuses on the
improvement of classification accuracy and the number of discriminated motions (Oskoei &
Hu, 2007; Zecca et al., 2002). Although accuracy has achieved above 90% for multiple
discriminated motions using various combinations of advanced techniques in feature
extraction, dimensionality reduction and pattern classification (Peerdeman et al., 2011), the
usability of MCSs is still challenged by some issues (Boschmann, Kaufmann, Platzner &
Winkler, 2010; Chen, Geng & Li, 2011; Fougner, Scheme, Chan, Englehart & Stavdahl,
2011; Kaufmann, Englehart & Platzner, 2010; Tkach, Huang & Kuiken, 2010; Young,
Hargrove & Kuiken, 2011, 2012; Zhang et al., 2007). These problems need to be solved for
realizing practical applications of MCSs, such as effects of electrode location shift (Tkach et
al., 2010; Young et al., 2010, 2011), variations in muscle contraction effort (Tkach et al.,
2010), variations in limb position (Chen et al., 2011; Fougner et al., 2011), and changes in
EMG patterns over time (Boschmann et al., 2010; Kaufmann et al., 2010).

Recently, the effect of long-term/prolonged usage has been emphasized in a few works
(Boschmann et al., 2010; Kaufmann et al., 2010; Phinyomark, Phukpattaranont & Limsakul,
2012a; Zhang et al., 2007). The conditions controlled for collecting training and testing data
in most of related literature are only from one or a few days. On the other hand, EMG data
measured in one day are relatively different from that in another day even on the same
subjects (Jain, Singhal, Smith, Kaliki & Thakor, 2012). In addition, the EMG data recorded in
the laboratory are likely different from what would be expected in the real-world usage.
Therefore, the classification accuracies that are measured and reported in the published
literature and in the clinically observed results tend to be different.

To demonstrate the real-world use of MCSs, EMG data recorded under realistic
conditions are required in order to provide the real classification accuracy. The long-term
effect of fluctuating EMG signals in state-of-the art classification algorithms, with training
and testing EMG data recorded from 21 days is presented clearly in Kaufmann et al. (2010).
The results show that the classification accuracies decrease with increasing time difference
between training and testing data and decrease gradually (>10%), if not being retrained, for
four effective algorithms: multi-layer perceptron neural networks (MLP-NN) (Hudgins,
Parker & Scott, 1993), support vector machine (SVM) (Oskoei & Hu, 2008), k-nearest
neighbor (KNN) (Kim, Choi, Moon & Mun, 2011), and decision tree (DT) (Geethanjali &
Ray, 2011) using Hudgins’ time domain (TD) feature set (Kaufmann et al., 2010). On the
other hand, the classification accuracy drops only 3.6% for linear discriminant analysis
(LDA) classifier, thus LDA is recommended as the robust classifier and it has been employed
in several recent literatures (Tkach et al., 2010; Young et al., 2010, 2011) for developing
robust pattern recognition-based MCSs.

However, the classification accuracy achieved with LDA and Hudgins’ TD feature set is
approximately 80%. Moreover, due to a lack of evaluating the optimal robust EMG features
(Boschmann et al., 2010; Kaufmann et al., 2010; Zhang et al., 2007), this paper proposes and



investigates the behavior of fifty TD and frequency domain (FD) features to classify ten
upper limb motions using EMG data recorded during 21 days, in order to fulfill the
completion of the previous study (Kaufmann et al., 2010) on finding the most stable
combination between EMG feature extraction and classification algorithm. All features were
evaluated with LDA when trained on the initial data, most recent data, and all preceding data.
In addition, the optimum configuration of MCSs for the robust features is explored.

2. Background

In the past decade’s literature on MCSs (Englehart, Hudgins & Parker, 2001), myoelectric
pattern recognition is often divided to three components: feature extraction, dimensionality
reduction, and pattern recognition. The success of this system to achieve a high classification
performance depends almost entirely on the selection of EMG features (Oskoei & Hu, 2007,
2008).

2.1 EM G Feature Extraction

Feature extraction is a technique to transform raw input data into a reduced representation set
of features, which is called a feature vector. A suitable feature vector should contain the
useful information and discard the irrelevant/noise information (Zardoshti-Kermani, Wheeler,
Badie & Hashemi, 1995). Based on the literature, EMG features can be separated into several
groups: TD, FD or spectral domain, and time-scale or time-frequency domain (TFD) (Oskoei
& Hu, 2007). In other words, features of EMG can be computed based on both linear and
nonlinear analysis.

TD features are extracted directly from raw EMG time series without any transformation,
thus features in this group are easy to implement and require low computational load. On the
other hand, FD features are usually statistical properties of power spectral density of EMG
signal.

