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Abstract 

High classification accuracy has been achieved for muscle-computer interfaces (MCIs) based 

on surface electromyography (EMG) recognition in many recent works with an increasing 

number of discriminated movements. However, there are many limitations to use these 

interfaces in the real-world contexts. One of the major problems is compatibility. Designing 

and training the classification EMG system for a particular individual user is needed in order 

to reach high accuracy. If the system can calibrate itself automatically/semi-automatically, the 

development of standard interfaces that are compatible with almost any user could be 

possible. Twelve anthropometric variables, a measurement of body dimensions, have been 

proposed and used to calibrate the system in two different ways: a weighting factor for a 

classifier and a normalizing value for EMG features. The experimental results showed that a 

number of relationships between anthropometric variables and EMG time-domain features 

from upper-limb muscles and movements are statistically strong (average r = 0.71-0.80) and 

significant (p < 0.05). In this paper, the feasibility to use anthropometric variables to calibrate 

the EMG classification system is shown obviously and the proposed calibration technique is 

suggested to further improve the robustness and practical use of MCIs based on EMG pattern 

recognition. 
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1. Introduction 

 

Muscle-computer interfaces (MCIs) based on surface electromyography (EMG) 

recognition have been rapidly developed for various applications, i.e. prosthesis and electric-

power wheelchair, in the last few years (Ahsan et al., 2010; Oskoei and Hu, 2007; Peerdeman 

et al., 2011; Phinyomark et al., 2011a). Nearly all previous works on EMG-based MCIs focus 

on classification accuracy improvement and the number of discriminated movements 

(Hariharan et al., 2012; Ju et al., 2011; Oskoei and Hu, 2007; Phinyomark et al., 2011a; 

Wojtczak et al., 2009). The success rate of these interfaces is usually higher than 80-90% 

based on recognizing several common tasks such as the movements of flexion/extension and 

abduction/adduction (Peerdeman et al., 2011). In laboratories, the number of discriminated 

tasks, i.e. grasping and wrist motions, has increased to cover most activities of daily living 

(ADLs) and to control a multiple DOF prosthesis (Cipriani et al., 2008). 

While this interface holds so much potential, a few works have given attention to the 

context of real-world requirements such as long-term use or EMG’s uncertainties, i.e. EMG 

electrode location shift (Tkach et al., 2010) and variation in muscle contraction between days 

(Phinyomark et al., 2012a), compatibility, i.e. minimal or no need for calibration and training 

between subjects (Saponas et al., 2010), and robustness, i.e. noise (Phinyomark et al, 2009). 

Among these requirements, the development of calibration and training issues is still far from 

being a practical one (Cannan and Hu, 2011; Saponas et al., 2010). In this study, we aimed to 

address these challenges with special emphasis on EMG and anthropometric techniques that 

can automatically or semi-automatically calibrate a system. 

Due to different body compositions between users, EMG-based MCIs has never really 

reached the general population (Cannan and Hu, 2011). Every user has different types of 

muscles with varying sizes and other characteristics, so currently the systems still require new 

calibration and training (between users and also between days) to compensate for 

discrepancies. Moreover, this limitation prevents the development of standard interfaces that 

are compatible with almost any user. 

In order to reduce the need for new training and calibration, some useful information 

should be added as automatic training input parameters. For a simple system that uses 

thresholding techniques, maximum voluntary contraction (MVC) alone is used and may be 

enough to adapt a system from one user to another. Based on the finding in several related 

works about a relationship between features of EMG and force, estimating the users MVC can 

be used to normalize the EMG signals or adjust the threshold values (Bolgla and Uhl, 2007; 

Vera-Garcia et al., 2010). 

However, this relationship is strong only in an isometric or static contraction 

(Kamavuako et al., 2009), which can be linear or non-linear. When the muscle is free to 

change length and the joint is free to move as a dynamic muscle contraction, the relationship 

of EMG features and forces is more complicated (Oatis, 2008). Although force, or MVC, 

certainly plays a role, it is not significant enough to be used alone in adapting advanced EMG 

systems, and other additional useful information is necessary. 

We know that muscle size, consisting of cross-sectional area (CSA) and length, can be 

employed together with EMG signal in order to determine muscle force (Hof et al., 1987). 

