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To develop an advanced muscle–computer interface (MCI) based on surface electromyography 

(EMG) signal, the amplitude estimations of muscle activities, i.e., root mean square (RMS) and 

mean absolute value (MAV) are widely used as a convenient and accurate input for a recognition 
system. Their classification performance is comparable to an advanced and high computational time-

scale methods, i.e., the wavelet transform. However, the signal-to-noise-ratio (SNR) performance of 

RMS and MAV depends on a probability density function (PDF) of EMG signals, i.e., Gaussian or 
Laplacian. The PDF of upper-limb motions associated with EMG signals is still not clear, especially 

for dynamic muscle contraction. In this paper, the EMG PDF is investigated based on surface EMG 

recorded during finger, hand, wrist and forearm motions. The results show that on average the 
experimental EMG PDF is closer to a Laplacian density, particulary for male subject and flexor 

muscle. For the amplitude estimation, MAV has a higher SNR, defined as the mean feature divided 

by its fluctuation, than RMS. Due to a same discrimination of RMS and MAV in feature space, 
MAV is recommended to be used as a suitable EMG amplitude estimator for EMG-based MCIs. 

Keywords: Electromyography (EMG); feature extraction; fluctuating signal; probability density 
function (PDF); signal-to-noise ratio (SNR). 

1. Introduction 

Although many advanced time-scale and non-linear algorithms have been developed in 

the past decade to analyze and identify surface electromyography (EMG) signal [1, 2], 

features based on the amplitude of surface EMG signals have been still widely used as a 

control input in muscle-computer interfaces (MCIs) [3–7]. One of the major advantage 

reasons is about the lower complexity and computational cost of the EMG amplitude 

estimators compared to the advanced time-scale and non-linear algorithms. They can be 
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implemented in a low-cost-and-performance processor and/or a portable/mobile device 

[8–10]. Moreover, a combination of an EMG amplitude feature set and a simple 

classifier, i.e., linear discriminant analysis (LDA), provides classification performance 

comparable to an advanced combination between time-scale/non-linear features and a 

more complex classifier, such as artificial neural network or support vector machine [11–

13]. 

Many statistics are applied on EMG amplitudes, e.g., sum, mean and variance, in 

order to extract the useful information to classify actions associated with surface EMG 

signals. However, due to a nature of surface EMG signals that has a mean value of about 

zero, because of its positive and negative deviations, a full-wave rectification is usually 

applied to make negative EMG values positive. Two convenient and accurate EMG 

amplitude estimators are root mean square (RMS) and mean absolute value (MAV) [14]. 

The mathematical definition of RMS and MAV methods is presented in Appendix A. 

Both features have been used frequently in EMG classification and estimation systems. 

However, the signal-to-noise-ratio (SNR) performance of RMS and MAV depends on the 

probability density function (PDF) of EMG signals, i.e., a Gaussian or a Laplacian 

density [15, 16]. It is important to note that the SNR is used as a standard metric to 

compare the EMG amplitude estimator performance [15–17]. 

Theoretically, in the maximum likelihood sense, an optimal EMG amplitude 

estimator based on the Gaussian model is RMS [16], whereas an optimal EMG amplitude 

estimator based on the Laplacian model is MAV [15]. However, the main question is 

about the experimental EMG PDF. Although it is clearly found that the experimental 

EMG density falls between the Gaussian and the Laplacian densities, conflicting results 

have been found in the literature about the relationship between the level of muscle 

contraction and the level of non-Gaussianity of EMG signals [18–20]. In a number of 

studies, the EMG PDF tends towards the Gaussian density as the muscle contraction level 

increases [18, 21]. In contrast, Hussain et al. [19] found that the EMG PDF moves 

towards the Laplacian density when the muscle contraction level increases. In Kaplanis et 

al. [20], the EMG signal is more Gaussian at mid-level (50%) of maximum muscle 

contraction while being more Laplacian at low and high levels of muscle contraction. 