Fifty features are proposed in this study. They are based on TD and FD and also linear
and nonlinear analysis, as shown in Table 1 with the specific parameters and references for
mathematical definition. All of these features have been previously used in the analysis of
surface EMG signal. TD features are presented in the first 33 rows in Table 1 and remaining
17 rows in the table are features in FD.

The optimal parameters for the EMG features that were implemented in this study are
based on the suggestion of related works and the preliminary experiments, as presented in
Table 1. For instance, the mand r parameters of approximation entropy and sample entropy
are based on the suggestion in the literature (Zhao, Jiang, Cai, Liu & Hirzinger, 2006a; Zhao,
Xie, Jiang, Cai, Liu & Hirzinger, 2006b), or the threshold value which is used in slope sign
change and Willison amplitude is based on the preliminary experiments in this study.

However, features in the TFD group, e.g. discrete wavelet transform (DWT) and wavelet
packet transform (WPT), are not included in this study based on two reasons:

(1) TD features achieve higher accuracy than TFD features for the LDA classifier,
whereas TFD features achieve higher accuracy than TD features for the SVM classifier
(Lorrain, Jiang & Farina, 2011; Phinyomark et al., 2012a). Due to a robustness of LDA over



SVM as described (Kaufmann et al., 2010), the development of EMG pattern recognition
should be based on the LDA classifier.

(2) TD features show a better performance than TFD features in the classification of both
transient and steady-state EMG signal using LDA (Lorrain et al., 2011). Due to a drawback
of classifying only transient signal or only steady-state signal, the development of EMG
pattern recognition should be based on the continuous classification of the both signal types
(Yang, Zhao, Jiang & Liu, 2012).

In addition, it is clearly shown that raw wavelet coefficients are not possible to be used if
additional feature extraction and/or feature projection is not applied. For instance, feature
extraction that is applied for wavelet coefficients is usually TD techniques (Hariharan, Fook,
Sindhu, Ilias & Yaacob, 2012; Phinyomark, Nuidod, Phukpattaranont & Limsakul, 2012b).
Principle component analysis (PCA) and uncorrelated LDA (ULDA) are two popular used
feature projection in EMG signal classification (Englehart et al., 2001; Phinyomark et al.,
2012a). The classification performance of these features also depends on wavelet parameters
such as mother families and decomposition level (Hariharan et al., 2012; Phinyomark et al.,
2012b).

2.2 Dimensionality Reduction and Pattern Classification

Dimensionality reduction is a technique to reduce the dimension of an original feature vector,
while preserving the most discriminative information and removing the remaining irrelevant
information, for reducing the computational time in a classifier. This technique is mostly
applied for TFD features (Englehart et al., 2001) which provide a high vector dimension.
Additionally, it improves small accuracy of classification for the TD and FD features
(Phinyomark et al., 2012a). Hence, the dimensionality reduction technique is not applied in
this study.

LDA is used as a pattern classification algorithm in this study. In addition to the robust
property of LDA, this classifier was chosen based on several reasons (Englehart et al., 2001;
Jain et al., 2012; Kaufmann et al., 2010), i.e. it is a simple statistical approach and does not
require any parameter adjustment. LDA is also a computationally efficient real-time
operation. The classification performance of LDA is similar to more complex classification
algorithms such as MLP-NN and SVM (Kaufmann et al., 2010; Oskoei & Hu, 2008).

3. Data Coallection

The EMG dataset used to test the proposed EMG features was provided by the University of
Paderborn in Germany. It is the same EMG dataset that is used in the evaluation of EMG
classification algorithms (Kaufmann et al., 2010). The data were obtained using a portable
EMG data recording device (NeXus-10, Mind Media BV). The EMG data were collected
from a male non-amputee subject from four electrode-pair positions on the top, bottom,
medial, and lateral sides of the forearm (ch0-ch3) with the reference (r) at the wrist, as shown
in Fig. 1. These signals were sampled at 2048 Hz with a high resolution of 24 bits.

The EMG data were collected as the volunteer performed eleven upper limb motions
including (m1) extension, (m2) flexion, (m3) ulnar deviation, (m4) radial deviation, (m5)



pronation, (m6) supination, (m7) open, (m8) close, (m9) key grip, (m10) pincer grip, and
(ml1) extract index finger. Because, the energy of the pincer grip grows considerably over
the trials, thus only ten motions (ml-m9, mll) were included for the data analysis
(Kaufmann et al., 2010).

To investigate the long-term EMG effect, the EMG data were recorded for 21 days with
five to six trials per day. In total, 121 trials are obtained from 21 days. Within each trial, all
motions were performed in the same sequence by the subject and each motion is maintained
for five seconds. At the start, the end, and between motions, the rest periods were introduced
as can be observed from the example of one trial in Fig. 2. Each contraction period can be
divided roughly into a one-second onset phase and a four-second subsequent steady-state
phase. Therefore, only the data of the steady-state phase were used for the classification
experiments (Kaufmann et al., 2010).