This relationship can be explained by the equation of Marras and Sommerich (1991) as shown 
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in Appendix A. It means that there are correlations between muscle size, muscle force, and 

EMG signal (Raez et al., 2006; Ray and Guha, 1983). Hence, anthropometric variables, a 

measurable characteristic of the body, are considered. These variables can roughly estimate 

some muscle-size characteristics such as estimating thigh muscle cross-sectional area by 

segment circumference (Housh et al., 1995). On the other hand, measuring anthropometric 

variables is easier and some variables can be measured directly together with EMG signal via 

armband (Cannan and Hu, 2011; Saponas et al., 2009). 

One of the related anthropometric variables is forearm circumference, which can be 

measured automatically via a wearable device. Cannan and Hu (2011) used forearm 

circumference for estimating MVC in order to calibrate the EMG thresholding technique 

based on the linear relationship between grip strength and forearm circumference as presented 

in Anakwe et al. (2007). However, the relationship between EMG during MVC and forearm 

circumference is not strong as found with grip force, and further anthropometric variables are 

recommended to be incorporated to make a reliable adaptive system (Cannan and Hu, 2011). 

In this paper, the relationship between common-used EMG time-domain features and 

related anthropometric variables is investigated. As mentioned, features of the EMG signal 

were used to find the correlation instead of EMG associated with 100% MVC because we 

would like to move from calibrating the simple thresholding techniques to machine learning 

and pattern recognition. It should be noted that feature extraction is used as an input vector for 

classifier to make a decision output (Phinyomark et al., 2012b). So actions associated with 

EMG signal, e.g. forearm pronation/supination and hand open/close (dynamic contraction), 

are also used instead of EMG isometric (static) contraction. 

Every strong and significant association between EMG feature and anthropometric 

variable, found in this study, could benefit a further design of EMG systems. It could 

automatically adapt the setting to a wider population. Moreover, due to a rapid increased 

number of wearable devices, anthropometric variables would become more practical and 

important in the near future. 

 

2. Material and methods 

 

The EMG data, which were used to investigate the relationship between anthropometric 

variables and EMG features in this study, were recorded from eight movements, five positions 

and twenty subjects during four days. 

Eight movements consisting of forearm pronation (FP), forearm supination (FS), wrist 

extension (WE), wrist flexion (WF), wrist radial deviation (WR), wrist ulnar deviation (WU), 

hand open (HO), and hand close (HC) were chosen based on the frequently used in MCIs 

studies (Oskoei and Hu, 2007; Peerdeman et al., 2011; Phinyomark et al., 2011a), as shown in 

Fig. 1. These are movements of hand, wrist and arm. In addition, the shoulder was positioned 

at 0 degree (neutral) with elbow in full extension. 

EMG recordings from five muscles were selected from both upper-arm and forearm and 

from both flexor and extensor muscles. The amplitude shape of EMG signals acquired from 

all muscles was significantly different according to the direction of eight movements as 

shown in Fig. 2 (Phinyomark et al., 2011b). There were: extensor carpi radialis longus 
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(ECRL), extensor carpi ulnaris (ECU), extensor digitorum communis (EDC), flexor carpi 

radialis (FCR) and biceps brachii (BB), as shown in Fig. 3. 

 

 
 

Fig. 1. Eight upper-limb movements. 

 

 
Fig. 2. The example amplitude shape of EMG signals acquired from 5 muscles and 8 

movements with rest state. 

 

 
 

Fig. 3. Five electrode positions. 
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Twenty healthy subjects participated in the experiment consisting of 10 males (M1-

M10) and 10 females (F1-F10). The age of the male subjects was 21.5±0.97 years and of the 

female subjects was 21.2±0.79 years. All subjects were dexterous with their right hands. They 

signed an informed consent in accordance to the University guideline. The EMG data were 

recorded on 4 separate days. Each day the subjects were asked to perform 15 sessions, which 

every movement was maintained for 2 s and the order of movements was randomized in each 

session. Based on a large fluctuating EMG data that was measured in this study, the effect of 

fluctuating EMG signals during different days was also considered. 