In addition to the contradicting results, most of studies examine the PDF of surface 

EMG signals at different isometric/static muscle contraction levels [15, 18, 20, 21]. 

However, motion recognition methods developed on the basis of static EMG portion only 

cannot deal well with the real activities of daily living, which combine both static and 

dynamic contractions (or steady-state and transient EMG signals) [22, 23]. Limiting 

motion recognition system only on the static EMG portion decreases the usability of 

MCIs. Furthermore, only the EMG PDF of dynamic lower-limb motions has been 

examined in the literature [19, 24]. 

In this paper, the EMG PDF of upper-limb motions including finger, hand, wrist and 

forearm motions–recorded from two different experiments–is investigated. These 

motions, which contain both transient and steady-state EMG portions, are widely used 

and applied in MCI application. After the problem of EMG PDFs is re-examined, a 

measure of the quality of EMG amplitude estimators, as called SNR, is used to compare 

the performance of RMS and MAV features. The relationship between the experimental 

EMG PDF and the SNR performance is discussed. In addition, the classification 

accuracies computed from several classifiers are used to confirm the performance of both 

features. The results from relevant EMG-based MCI studies are also reviewed and 

discussed.  
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It should be emphasized that to yield a good classification performance, features 

extracted from the EMG amplitude estimators should have a constant value or less 

variation around mean value for each motion class. The SNR, in this paper, is defined as 

the mean of the amplitude estimate, or “signal”, divided by its fluctuation, or “noise” 

[15]. Therefore, the term “noise” does not refer to noise residing in electronic compo-

nents in the detection and recording equipments including ambient noise and motion 

artifact [25, 26]. 

2. Experimental Study One 

2.1. Data Acquisition and Experiment 

The EMG acquisition and experiment for the first EMG data set are described in detail in 

our previous studies [2, 13]. Briefly, the EMG data were acquired from 18 normally 

limbed individuals (9 males and 9 females), recording four channels of EMG from 

bipolar Ag/AgCl electrodes placed on the right forearm during eight hand, wrist and 

forearm motions. EMG data were collected from 4 muscles: extensor carpi radialis 

longus (ECRL), extensor digitorum communis (EDC), extensor carpi ulnaris (ECU) and 

flexor carpi radialis (FCR). A sequence of 15 sets of eight different classes of motion 

were performed by a day and each subject, resulting in a total of 60 sets for 4 separate 

days. The exact position of the electrodes was not marked from one day to other days, so 

the electrode positions may be slightly shifted and fluctuating EMG signals were 

produced and recorded. 

Each data set consisted of 8 randomized action trials without repetition: forearm 

pronation (FP), forearm supination (FS), wrist extension (WE), wrist flexion (WF), wrist 

radial deviation (WR), wrist ulnar deviation (WU), hand open (HO) and hand close (HC), 

with an action trial period of 2 s and a rest period of 2 s between trials. The order of 

motions was independently randomized for each set, so it is possible to have the same 

order across 60 sets in a subject. Shoulder and elbow positions were fixed at neutral and 

full extension for all subjects. Measured surface EMG signals were sampled at 1024 Hz 

and were amplified with a gain of 19.5x using an EMG measurement system (Mobi6-6b, 

TMS International B.V.). Movement artefact (<20 Hz), power-line interference (50 Hz) 

and high-frequency noise (>500 Hz) were also removed. In total, 34560 recordings with a 

length of 2048 samples (2 s) were available for analysis (18 subjects × 4 muscles × 8 

motions × 4 days × 15 sets). 

2.2. Methods of Analysis 

Firstly, the absolute area difference (AAD) between a recording histogram (EMG density 

estimate) and a Gaussian/Laplacian density is used to decide the EMG PDF of upper-

limb motions. For each of the 34560 non-overlapping recordings, the 2048 samples (2 s, 

a whole action trial period) are normalized by adjusting a recording mean to zero and a 

recording variance to one in order to provide uniformity for EMG PDF estimation [21]. 