It should be emphasized that the exact electrode positions were marked specifically for
the subject in order to be able to reestablish the experimental setup on different days.
Furthermore, to approximate realistic conditions of MCSs, the recordings were performed
under various subject conditions, such as after sleep and meals, and after periods of high and
low physical activity.

4. Data Analysis
4.1 Investigation of Robust Single EM G Feature

All EMG features in Table 1 were used to investigate the effect of long-term usage of the
pattern recognition-based myoelectric control. Three experiments that are proposed in the
evaluating EMG classification algorithms (Kaufmann et al., 2010) were used.

The fluctuating EMG data, which are used as training and testing data, contained 121 trials
in total from 21 days. All experiments used the EMG trials (/ = 2-121) as the testing set,
whereas the training set trials are different in each experiment: (1) training on the initial data
(only the first day), (2) training on the most recent data (five recent preceding trials), and (3)
all preceding data. For a test trial /, 2 </ < 121, the indices of the training set can be defined
respectively as follows:

1)i,...,min(§i—1),
2)ymax(i—s§l),...,i—1,
..., i—1.

where the number of trials Sis set at 5, because five trials corresponded to the EMG data
collected from one day and were enough to gain high classification accuracy for the
classifiers (Kaufmann et al., 2010).

The classification accuracies were obtained from LDA with a segment length of 250 ms
(512 samples). An overlapped segmentation with an increment of 125 ms (256 samples) was
applied.

The selection of the most robust EMG features is based on the result of the first
experiment. The stable feature should succeed in maintaining high classification accuracy
(>80%) (Peerdeman et al., 2011), whether the time difference between training and testing



data increased. Furthermore, the differences between accuracies obtained from three
experiments can be observed in order to find the suitable training approach.

4.2 I nvestigation of Robust M ultiple EM G Feature Sets

Using a single feature for the continuous classification may make it difficult to reach a high
accuracy. Multiple feature sets have been employed and succeeded in the classification of
multiple motions-based EMG signal (usually more than 4 motion classes) in many recent
researches (Oskoei & Hu, 2007; Peerdeman et al., 2011).

The possible combinations of two to four features were applied to the LDA classifier.
The number of multiple features in this study is based on the finding result in previous study
(Phinyomark, Phukattaranont & Limsakul, 2012c) that many TD and FD features provide
similar information and patterns in feature space. Thus, increasing the number of redundant
features would improve a little classification performance and four features are enough to
gain high classification accuracy. The features were computed from overlapped segments
with a length of 250 ms and an increment of 125 ms. The possible combinations of two,
three, and four multiple features from a total of 50 features are 1225, 19600, and 230300
feature sets.

4.3 Optimum Configuration of MCSsfor Robust Features

The optimum configuration of robust features based MCSs was investigated consisting of the
classification algorithm and the data segmentation.

For the classification algorithm, LDA shows more robust when not being trained
iteratively compared to MLP-NN, SVM, KNN, and DT using the same EMG dataset
(Kaufmann et al., 2010). In this study, two new state-of-the art classifiers, namely random
forests (RFS) (Breiman, 2001) and quadratic discriminant analysis (QDA) (Kim et al., 2011),
were compared with LDA.

The QDA classifier can be seen as a more general version of LDA, which separates the
classes of objects by a quadratic surface instead of linear, as implemented in LDA classifier.
The RFS classifier is closely related to DT. It is an ensemble classifier of DTs. RFS also
shows better performances than LDA, QDA, KNN, MLP-NN and SVM in the classification
of grasping of objects (Liarokapis, Artemiadis, Katsiaris, Kyriakopoulos & Manolakos,
2012).

For the data segmentation, a segment length which is used to compute features in the
previous experiments is set at 250 ms. This segment length contains enough information to
estimate a motion and can performs real-time operation (Oskoei & Hu, 2008). However, a
segment smaller than 250 ms could reduce the computation time, while leads to increase the
variation in estimated feature. On the other hand, a segment larger than 250 ms could
decrease the variance of estimation, while it leads to increase the computational load.

To use a larger segment, the overlapped segmentation is applied instead of the disjoint
segmentation. The accuracy of classification with a segment length of 125, 250, and 500 ms
(256, 512, and 1024 samples) and an increment of 62.5, 125, and 250 ms (128, 256, and 512
samples) were examined for both types of segmentation. The increment can be defined as an



interval of time between two consecutive segments and should be less than 300 ms to
avoiding failure in real-time operation.

In total, eight options of segmentation (segment length, increment) were proposed: (125
ms, 62.5 ms), (125 ms, 125 ms), (250 ms, 62.5 ms), (250 ms, 125 ms), (250 ms, 250 ms),
(500 ms, 62.5 ms), (500 ms, 125 ms), and (500 ms, 250 ms).