In the experiment, the EMG data were collected from the positions on the right arm 

using bipolar Ag/AgCl electrodes (H124SG, Kendal ARBO) with 24 mm diameter and 20 

mm inter-electrode distance. All EMG signals were amplified with a gain of 19.5x and 

sampled at 1024 Hz with a 24-bit resolution by a commercial wireless EMG measurement 

system (Mobi6-6b, TMS International B.V.). The EMG data were also passed through a band-

pass filter with a cutoff frequency of 20 and 500 Hz to remove noise and unwanted signals. 

 

2.1 Extraction of EMG features 

 

As mentioned in the experiment above, 60 data sets with 2-s in duration in total were 

collected for each movement for each subject. In order to contain all EMG information, a 

window size of the extraction was set as a whole length of action (2-s) (Hudgins et al., 1993; 

Wojtczak et al., 2009). Five common used features based on Hudgins’ time-domain approach 

(Hudgins et al., 1993) were used as the representative features in this paper: mean absolute 

value (MAV), mean absolute value slope (MAVS), waveform length (WL), zero crossing 

(ZC), and slope sign change (SSC). A set of Hudgins’ time-domain features has usually been 

employed as a baseline feature set for comparing with a newly developed feature set, and the 

success of this feature set has been established in many recent studies, e.g. Li et al. (2011, 

2010). 

(1) MAV is commonly used as an EMG amplitude detector. It is defined as an average 

of the absolute value of the EMG signal amplitude in a window size L, which can be 

expressed as 

 

 
1

1 L

i

i

MAV x
L 

  , (1)  

 

where xi is an EMG signal amplitude at the i
th

 sample and L is the length of the window, 

which is set at 2048 samples (2-s) for all features. 

(2) MAVS is defined as a difference between two mean absolute values of the signal in 

adjacent segments, k and k+1, where the window size L is divided into sub-windows or 

segments for k = 1, …, K-1. The definition is given by 

 

 
1k k kMAVS MAV MAV  . (2)  
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It should be noted that MAV, WL, ZC and SSC provide only one feature value per 

window, whereas MAVS provides K-1 feature values per window. To provide a fair 

comparison between methods, the number of feature values for each window/movement trial 

was set at one for all methods. Hence, the value of K was set at 2 in this study. In other words, 

only MAVS1 value was yielded and so, in the rest of this paper, MAVS refers to MAVS1. 

(3) WL is a simple complexity measure of the EMG signal. It is defined as a cumulative 

length of the waveform over the time window, which can be expressed as 

 

 
1

1

1

L

i i

i

WL x x






  . (3)  

 

(4) ZC is a simple frequency measure of the EMG signal. It can be obtained by counting 

a number of times that the EMG waveform crosses zero amplitude level. To reduce the effect 

of background noise, a predefined threshold thr was set at 10 for ZC, and also SSC. 

Mathematically, it is calculated as 

 

  
1

1 1

1

1, if 0
sgn ; sgn( )

0, otherwise.

L

i i i i

i

y
ZC x x x x thr y



 



   
           

  (4)  

 

(5) SSC is another measure of frequency content of the EMG signal. It is a number of 

times that the slope of the EMG waveform changes sign. The number of changes between the 

positive and negative slopes among three sequential samples is performed with the predefined 

threshold thr as used in ZC. SSC can be mathematically expressed as 

 

    
1

1 1

2

1,  if
; ( )

0, otherwise.

L

i i i i

i

y thr
SSC f x x x x f y



 



   
            

  (5)  

 

As described in Phinyomark et al. (2012b), these five features in Hudgins’ group share 

the distribution in space, and using two or three features out of them in the classification could 

achieve the same performance as using all features. MAV and WL have a little difference in 

discriminating patterns where MAV contains energy information and WL contains 

complexity information. MAVS is an extension version of the MAV features. ZC and SSC, 

two features based on frequency information, have a similar distribution in space. Hence, it is 

not necessary to use all features in the final feature vector. The relationship with the 

anthropometric variables should be discussed for each individual feature. To be flexible in the 

future design of EMG-based MCIs, the correlation was also summarized for each muscle 

position. 