Then, a recording histogram is constructed by using 501 bins, equally spaced over the 

normalized range of –5 to +5. The AAD results are analyzed by gender (male and fe-

male) and by muscle type (extensor and flexor), together with the composite histograms 

to provide the average density. 

Secondly, the SNR is used to decide the quality of the EMG amplitude detectors [15]. 

The SNR is defined as the ratio of the expected EMG amplitude estimate to the variation 
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about its mean value as mentioned above. A fixed window length of 256 samples (250 

ms) is used, so for each recording eight adjacent windows are yielded as a result of the 

amplitude estimator. In other word, the SNR can be calculated by the square root of the 

squared mean value of eight adjacent RMS (or MAV) windows divided by its variance. 

In addition to the SNR, classification accuracies obtained from three classifiers 

consisting of the LDA, quadratic discriminant analysis (QDA) and k-nearest neighbor 

(kNN) with k = 5 [4] are used to confirm the optimal EMG ampitude detector for upper-

limb EMG-based MCIs. For each subject, a 10-fold cross-validation is used. The original 

EMG data is randomly partitioned into 10 equal size data. A total of 9 of the 10 subdata 

are used as the training data and the remaining subdata as the testing data, and then the 

process is repeated until 10 times, with each of the 10 subdata used once as the testing 

data. The average accuracy from 10 folds is used as a representative accuracy. The same 

configuration with SNR performance is used for data segmentation, i.e., an adjacent 

windowing with a fixed window length of 256 samples. It should be noted that these 

simple classifiers are used instead of advanced classifiers, i.e., the artificial neural 

network and the support vector machine, because the advanced classifiers have to be 

optimized together with feature extraction [11]. 

2.3. Results 

Normalized composite EMG PDFs of all motions and muscles by gender, male and 

female, are shown respectively in Fig. 1(a) and in Fig. 1(b), and that of all motions and 

subjects by muscle type, extensor and flexor, are shown respectively in Fig. 1(c) and in 

Fig. 1(d). For male subjects, the AAD between the composite experimental EMG density 

and the theoretical Gaussian density is 0.2391, while this difference for the theoretical 

Laplacian density is 0.0603 (3.96 times smaller). For female subjects, the AAD between 

the composite experimental EMG density and the theoretical Gaussian density is 0.1902, 

while this difference for the theoretical Laplacian density is 0.1017 (1.87 times smaller). 

On the other hand, the AADs between the composite experimental EMG density and the 

Gaussian density are 0.1915 for extensor muscles and 0.2847 for flexor muscle, while 

these differences for the Laplacian density are 0.1001 (1.91 times smaller) for extensor 

muscles and 0.0436 (6.53 times smaller) for flexor muscle. The difference between the 

two-densities AADs is statistically significant (p < 0.001) for all subjects and muscles. 

The AADs and the number of times that each recording’s estimated density 

(Gauss/Laplace) best described the EMG data are presented in Tables 1–4 by gender and 

by muscle type. These tables also present the SNRs and the number of times that each 

estimator (RMS/MAV) was best. Average SNR performance of all motions and muscles 

for male subjects is 4.25 using RMS versus 4.47 using MAV and this average value for 

female subjects is 4.25 using RMS versus 4.42 using MAV. On the other hand, for 

extensor muscles, average SNR performance of all motions and subjects is 4.47 using 

RMS versus 4.66 using MAV and this average value for flexor muscle is 3.58 using RMS 

versus 3.81 using MAV. MAV has a higher SNR than RMS by 4.0%-6.4%, and the 

difference between the two-estimators SNRs is statistically significant (p < 0.001) for all 

subjects and muscles. 

It should be noted that the results of three extensor muscles, i.e., ECU, ECRL and 

EDC, are similar to each other. So only the results of one extensor muscle, i.e., ECU, are 

presented in Tables 1–2 as a representative extensor muscle. 