5. Results and Discussion
5.1 Robust Single EM G Feature

The averaged classification accuracies obtained from LDA of all test trials for 50 features for
3 experiments are presented in Table 2. SampEn has the highest classification accuracy,
followed by ApEn and MFL. Without retraining scheme, the accuracy of SampEn is 93.37%.
It drops only by 3.24% and 2.45% compared with training in recent preceding data and all
preceding data, respectively. The SampEn provides 8.69% accuracy higher than ApEn, the
second rank of the 50 features. The accuracy of ApEn is 84.68%. Furthermore, the results
clearly show that the best single feature, SampEn achieves better classification performance
than Hudgins’ TD feature set i.e. MAV, WL, ZC, and SSC. The classification accuracy
increases from 78.73% to 93.37% (Kaufmann et al., 2010).

The SampEn also has better classification performance than the other EMG features
using five recent preceding trials for training, followed closely by the MFL and DASDV. On
the other hand, the MFL has a bit improved classification accuracy than the SampEn using all
receding trials for training. However, the accuracy of MFL and DASDV degrades with rising
time difference between training and testing data (when test trial / > 30 or > 6 days), as can
be seen in Fig. 3. Note that the horizontal axis in Fig. 3 shows the test trial / and the vertical
axis shows the corresponding test accuracy.

Based on the discriminating ten upper limb motions using four forearm EMG channels,
the SampEn performs the best in both classification accuracy and stability.

There are several interested issues from the experimental results that could be discussed
as follows:

(1) The difference of classification accuracies when trained in recent preceding five trials
and all preceding trials, as shown in Table 3, is not statistically significant in 40 features and
the accuracy of using five recent trials (T1) for training is higher than the another scheme
(T2) for 35 features. It means that it is not necessary to use all preceding data as a training set
and we can reduce the size of training set by using only the recent EMG data. This may be
due to the variation in muscle contraction effort and the difference in subject conditions
between days, thus the excluded trials would have provided less relevant information for the
classification system.

(2) SampEn shows a success as the robust muscle activity onset detection against the
spurious spikes in surface EMG signal by using global tolerance r (Zhang & Zhou, 2012).
The global tolerance scheme is also recommended to use in the estimation of grasping force
(Kamavuako, Farina, Yoshida & Jensen, 2012) compared to the local tolerance scheme or
standard SampEn. In this study, the global tolerance scheme is applied. This scheme sets a
uniform tolerance for the signal of all the analysis segments instead of each analysis segment,



as implemented in the local tolerance scheme. This parameter is critical in reducing the effect
of large variations in motions-based EMG signal.

The tolerance r is set as 0.20 X g, in this study, where o is the standard deviation of the
EMG time series. This value is based on the suggestion of Richman and Moorman (2000).
The global tolerance r, which was set as 0.20 x ¢, also provides good performances in the
classification of finger motions-based surface EMG signal (Zhao et al., 2006a) and the
estimation of grasping force-based intramuscular EMG signal (Kamavuako et al., 2012).
More details about the theory of SampEn are presented in the Appendix.

(3) As mentioned above that SampEn with global tolerance scheme showed a success as
both the onset detection method (compared to the amplitude thresholding and Teager-Kaiser
Energy operation-based methods (Zhang & Zhou, 2012) and force estimation method
(compared to the global discharge rate and RMS methods (Richman & Moorman, 2000), the
SampEn feature would be useful not only in continuous classification, as presented in this
study, but also in discrete classification. In other words, it would be useful to classify and
estimate both type and force level of movements simultaneously, while improve the
robustness to noise.

(4) The stable single features i.e. SampEn, ApEn, and MFL are nonlinear signal
processing methods (Arjunan & Kumar, 2010; Phinyomark, Phukpattaranont & Limsakul,
2012d; Zhang & Zhou, 2012; Zhao et al., 2006a, 2006b). As mentioned in several studies,
one of the major properties of surface EMG signal is nonlinearlity. Nonlinear analysis
techniques can extract the real hidden information from surface EMG data and these
techniques are robust to the low-level muscle contraction (Phinyomark et al., 2012d) and
noise (Zhang & Zhou, 2012). These features contain the complexity information and can be
used to highlight bursts of surface EMG signal.

(5) TD features imposed relatively high performance of classification and low load of
computation compared to FD features. All FD features provided weak performance during
classification (< 67%), except three FD features (i.e. MNP, TTP, and SM), that have the same
discrimination in feature space as TD features. It means that the patterns of FD features are
not sufficiently discriminative to identify the upper limb motions. However, the patterns of
the TD and FD features are different, and multiple TD and FD features may increase the class
separability, as can be observed in Table 4, such as SampEn + MNF and SampEn + FR.