While the number of electrode positions should be reduced to the minimum, the number 

of discriminated movements should be increased as much as possible. Four movements have 

been used like a standard minimal number of control commands in EMG-based MCIs 

(Peerdeman et al., 2011; Phinyomark et al., 2011a). Hence, only the combinations between 

anthropometric variable, EMG feature and EMG position that have the strong and significant 

correlations in at least four movements will be presented in this paper. 
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2.2 Anthropometric variables 

 

Anthropometry is a measurement of the dimensions of the different parts of the body 

and other physical characteristics. There are two types of measurement: static and dynamic 

dimensions. In this paper, only static dimensions were considered. Twelve related 

anthropometric variables were chosen: 1. Body mass (kg), 2. Standing height (cm), 3. Body 

mass index or BMI (kg/m
2
), 4. Biceps circumference (cm), 5. Forearm circumference (cm), 6. 

Hand breadth (cm), 7. Hand length (cm), 8. Elbow-hand grip length (cm), 9. Elbow-fingertip 

length (cm), 10. Shoulder-elbow length (cm), 11. Bi-deltoid breadth (cm), and 12. Forward 

grip reach (cm). All variables were measured from all the subjects in the same day and from 

the right arm. 

 

     

(a)                     (b)                         (c) 

   

        (d)                (e) 

Fig. 4. Anthropometric (body) measurements (a) standing height and forward grip reach, (b) 

biceps circumference and forearm circumference, (c) hand breadth and hand length, (d) 
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elbow-hand grip length, elbow-fingertip length and shoulder-elbow length, (e) bi-deltoid 

breadth. 

These twelve measurement techniques, as shown in Fig. 4, can be measured using 

different kinds of instruments (Centurion Kit, Rosscraft): (1) Balance type scales for body 

mass, (2) Anthropometer for standing height, (3) Tape for biceps and forearm circumferences, 

(4) Small bone caliper for hand breadth and hand length, (5) Wide sliding torso caliper for 

elbow-hand grip length, elbow-fingertip length, shoulder-elbow length and bi-deltoid breadth, 

and (6) Measuring block with tape measure for forward grip reach. 

It should be noticed that the circumferences were measured with elbow flexed 90 

degrees (the arms are abducted). For other variables, the specific locations were defined as:  

(1) Hand breadth is measured between metacarpalphalangeal joint II and V. 

(2) Hand length is measured from the wrist landmarks to dactylion. 

(3) Elbow-hand grip length is measured from the posterior tip of the olecranon process 

to the center of grip during holding a pencil. 

(4) Elbow-fingertip length is measured from the posterior tip of the olecranon process to 

dactylion. 

(5) Shoulder-elbow length is measured from the right acromion landmark to the inferior 

tip of the olecranon process of the right elbow. 

(6) Bi-deltoid breadth is measured across the body at the level of the deltoid landmarks. 

(7) Forward grip reach is measured from the back wall to the tip of the thumb. 

In addition, BMI, which is a roughly estimation of human body fat, is calculated as 

 

 
 

2

body mass
BMI

standing height


 . (6)  

 

2.3 Evaluating functions 

 

Correlation analysis measures a relationship or association and gives a statistic known 

as the correlation coefficient or r coefficient. This value shows the degree or strength of linear 

association between two measured variables. The interpretation of correlation coefficients can 

be defined as presented in Table 1. The r value contains both a magnitude and a direction 

(positive and negative) of the relationship. However, in this paper we reported the absolute 

value of average r or only the magnitude of correlation. 

 

Table 1. The strength category of correlation coefficients r (Taylor, 1990). 
 

Ranges of r in absolute value Interpretation 

r ≤ 0.35 low or weak correlations 

0.35 < r ≤ 0.67 modest or moderate correlations 

0.67 < r ≤ 1 strong or high correlations 

 

As we mentioned that only the combinations that have the strong correlations will be 

presented, it means that the value of r must be higher than 0.67. Moreover, the correlation 

coefficient has to be statistically significant too. In this study, the significant level was set at p 
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< 0.05. Due to a small samples (n ≤ 20), t-test was employed to test the significance of a 

correlation coefficient, as can be defined by 

 
2

2

1

n
t r

r





. (7)  

 

Note that the degrees of freedom for entering the t-distribution is n-2. 

 

3. Results 

 

The different results of the relationship of muscle size/force and anthropometric 

variable between male and female subjects are found in several studies (e.g. Anakwe et al., 

2007; Holzbaur et al., 2007). Therefore, the relationships of anthropometric variables have 

usually been investigated and discussed for each gender: male and female. All anthropometric 

variables of male and female subjects, which were measured in the experiment, are reported 

respectively in Table 2 and Table 3. 