 

 



Phinyomark, Quaine, Laurillau, Thongpanja, Limsakul and Phukpattaranont 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. Normalized composite PDF estimates for (a) male subjects and (b) female subjects, and for (c) extensor 

muscles and (d) flexor muscle. Experimental density (solid black line) is the average of (a) 17280, (b) 17280, 

(c) 25920, and (d) 8640 recordings. Shaded region indicates one standard deviation above and below the 
average. Solid gray line indicates the Gaussian density and dashed gray line indicates the Laplacian density. 
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In addition to the SNR performance, the classification accuracies of RMS and MAV 

obtained from three classifiers are presented in Table 5. On average of three classifiers, 

the classification accuracies of the MAV are slightly higher than that of the RMS based 

on various hand, wrist, and forearm motions for both male (84.53%>83.52%) and female 

(81.49%>80.55%) subjects. 

Table 1. AADs, closest PDFs, SNRs and best estimators tabulated by motion (wrist and forearm) from extensor 

muscle (ECU) and male subjects (M). Each row pools nine-male-subject trials from the indicated motion. 

Mo-
tion 

Mean ± SD AAD Between  

Experimental PDF and: 

No. of Times with 

PDF Closest in 
Shape to: 

Mean ± SD SNR 

Using Estimator: 

No. of Times in 

which Estimator with 
Highest SNR is: 

Gauss Laplace Gauss Laplace RMS MAV RMS MAV 

FP 0.219±0.067 0.139±0.042 133 407 5.53±2.59 5.74±2.52 205 335 

FS 0.249±0.083 0.158±0.053 166 374 4.87±2.39 4.93±2.22 217 323 

WE 0.152±0.069 0.173±0.053 342 198 5.74±2.19 5.53±2.01 339 201 

WF 0.209±0.075 0.160±0.048 203 337 5.56±2.48 5.76±2.52 197 343 

WR 0.194±0.060 0.154±0.044 230 310 5.49±2.55 5.71±2.60 216 324 

WU 0.168±0.051 0.156±0.035 262 278 4.97±1.86 5.10±1.96 228 312 

HO 0.152±0.048 0.170±0.035 338 202 6.99±2.78 6.64±2.71 243 297 

HC 0.212±0.092 0.163±0.030 226 314 4.37±1.93 4.64±2.01 153 387 

Total 0.194±0.068 0.159±0.045 1900 2420 5.40±2.34 5.51±2.32 1798 2522 

Table 2. AADs, closest PDFs, SNRs and best estimators tabulated by motion (wrist and forearm) from extensor 

muscle (ECU) and female subjects (F). Each row pools nine-female-subject trials from the indicated motion. 

Mo-
tion 

Mean ± SD AAD Between  

Experimental PDF and: 

No. of Times with 

PDF Closest in 
Shape to: 

Mean ± SD SNR 

Using Estimator: 

No. of Times in 

which Estimator with 
Highest SNR is: 

Gauss Laplace Gauss Laplace RMS MAV RMS MAV 

FP 0.158±0.048 0.171±0.033 310 230 5.09±1.91 5.26±1.99 208 332 

FS 0.159±0.048 0.170±0.034 312 228 4.88±1.87 4.97±1.90 201 339 

WE 0.132±0.036 0.180±0.034 380 160 5.35±1.72 5.22±1.72 339 201 

WF 0.166±0.058 0.166±0.036 278 262 5.10±2.10 5.35±2.14 177 363 

WR 0.158±0.042 0.159±0.031 274 266 4.72±1.43 4.91±1.62 200 340 

WU 0.155±0.055 0.171±0.037 333 207 4.55±1.58 4.63±1.46 212 328 

HO 0.153±0.047 0.173±0.035 331 209 5.25±2.00 5.37±2.06 225 315 

HC 0.197±0.082 0.170±0.051 215 325 4.09±1.49 4.17±1.56 181 359 

Total 0.160±0.052 0.170±0.036 2433 1887 4.88±1.76 4.98±1.81 1743 2577 

Table 3. AADs, closest PDFs, SNRs and best estimators tabulated by motion (wrist and forearm) from flexsor 

muscle (FCR) and male subjects (M). Each row pools nine-male-subject trials from the indicated motion. 