5.2 Robust Multiple EM G Feature Sets

Based on the results in the previous study (Phinyomark et al., 2012¢), most of TD and FD
features are redundant. In other words, they share similar properties and information. Hence,
it does not guarantee that combinations of several good robust single features would provide
good robust multiple-feature sets. For instance, both SampEn and ApEn are entropy
estimation techniques (Richman & Moorman, 2000), or TD features like IAV, MAV, and
RMS are based on the energy information (Phinyomark et al., 2012c).

In this study, the classification performance obtained with all the possible combinations
of 50 features to make two, three and four multiple-features are evaluated and the best ten
combinations in each multiple-feature type are presented in Table 4.



Classification accuracies obtained from the multiple feature sets increase compared to
the single features. They reach 97-98%, while the variation in the accuracy during test trials
decreases (<3%) for the robust multiple feature sets. The best feature sets for two, three, and
four features are respectively SampEn + CC, SampEn + CC + MAV2, and SampEn + CC +
RMS + WL/AAC.

Based on the discriminating ten upper limb motions using four forearm EMG channels,
the best feature set (i.e. SampEn, CC, RMS and WL) provides 97.75% accuracy with the real-
time operation and stability of classification performance. It should be noted that WL is
chosen instead of AAC because WL and AAC provide the same feature space when WL
requires less computational cost than AAC. The dimension of feature vector is 7 (one value
from each of SampEn, RMS and WL, and four values from CC). Moreover, the patterns in
space of four features in the best robust set are different. These four features provide the
useful information based on the similarity, the energy, the complexity, and the predicting
model (Phinyomark et al., 2012c).

5.3 Optimum Configuration for Robust Features

The accuracies of LDA with the robust single feature and multiple-feature sets are compared
with RFS and QDA. The results are shown in Fig. 4. The features were computed with a
segment length of 250 ms and an increment of 125 ms and all classifiers were trained in the
first five trials or only the first day. It can be clearly seen that the LDA classifier yields better
performance than the RFS and QDA classifiers. Among the proposed classifiers, LDA
performs the best in classification accuracy, stability, and computational load.

Table 5 shows the performance of classification in different segment lengths. The results
show that accuracy increases by increasing the segment length from 125 ms to 500 ms. This
is because a larger segment provides additional information and yields small bias and
variance in the estimation of feature. The optimal segment length is 500 ms. The results also
show that it does differ significantly by changing the segment length from 125 ms to 250 ms
(about 2-3%), but it does not largely differ by changing the segment length from 250 ms to
500 ms (<1%). In addition, the performance of the overlapped segmentation has no
improvement of classification accuracy, but it is significant to employ the large segment
(greater than 200 ms) in order to avoiding a delay time.

6. Conclusion

For realizing practical applications of MCSs, the effect of long-term usage or reusability is
carefully considered in this study. Fifty EMG features in TD and FD are evaluated by using
EMG recorded from 21 days. From the results, four main points are summarized as in the
following:

(1) SampEn is the best robust single feature and SampEn + CC + RMS + WL set is the
best robust multiple-feature set.

(2) Features based on TD show a better performance than FD features for robust EMG
pattern classification.
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(3) LDA shows a better performance in the classification of fluctuating EMG signals
compared to several classifiers i.e. RFS, QDA, MLP-NN, SVM, KNN, and DT.

(4) The suitable data segmentation is the overlapped segment with a length of 500 ms
and an increment of 125 ms. This segment condition can be operated in real-time and
provides high accuracy.

(5) The performance of the fifty EMG features proposed in this paper has been reported
before in the literature, but it is difficult to compare their performances due to the difference
in the experiments. The performance of the fifty features is compared under the same EMG
dataset in this paper. This could be useful in the selection of EMG features for MCSs in
future research.

The findings in this study can be applied in many EMG applications. In human computer
interaction (HCI) (Saponas et al., 2009), for instance, a novel fusion of an interactive surface
and EMG signal (Benko, Saponas, Morris & Tan, 2009) would provide useful interaction
capabilities if the EMG system can be used in many days without retraining schemes as same
as the interactive surfaces that do not require the retraining procedure.

Appendix

SampEn is feature extracted similarity information in time series. This entropy feature is
developed from the ApEn in order to avoid the bias caused by self-matching. SampEn can be
expressed as

SampEn(mr, N)=—1n[A’"(r)/Bm(r)} (A1)

where B"(r) and A"(r) are the probability that two series will match for mand m+1 points,
respectively. Hence, the SampEn is the negative natural logarithm of an estimate of the
conditional probability that the patterns of the time series that are similar to each other within
a predefined tolerance r will remain similar for the next comparison point (Richman &
Moorman, 2000).
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Figure captions

Fig. 1. The electrode placement used in the four-channel EMG acquisition (Anatomy of the
human body, 1918).