 

Table 2. Anthropometric variables of ten male subjects (M1-M10) with the mean and the 

standard deviation (SD) of each variable. 
 

                           Subjects     

Variables 
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Mean SD 

Body mass 49.0 62.0 65.0 74.0 73.0 58.0 57.0 55.0 63.0 54.0 61.0 8.1 

Standing height 166.5 170.0 173.0 177.0 172.0 170.0 170.0 167.5 167.0 164.0 169.7 3.7 

Body mass index 17.7 21.5 21.7 23.6 24.7 20.1 19.7 19.6 22.6 20.1 21.1 2.1 

Biceps circumference 23.1 26.2 27.5 32.6 32.4 30.7 26.1 23.6 26.7 25.6 27.5 3.4 

Forearm circumference 22.5 22.4 25.2 29.1 28.2 26.8 23.4 23.1 24.3 22.7 24.8 2.5 

Hand breadth 7.4 7.2 8.4 9.1 8.9 12.6 11.7 7.5 7.8 7.6 8.8 1.9 

Hand length 17.2 17.8 15.5 18.2 18.9 19.1 19.3 17.4 18.3 17.1 17.9 1.1 

Elbow-hand grip length 34.4 35.1 37.6 39.3 39.7 33.9 33.8 36.0 38.5 38.4 36.7 2.3 

Elbow-fingertip length 46.8 49.7 52.2 52.2 52.6 46.2 46.2 47.2 50.0 49.7 49.3 2.5 

Shoulder-elbow length 37.7 33.6 36.9 37.8 38.2 35.7 38.4 35.4 38.3 36.6 36.9 1.6 

Bi-deltoid breadth 39.3 46.4 44.6 54.7 47.3 37.4 30.4 42.1 45.9 47.4 43.6 6.7 

Forward grip reach 75.6 74.5 80.7 89 80.4 74.3 75.7 72.6 83.5 78.1 78.4 5.0 

 

Table 3. Anthropometric variables of ten female subjects (F1-F10) with the mean and the 

standard deviation (SD) of each variable. 
 

                           Subjects     

Variables 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD 

Body mass 47.0 45.0 53.0 46.0 54.0 45.0 43.0 56.0 50.0 49.0 48.8 4.4 

Standing height 150.0 160.0 156.0 155.0 160.0 146.0 159.0 163.0 167.0 162.0 157.8 6.3 

Body mass index 20.9 17.6 21.8 19.1 21.1 21.1 17.0 21.1 17.9 18.7 19.6 1.8 

Biceps circumference 24.4 19.8 27.6 24.2 24.8 25.5 22.6 24.9 22.3 21.5 23.8 2.2 

Forearm circumference 21.6 19.1 22.9 21.5 22.2 21.9 19.7 22.7 20.6 20.9 21.3 1.2 

Hand breadth 7.4 6.4 7.3 7.5 6.9 6.6 6.9 8.1 7.4 7.2 7.2 0.5 

Hand length 15.6 16.7 16.8 16.6 16.4 14.7 16.1 15.2 17.1 17.2 16.2 0.8 

Elbow-hand grip length 32.8 35.0 34.8 34.6 34.4 32.6 34.3 35.2 38.4 36.2 34.8 1.6 

Elbow-fingertip length 43.3 46.8 46.4 46.4 46.2 39.1 46.2 47.1 49.0 47.7 45.8 2.8 

Shoulder-elbow length 34.9 35.3 36.1 35.8 33.1 34.2 33.0 37.1 37.8 36.0 35.3 1.6 

Bi-deltoid breadth 41.9 36.8 43.4 41.2 41 37.8 36.9 37.0 37.2 38.7 39.2 2.5 

Forward grip reach 65.1 72.0 60.8 68.1 75.7 65.2 70.2 63.3 74.4 70.6 68.5 4.9 
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The differences between parameters of male and female subjects were highly significant 

at p < 0.01 for 8 parameters and significant at p < 0.10 for the remainders: BMI, elbow-hand 

grip length, shoulder-elbow length, and bi-deltoid breadth. However, the difference between 

ages of male and female subjects was not significant (p = 0.458) in this study (subjects of the 

same age). 