Mo-

tion 

Mean ± SD AAD Between  

Experimental PDF and: 

No. of Times with 
PDF Closest in 

Shape to: 

Mean ± SD SNR 

Using Estimator: 

No. of Times in 
which Estimator with 

Highest SNR is: 

Gauss Laplace Gauss Laplace RMS MAV RMS MAV 

FP 0.347±0.115 0.143±0.078 24 516 3.06±1.41 3.28±1.56 147 393 

FS 0.433±0.184 0.233±0.148 13 527 2.86±1.78 3.07±1.86 128 412 

WE 0.321±0.176 0.213±0.135 124 416 3.69±1.68 3.81±1.76 178 362 

WF 0.293±0.094 0.122±0.063 31 509 3.05±1.22 3.14±1.21 204 336 

WR 0.314±0.107 0.126±0.060 31 509 3.72±1.85 3.88±1.89 185 355 

WU 0.285±0.108 0.152±0.064 94 446 4.35±2.21 4.84±2.55 130 410 

HO 0.325±0.095 0.130±0.058 15 525 3.89±1.88 4.24±2.00 129 411 

HC 0.315±0.129 0.159±0.075 60 480 2.99±1.65 3.26±1.84 122 418 

Total 0.329±0.126 0.160±0.085 392 3928 3.45±1.71 3.69±1.84 1223 3097 
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Table 4. AADs, closest PDFs, SNRs and best estimators tabulated by motion (wrist and forearm) from flexsor 

muscle (FCR) and female subjects (F). Each row pools nine-female-subject trials from the indicated motion. 

Mo-

tion 

Mean ± SD AAD Between  

Experimental PDF and: 

No. of Times with 
PDF Closest in 

Shape to: 

Mean ± SD SNR 

Using Estimator: 

No. of Times in 
which Estimator with 

Highest SNR is: 

Gauss Laplace Gauss Laplace RMS MAV RMS MAV 

FP 0.327±0.105 0.168±0.075 68 472 3.27±1.29 3.45±1.43 130 410 

FS 0.312±0.157 0.204±0.116 124 416 3.91±2.02 4.15±1.95 155 385 

WE 0.241±0.137 0.177±0.094 194 346 3.94±1.92 4.17±1.90 173 367 

WF 0.219±0.077 0.144±0.047 165 375 4.06±1.64 4.17±1.68 203 337 

WR 0.269±0.088 0.144±0.054 91 449 3.67±1.49 3.95±1.64 142 398 

WU 0.262±0.102 0.155±0.064 124 416 3.69±1.46 3.84±1.56 172 368 

HO 0.275±0.104 0.151±0.061 95 445 3.72±1.80 4.08±2.00 112 428 

HC 0.232±0.088 0.148±0.056 135 405 3.43±1.24 3.69±1.37 116 424 

Total 0.267±0.107 0.161±0.071 996 3324 3.71±1.61 3.94±1.69 1203 3117 

Table 5. Classification accuracies of eight hand, wrist and forearm motions tabulated by gender from two 

estimators (RMS and MAV) and three classifiers (LDA, QDA and kNN). 

Feature 

Mean ± SD classification accuracy (%) 

Male subjects Female subjects 

LDA QDA kNN LDA QDA kNN 

RMS 78.85±8.63 84.99±8.97 86.71±7.44 77.02±5.93 82.06±6.44 82.56±6.38 

MAV 79.78±8.62 86.42±8.75 87.40±7.41 77.94±5.60 83.37±6.35 83.15±6.48 

3. Experimental Study Two 

3.1. Data Acquisition, Experiment and Methods of Analysis 

The EMG acquisition and experiment for the second EMG data set are described in detail 

in Khushaba et al. [27]. Briefly, the EMG data were acquired from 8 normally limbed 

individuals (6 males and 2 females), recording two channels of EMG from electrodes 

placed on the right forearm during ten finger and hand motions. EMG data were collected 

from 2 muscles: extensor and flexor muscles. A sequence of 6 trial sets of ten different 

classes of motion were performed by each subject from one day. Each trial set consisted 

of one of the 10 follwing motions: thumb flexion (TF), index flexion (IF), middle flexion 

(MF), ring flexion (RF), little flexion (LF), thumb-index flexion (TIF), thumb-middle 

flexion (TMF), thumb-ring flexion (TRF), thumb-little flexion (TLF) and hand close 

(HC), with an action trial period of 5 s. Shoulder and elbow positions were fixed with an 

arm support of the chair for all subjects. 