Fig. 2. The example of EMG data from one trial from chO.

Fig. 3. Test classification accuracy (%) in the trial i, where 2 < i < 121, of (a) SampEn, (b)
ApEn, (c) MFL, (d) DASDV, when trained in the first five, recent preceding five, and all
preceding trials.

Fig 4. Averaged test classification accuracy (%) of the best single feature and multiple-
feature sets, when trained in the first five trials using the LDA, RFS and QDA classifiers with
a segment length of 250 ms and an increment of 125 ms. The error bars show the standard
deviation across trials.



*Highlights (for review)

Highlights

* The medium-term robustness of EMG signals for prosthetic control is investigated.

» The effect of 50 EMG features has been extensively examined.

= A single optimal robust EMG feature is sample entropy.

= Linear discriminant analysis is better than other state-of-the-art classifiers in robustness.

= Average accuracy is 98.87% without retraining classifier for EMG recorded for 21 days.



Table 1

Table 1 Fifty TD and FD features with specific parameters and mathematical definition references.

Feature extraction

Full name Abbr. Parameters References
Average amplitude change AAC - (Kim et al., 2011; Phinyomark et al., 2012c)
Approximate entropy ApEn m=2,r=02xco (Zhao et al., 2006a)
Auto-regressive coefficients AR order =4 (Tkach et al., 2010; Zardoshti-Kermani et al., 1995)
Box-counting dimension BC k = _._omN ( Zvl_ -1 (Gitter & Czerniecki, 1995)
Cepstral coefficients CC order =4 (Tkach et al., 2010; Phinyomark et al., 2012c)
Difference absolute standard DASDV - (Kim et al., 2011; Phinyomark et al., 2012c)
deviation value
Detrended fluctuation analysis DFA b=2",i=2-6,0 o =2 (Phinyomark et al., 2012d)
Higuchi’s fractal dimension HG k. =128 (Arjunan & Kumar, 2010; Phinyomark et al., 2012d)
Histogram HIST segment =3 (Tkach et al., 2010; Zardoshti-Kermani et al., 1995)
Integral absolute value IAV - (Kim et al., 2011; Zardoshti-Kermani et al., 1995)
Katz’s fractal dimension Katz - (Gupta, Suryanarayanan & Reddy, 1997)
Kurtosis Kurt - (Nazarpour, Al-Timemy, Bugmann & Jackson, 2013; van den

Broek, Schut, Westerink, Herk & Tuinenbreijer, 2006)

Log detector LOG - (Tkach et al., 2010; Zardoshti-Kermani et al., 1995)
Modified mean absolute value I MAV1 - (Oskoei & Hu, 2008; Phinyomark et al., 2012c)
Modified mean absolute value 2 MAV2 - (Oskoei & Hu, 2008; Phinyomark et al., 2012c)
Mean absolute value MAV - (Hudgins et al., 1993; Tkach et al., 2010)



Mean absolute value slope

Maximum fractal length
Multiple hamming windows
Multiple trapezoidal windows
Myopulse percentage rate
Root mean square

Sample entropy

Skewness

Slope sign change

Simple square integral
Absolute temporal moment
Variance

Variance fractal dimension

v-order

Willison amplitude
Waveform length
Zero crossing

Amplitude of the first burst
Critical exponent analysis

Maximum-to-minimum
drop in power density ratio

MAVS
MFL
MHW
MTW
MYOP
RMS
SampEn

Skew

SSC
SSI
™
VAR
VFD

WAMP
WL

7C
AFB

CEA
DPR

segment =2

threshold =16

m=2,r=02xo

threshold =16

order =4

Ko = _u_omm A ZV|_
v=3

threshold =10

threshold =10

W, =32ms

a, =0.01

(Hudgins et al., 1993; Phinyomark et al., 2012c)

(Arjunan & Kumar, 2010; Phinyomark et al., 2012d)
(Phinyomark et al., 2012c¢)

(Phinyomark et al., 2012c¢)

(Phinyomark et al., 2012c)

(Kim et al., 2011; Oskoei & Hu, 2008)

(Zhang & Zhou, 2012; Zhao et al., 2006b)

(Khushaba, Al-Ani & Al-Jumaily, 2010; van den Broek et al.,
2006)

(Hudgins et al., 1993; Tkach et al., 2010)
(Phinyomark et al., 2012c)

(Phinyomark et al., 2012c)

(Tkach et al., 2010; Zardoshti-Kermani et al., 1995)
(Ehtiati, Kinsner & Moussavi, 1998)

(Tkach et al., 2010; Zardoshti-Kermani et al., 1995)
(Tkach et al., 2010; Zardoshti-Kermani et al., 1995)
(Hudgins et al., 1993; Tkach et al., 2010)