The strong and significant correlations between EMG features and anthropometric 

variables for each muscle are presented in Table 4 for male subjects and Table 5 for female 

subjects. From Table 4, two features (MAV and WL) from different two muscles (ECU and 

BB) showed a strong relationship with bi-deltoid breadth for 4-5 movements. On the other 

hand, from Table 5, four features (MAVS, WL, ZC, and SSC) from two muscles (FCR and 

BB) have high correlations with a number of anthropometric variables i.e. hand length, biceps 

circumference, and bi-deltoid breadth. The correlation coefficients r ranged between 0.69 and 

0.87. It should be emphasized that all features were computed from the EMG data recorded 

from 4 separate days, thus the effect of fluctuating EMG signals between days was also 

included in the finding results. In other words, the correlated anthropometric variables with 

EMG features could be used to calibrate the system even though the EMG feature values have 

been changed from one day to another day. Additionally, the correlations from each single 

day are similar to that from all days. The interesting result is in the case of the third day and 

the fourth day. The correlations between features and anthropometric variables improved a 

litter bit. It may be due to an increasing experience of the subjects to perform the stable 

movements. The performance of EMG pattern classification has been found that it improves 

when the data used for training a classifier are recorded from the third day and the fourth day 

(Phinyomark et al., 2012a; Zhang et al., 2008). 

 

Table 4. Correlation coefficients r between anthropometric variables and EMG features in 

cases of strong and significant relationships, at least 4 movements for a muscle, based on 10 

male subjects. 
 

Feature Anthropometric variable Position Movements Average |r| (min-max) 

MAV Bi-deltoid breadth ECU FP, WE, WF, WU, HC 0.77  (0.73-0.82) 

WL Bi-deltoid breadth BB WE, WR, WU, HC 0.71  (0.69-0.73) 

 

Table 5. Correlation coefficients r between anthropometric variables and EMG features in 

cases of strong and significant relationships, at least 4 movements for a muscle, based on 10 

female subjects. 
 

Feature Anthropometric variable Position Movements Average |r| (min-max) 

MAVS Hand length FCR FS, WE, WF, WR, HC 0.77  (0.70-0.86) 

MAVS Hand length BB FS, WE, WF, WU 0.80  (0.75-0.87) 

WL Bi-deltoid breadth BB FP, FS, WF, WR, HC 0.75  (0.72-0.83) 

ZC Biceps circumference BB FP, FS, WF, HO 0.76  (0.69-0.85) 

ZC Bi-deltoid breadth BB FP, FS, WF, WU, HC 0.77  (0.70-0.84) 

SSC Bi-deltoid breadth BB FP, FS, WF, WU, HC 0.80  (0.70-0.86) 

 

To observe the results, for instance, the average MAV feature extracted from ECU 

muscle and WF movement of each male subject was plotted in space with the bi-deltoid 
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breadth value of that subject, and the linear line of best fit representing the association was 

also shown in Fig. 5. It showed that both measured variables have an inverse relationship (one 

variable increased when another one decreased) and the variable points closed to a straight 

line (r = 0.82 at p < 0.05). 

 

 
 

Fig. 5. The relationship between average MAV features extracted from ECU muscle and bi-

deltoid breadth values for 10 male subjects with a line of best fit applied for WF movement. 

 

 
 

(a) 

 
 

(b) 
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Fig. 6. Scatter plots of MAV features extracted from ECU muscle and WL features extracted 

from BB muscle with 3 movements (WE, WU, and HC) from 10 male subjects (a) original 

features (b) normalized feature. Note that all features were normalized to be [0, 1]. 

 

In practice, we can use the correlated anthropometric variables to calibrate the EMG 

classification system in two different ways: a weighting factor for classifier and a normalizing 

value for EMG features. This topic is out of scope for this paper because the approach 

depends on the types of the classifier. However, in order to show the feasibility to use this 

anthropometric variable, two original features of 3 movements (WE, WU and HC) of 10 male 

subjects from Table 4 were plotted in space as shown in Fig. 6(a) and the normalized EMG 

features (original EMG feature multiply by bi-deltoid breadth value of the same subject) were 

also plotted as shown in Fig. 6(b). By comparing Figs. 6(a) and 6(b), it is clear that the 

distribution in space of each movement of the original features is very poor. It is difficult to 

classify the movements because of the large variation of each feature between the subjects. If 

we train the classification system using EMG features extracted from one of the subjects and 

test the system with features from the remaining subjects, we would get a low classification 

accuracy. On the other hand, the discrimination between three movements of the normalized 

features, in Fig. 6(b), is very good. It could be possible to achieve a high classification 

accuracy by training the EMG system using features extracted from one of the subjects and 

testing with features calculated from the remaining subjects. 