Measured surface EMG signals were sampled at 4000 Hz and were amplified with a 

gain of 1000x using an EMG measurement system (Bagnoli Desktop EMG Systems, Del-

sys Inc). Movement artefact (<20 Hz), power-line interference (50 Hz) and high-

frequency noise (>450 Hz) were also removed. In total, 960 recordings with a length of 

20000 samples (5 s) were available for analysis (8 subjects × 2 muscles × 10 motions × 6 

sets). 

The same analysis methods, as implemented in the first experiment, are applied in 

this experiment, except the evaluation of gender effect (due to a large difference between 

the number of male and female subjects). The length of each of the proposed motions is 

changed from 2048 samples (2 s) to 20000 samples (5 s). In addition, a fixed window 

length of RMS and MAV is set at the same duration of 250 ms, but due to an increased 

sampling rate, the window length is changed from 256 samples to 1000 samples. There-
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fore, twenty adjacent windows are yielded for each recording as a result of the amplitude 

estimator. 

3.2. Results 

Normalized composite EMG PDFs of all motions and subjects by muscle type, extensor 

and flexor, are shown respectively in Fig. 2(a) and in Fig. 2(b). For extensor muscle, the 

AAD between the composite experimental EMG density and the theoretical Gaussian 

density is 0.2069 (1.49 times smaller), while this difference for the theoretical Laplacian 

density is 0.1391. For flexor muscle, the AAD between the composite experimental EMG 

density and the theoretical Gaussian density is 0.2251, while this difference for the 

theoretical Laplacian density is 0.0903 (2.49 times smaller). The difference between the 

two-densities AADs is statistically significant (p < 0.001) for both muscles. 

The AADs and the number of times that each recording’s estimated density 

(Gauss/Laplace) best described the data are presented in Tables 6–7 by muscle. These 

tables also present the SNRs and the number of times that each estimator (RMS/MAV) 

was best. Average SNR performance is 5.87 using RMS versus 6.01 using MAV (2.38% 

larger, a statistically significant difference at p < 0.01). 

In addition to the SNR performance, the classification accuracies of RMS and MAV 

obtained from three classifiers are presented in Table 8. On average the classification 

accuracies of the MAV are slightly higher than that of the RMS based on five individual-

finger motions (79.93%>79.35%) and five combined-fingers motions (86.97%>86.22%). 

 
(a) 

 
(b) 

Fig. 2. Normalized composite PDF estimates for (a) extensor muscle and (b) flexor muscle. Experimental 
density (solid black line) is the average of (a) 480 and (b) 480 recordings. Shaded region indicates one standard 

deviation above and below the average. Solid gray line indicates the Gaussian density and dashed gray line 
indicates the Laplacian density. 
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Table 6. AADs, closest PDFs, SNRs and best estimators tabulated by motion (finger and hand) from extensor 

muscle. Each row pools eight-subject trials from the indicated motion. 