(Hudgins et al., 1993; Tkach et al., 2010)
(Phinyomark et al., 2012c)

(Phinyomark, Phothisonothai, Phukpattaranont & Limsakul, 2011)

(Kendell, Lemaire, Losier, Chan & Hudgins, 2012)



Frequency ratio FR f, =[1545], f,, =[95500] (Phinyomark et al., 2012c)

Maximum amplitude MAX 0,=6, f,=5Hz (Kendell et al., 2012)

Median frequency MDF - (Oskoei & Hu, 2008; Phinyomark et al., 2012c¢)
Mean frequency MNF - (Kendell et al., 2012; Oskoei & Hu, 2008)
Mean power MNP - (Oskoei & Hu, 2008; Phinyomark et al., 2012c¢)
Power spectrum deformation OHM - (Kendell et al., 2012)

Peak frequency PKF - (Phinyomark et al., 2012¢)

Power spectral density fractal PSDFD - (Talebinejad, Chan, Miri & Dansereau, 2009)
dimension

Power spectrum ratio PSR n=20 (Phinyomark et al., 2012c¢)

Spectral moment SM order =2 (Phinyomark et al., 2012c¢)

Signal-to-motion artifact ratio SMR - (Kendell et al., 2012)

Signal-to-noise ratio SNR - (Kendell et al., 2012)

Total power TTP - (Phinyomark et al., 2012c)

Variance of central frequency VCF - (Phinyomark et al., 2012c)

ws= window size of Hamming function, m= maximum epoch length, r = tolerance, o = standard deviation, order = model/moment order, Kn.x =
maximum time interval, N = window size, ax = step size of moment exponent, b = box size conditions, O, = order of fitting procedure, f, =
cutoff frequency of low frequency band, fy, = cutoff frequency of high frequency band, segment = number of segments, O), = order of low-pass
Butterworth filter, f,, = a cutoff frequency, b= box size conditions, threshold= pre-defined threshold value, n= integral limit, v= order of v.



Table 2

Table 2 Averaged test classification accuracy (%) and its standard deviation of fifty features, when trained in the first five, recent preceding five,
and all preceding trials. Sorting is done based on the first five trials column from maximum mean to minimum mean values. Bold numbers
represent the highest three classification accuracies achieved in each experiment.

Feature First 5 trials Preceding 5 trials All preceding trials

Mean SD Mean SD Mean SD
SampEn 93.37 5.03 96.61 3.15 95.82 3.82
ApEn 84.68 7.35 92.29 4.84 91.78 5.20
MFL 82.07 9.54 96.49 3.96 96.05 4.28
IAV 81.24 7.45 92.89 5.26 92.37 5.15
MAV 81.24 7.45 92.89 5.26 92.37 5.15
MAV?2 81.18 7.34 92.69 5.15 92.27 491
RMS 81.10 7.45 93.07 5.02 92.93 5.03
MAV1 81.05 7.50 92.69 5.20 92.27 5.03
DASDV 81.00 11.97 94.65 4.70 93.44 5.34
\Y% 79.98 7.46 92.58 5.01 92.63 4.94
AAC 79.88 12.40 94.56 4.73 93.03 5.60
WL 79.88 12.40 94.56 4.73 93.03 5.60
AR 78.96 9.18 88.80 5.28 87.42 5.95
WAMP 75.33 10.67 89.74 5.35 87.63 6.34
LOG 74.28 8.26 86.94 5.92 86.58 5.06
MYOP 73.31 11.39 85.61 6.36 83.23 6.64

CC 73.20 10.64 82.03 6.08 80.51 6.98



SSC
DFA
SSI
VAR
MNP
TTP
MTW
SM
MHW
ZC
MNF
BC
MAX
™
MDF
AFB
HG
FR
Katz
OHM
HIST
PSR

71.29
71.28
71.14
71.14
71.14
71.14
71.12
71.09
69.01
66.68
66.33
62.96
62.86
60.25
57.18
57.03
52.34
47.79
47.09
46.88
41.49
37.63

9.04
10.10
12.06
8.25
8.25
8.25
8.25
8.27
7.23
8.21
10.05
11.22
6.37
7.68
9.08
4.08
5.50
6.88
5.89
6.45
9.17
5.94

80.24
78.87
80.35
80.35
80.36
80.36
79.76
82.33
76.31
74.01
76.79
74.05
59.89
60.13
65.93
57.66
58.40
52.46
54.98
50.82
5141
41.47

597
6.98
7.98
7.98
7.98
7.98
7.67
8.97
6.97
5.35
7.76
6.58
7.20
9.36
7.27
4.88
5.94
6.13
6.09
6.53
7.86
6.23