 

4. Discussion and future works 

 

Based on the results of both tables, Table 4 and Table 5, we can observe that bi-deltoid 

breadth and BB muscle usually have a strong correlation and should be paid more an interest 

in further study. However, the bi-deltoid breadth cannot automatically and/or directly be 

measured from the EMG wearable device like the forearm or biceps circumference. On the 

other hand, biceps circumference had a strong correlation only with ZC features extracted 

from BB muscle. It is not enough for achieving very high classification accuracy for many 

gestures. However, a strong correlation between anthropometric variables and EMG features 

was obviously present, and further studies should be done in two different ways. 

First, for an automatically calibrated system using measures directly obtained from the 

EMG armband, the relationship between biceps/forearm circumference and other EMG 

features should be investigated and used together with ZC to make a useful feature vector. 

Based on the results in this paper, only one out of five features has a strong relationship and 

the proposed time-domain features share mathematical definition and information with most 

of time-domain features (Phinyomark et al., 2012b). Hence, maybe only a few features will 

have a strong correlation with circumference variable, as found with the EMG MVC in 

Cannan and Hu (2011). However, the relationship with other types of EMG features like 

frequency-domain or time-scale features have not been evaluated yet; such feature types may 

have a high association. 

Second, for a semi-automatically calibrating system, bi-deltoid breadth parameter 

showed a strong association with 4 out of 5 features and the remaining feature MAVS has low 

classification performance and was not used in several previous EMG systems e.g. Li et al. 
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(2011). Thus the bi-deltoid breadth could be useful in future works to be used as a weighting 

factor for classifier or a normalizing parameter for EMG features. 

However, more attention should be paid to two limitations in the future: (1) the number 

of discriminated movements and (2) gender. In the experiments, eight movements were 

performed but only 4-5 movements had strong relationships. Other kinds of upper-limb 

movements may be needed in order to increase the ability of the system such as grasping and 

finger movements. In addition, strong correlations between anthropometry and EMG features 

were not found across the gender (both male and female subjects) in this study. The maximum 

r coefficient across the gender was 0.64, which was calculated between ZC and bi-deltoid 

breadth from BB muscle based on 8 movements. 

In future works, the evaluation of the relationship between useful anthropometric 

variables and other types of features, movements and also muscle locations should be done. 

An EMG classification system that can automatically or semi-automatically calibrate should 

be implemented and its classification accuracy measured to evaluate the performance of the 

calibration. The system should be trained using EMG features extracted from one or a few 

subjects and tested with EMG features of the remaining (many subjects) like a 10-fold cross-

validation between the subjects. 

 

5. Conclusion 

 

This paper presented the feasibility study on the use of anthropometric variables to 

make EMG-based MCIs easy to use in general population. The relationship of twelve 

anthropometric variables with five popular well used time-domain features have been 

evaluated based on five muscle positions and eight movements of upper-limb. Some strong 

associations between anthropometric variables and EMG features have been found and can be 

used to calibrate the EMG classification system automatically or semi-automatically. 
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Appendix A 

 

Equation A.1 (Marras and Sommerich, 1991) is used to determine a muscle force level 

at each sampling point in time. It sums up all of the modifications made to the EMG signal 

and can convert the empirical EMG signal into muscle force. 

 

max

,
EMG

Muscle force gain area LS factor V ratio
EMG

          (A.1) 

 

where Muscle force  =  muscle tension associated with EMG; 

 gain   =  factor that includes maximum muscle force per unit of area; 

 EMG   =  measured EMG value at a particular time; 

 maxEMG   =  maximum EMG value for specific muscle at specific angle of 

operation; 

 area   =  muscle cross-sectional area; 

 LS factor    =  length-strength modulation factor; 

 V ratio  =  velocity modulation factor. 

 