Mo-

tion 

Mean ± SD AAD Between  

Experimental PDF and: 

No. of Times with 
PDF Closest in 

Shape to: 

Mean ± SD SNR 

Using Estimator: 

No. of Times in 
which Estimator with 

Highest SNR is: 

Gauss Laplace Gauss Laplace RMS MAV RMS MAV 

TF 0.257±0.024 0.233±0.016 25 23 8.14±2.69 8.33±2.53 17 31 

IF 0.261±0.028 0.199±0.019 20 28 5.50±2.17 5.60±2.15 23 25 

MF 0.246±0.031 0.221±0.018 26 22 6.32±2.69 6.61±2.92 12 36 

RF 0.200±0.030 0.190±0.022 29 19 6.08±2.10 5.89±1.81 28 20 

LF 0.243±0.026 0.201±0.022 22 26 5.89±1.85 5.93±1.76 22 26 

TIF 0.238±0.020 0.219±0.022 25 23 7.42±2.73 7.40±2.65 29 19 

TMF 0.250±0.025 0.215±0.019 22 26 5.46±2.25 5.61±2.28 22 26 

TRF 0.204±0.026 0.180±0.018 23 25 5.88±1.72 5.76±1.73 29 19 

TLF 0.248±0.025 0.207±0.019 20 28 5.88±1.51 5.96±1.65 25 23 

HC 0.217±0.074 0.240±0.042 28 20 4.30±2.41 4.53±2.49 9 39 

Total 0.237±0.031 0.210±0.022 240 240 6.09±2.21 6.16±2.20 216 264 

Table 7. AADs, closest PDFs, SNRs and best estimators tabulated by motion (finger and hand) from flexor 

muscle. Each row pools eight-subject trials from the indicated motion. 

Mo-
tion 

Mean ± SD AAD Between  

Experimental PDF and: 

No. of Times with 

PDF Closest in 
Shape to: 

Mean ± SD SNR 

Using Estimator: 

No. of Times in 

which Estimator with 
Highest SNR is: 

Gauss Laplace Gauss Laplace RMS MAV RMS MAV 

TF 0.259±0.028 0.168±0.019 8 40 7.32±3.22 7.36±3.07 17 31 

IF 0.259±0.048 0.179±0.029 14 34 5.16±2.34 5.54±2.52 11 37 

MF 0.288±0.050 0.184±0.027 0 48 5.01±2.44 5.18±2.52 21 27 

RF 0.277±0.040 0.172±0.027 14 34 4.43±1.81 4.54±1.96 17 31 

LF 0.304±0.064 0.189±0.041 6 42 5.77±3.13 6.02±3.13 14 34 

TIF 0.193±0.038 0.175±0.016 25 23 6.49±3.11 6.96±3.06 12 36 

TMF 0.163±0.025 0.196±0.019 36 12 6.88±3.07 7.08±3.01 16 32 

TRF 0.263±0.035 0.137±0.021 6 42 6.01±2.47 5.93±2.41 28 20 

TLF 0.245±0.046 0.176±0.031 16 32 5.52±1.85 5.72±2.00 19 29 

HC 0.236±0.046 0.158±0.019 11 37 4.04±1.95 4.20±2.27 15 33 

Total 0.249±0.042 0.173±0.025 136 344 5.66±2.54 5.85±2.60 170 310 

Table 8. Classification accuracies of ten finger and hand motions tabulated by gender from two estimators 

(RMS and MAV) and three classifiers (LDA, QDA and kNN). 

Feature 

Mean ± SD classification accuracy (%) 

5 individual-finger motions 5 combined-fingers motions 

LDA QDA kNN LDA QDA kNN 

RMS 76.00±7.82 80.63±8.94 81.44±9.67 83.88±7.70 87.81±7.36 86.96±8.90 

MAV 76.50±8.10 81.38±8.61 81.92±8.79 84.29±7.61 88.17±7.89 88.46±8.65 

4. Discussion 

4.1. EMG Density of Upper-Limb Motions 

Although surface EMG has been frequently assumed as a Gaussian density at different 

isometric/static muscle contraction levels (i.e., constant-muscle-force, constant-joint-

angle, and non-fatiguing contractions) of the muscles of the upper and lower limbs, 

evidence in the literature has clearly shown a mixed PDF between the Gaussian and the 

Laplacian densities of surface EMG [15, 18, 20, 21]. In addition to the PDF of isometric 

contractions, the EMG PDF of isotonic/dynamic contraction of the lower-limb muscles 

during gait cycle can be best adjusted to the Laplacian density [19, 24]. 
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The EMG PDF of dynamic muscle contraction of the upper-limb motions: hand, wrist 

and forearm motions–in the first experiment–and finger motions–in the second 

experiment was investigated. Overall the experimental EMG PDF is clearly observed 

from Figs. 1 and 2 that the PDF falls between the Gaussian and the Laplacian densities. 