76.95
77.51
82.59
82.59
82.57
82.57
82.09
82.84
79.02
71.58
75.46
70.44
65.27
63.45
65.08
60.53
57.64
52.36
54.85
49.28
49.75
41.20

12.86
6.92
6.53
6.53
6.52
6.52
6.36
7.93
5.74
6.87
7.89
8.06
7.04
7.94
7.61
4.58
5.78
6.56
6.34
5.93
8.15
5.77



PKF
PSDFD
Kurt
VFD
MAVS
Skew
DPR
SNR
SMR
CEA
VCF

32.53
25.08
21.41
18.85
17.47
16.57
13.18
10.75
10.67
10.41
10.39

4.06
3.22
4.68
3.24
1.73
16.90
2.08
1.71
0.82
2.00
1.84

34.94
27.25
26.80
19.11
17.27
49.76
13.21
10.41
10.65
10.86
10.72

3.90
3.77
5.30
3.17
2.00
12.02
2.10
1.46
1.17
2.28
2.20

33.96
2691
26.66
19.83
17.33
26.32
12.69
10.81
10.01
11.07
10.16

3.71
3.73
4.71
341
1.45
17.18
1.85
1.58
0.65
1.72
1.96




Table 3

Table 3 The difference of classification accuracies when trained in recent preceding five (T1) and all preceding (T2) trials.

No significant difference (p> 0.01) Significant difference (p<0.01)
T1<T2 T1>T2 T1<T2 T1>T2
V, SSI, VAR, MNP, TTP, MTW, SampEn, ApEn, MFL, IAV, MHW, MAX, TM, AFB WAMP, MYOP, ZC, BC, Skew,
SM, VFD, MAVS, SNR, CEA MAV, MAV2, RMS, MAV]1, SMR

DASDV, AAC, WL, AR, LOG,
CC, SSC, DFA, MNF, MDF,
HG, FR, Katz, OHM, HIST,
PSR, PKF, PSDFD, Kurt, DPR,
VCF

11 features 29 features 4 features 6 features




Table 4

Table 4 Highest averaged test classification accuracy (%) and its standard deviation of ten single features and ten of each multiple-feature
groups, when trained in the first five trials.

Feature First 5 trials Feature First 5 trials

#1 #2 Mean SD #1 #2 #3 #4 Mean SD
SampEn 93.37 5.03 SampEn CcC MAV2 97.53 2.95
ApEn 84.68 7.30 SampEn CC MAVI 97.50 3.03
MFL 82.07 9.45 SampEn CC IAV 97.50 3.06
IAV 81.24 7.36 SampEn CC MAV 97.50 3.06
MAV 81.24 7.36 SampEn CC HG 97.42 2.67
MAV2 81.18 7.27 SampEn CC Katz 97.39 2.74
RMS 81.10 7.33 SampEn CC RMS 97.36 3.14
MAV1 81.05 7.42 SampEn CC A% 97.34 3.05
DASDV 81.00 11.91 SampEn CC PSDFD 97.28 2.67
A% 79.98 7.33 SampEn CC LOG 97.28 2.95
SampEn CC 97.25 2.76 SampEn CC RMS WL 97.75 2.73
SampEn DFA 97.13 2.96 SampEn CC RMS AAC 97.75 2.73
SampEn AR 96.44 3.37 SampEn CC IAV WL 97.73 2.86
SampEn MNF 95.96 3.83 SampEn CcC MAV WL 97.73 2.86
SampEn HG 95.31 3.93 SampEn CC IAV AAC 97.73 2.86
SampEn FR 94.88 4.69 SampEn CC MAV AAC 97.73 2.86
SampEn 7C 94.84 4.18 SampEn CC MAV2 ApEn 97.71 2.83
SampEn PSR 94.40 3.85 SampEn CC MAV1 ApEn 97.65 2.94
SampEn MDF 94.22 4.21 SampEn CC v MYOP 97.62 3.35
SampEn Kurt 94.10 4.29 SampEn CC MAV2 MHW 97.57 2.98




Table 5

Table 5 Averaged test classification accuracy (%) of SampEn and SampEn + CC + RMS + WL, when trained in the first five trials using LDA
by changing the segment length and increment.

Segment length (ms), SampEn SampEn+CC+RMS+WL
increment (ms) Mean SD Mean SD
125, 62.5 89.93 5.22 95.71 3.71
125,125 90.28 5.20 95.49 3.73
250, 62.5 93.39 5.07 97.79 2.77
250, 125 93.37 5.03 97.73 2.73
250, 250 93.46 5.15 97.91 2.72
500, 62.5 93.31 5.18 98.79 2.25
500, 125 94.33 5.19 98.87 2.12

500, 250 94.49 5.13 98.75 2.14
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Figure 3d
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