The EMG PDF shifts towards a Laplacian density, particularly for male subject and 

flexor muscle. 

4.1.1. Influence of subject and gender on EMG PDF 

The PDF of surface EMG has been mentioned in several studies that it largely depends 

on the subject. For instance, Clancy and Hogan [15] reported that in their first experiment 

the Laplacian density fits best for 3 of 5 subjects, but in their second experiment the 

Laplacian density fits best only for 2-3 of 19 subjects (9 males, 10 females) depending on 

isometric EMG types. Cherniz et al. [24] found that the Laplacian density fits best for all 

subjects (2 subjects without neurological disorders and 2 subjects with hemiparesia), 

except only one phase of a gait cycle for 2 normal subjects that the Gaussian density fits 

best. 

In our experiments, the Laplacian density best fit the EMG in Experimental Study 

One from 10 of 18 subjects (for extensor muscles) and from 17 of 18 subjects (for flexor 

muscle) and in Experimental Study Two from 4 of 8 subjects (for extensor muscle) and 

from 7 of 8 subjects (for flexor muscle). In Experimental Study One, eight subjects that 

the Gaussian density fits best are 3 males and 5 females (for extensor muscles). 

We can observe that the EMG PDF of female subjects tends to be more Gaussian than 

the EMG PDF of male subjects. In the both experiments, the subjects were asked to 

perform and maintain the motions without any target force level. Maybe female subjects 

performed the higher contraction level of the muscles (% of maximum voluntary 

contraction, MVC) than male subjects, in the assumption that the EMG PDF tends 

towards a Gaussian density when the muscle contraction level increases [18]. However, 

the averaged total power of EMG per recording from the male subjects is higher than that 

from the female subjects (1.74×10
7
 > 1.10×10

7
, in (µV)

2
 unit), based on Experimental 

Study One. 

4.1.2. Influence of muscle and motion on EMG PDF 

Kaplanis et al. [20] found that the non-Gaussianity level of surface EMG signals depends 

on the electrode position even on the same muscle, e.g., the biceps brachii. In our ex-

periments, the studied muscles are divided into two groups: extensor and flexor muscles 

of the forearm. As can be observed in Tables 3–4 in Experimental Study One, the EMG 

PDFs of flexor muscle from all motions and subjects are close to the Laplacian density.  

The EMG PDF of extensor muscle from male subjects is also close to the Laplacian 

density, as can be seen in Table 1, except wrist extension and hand open which are the 

extension contraction. In Table 2, although the EMG PDF of extensor muscle, i.e., ECU, 

from female subjects is close to the Gaussian density (except hand close), the chance that 

the Gaussian density would best fit the data from three extensor muscles (6580 of 12960 

recordings) is p = 0.9613, which is not statistically significant. The averaged total power 

of EMG per recording from extensor muscles is higher than that from flexor muscles for 

both experiments (1.58×10
7
 > 0.93×10

7 
in Experimental Study One and 6.49×10

3
 > 

2.83×10
3
 in Experimental Study Two, in (µV)

2
 units). 

In this paper, the PDFs of surface EMG signals are examined at different muscle con-

traction levels based on finger, hand, wrist, and forearm motions in six forearm muscles. 
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This finding is consistent with the finding in upper-arm muscles, e.g., the biceps brachii 

[28] and other forearm muscles, e.g., the abductor pollicis brevis [18]. Moreover, in con-

trast to most of previous studies [15, 20, 21, 28, 29] in which the EMG signals were re-

corded at fixed percentages of the MVC, the surface EMG signals in our experiments 

recorded in a flexible range of muscle contraction levels, as used in a number of recent 

studies [18, 19]. 

4.2. SNR Performance of Upper-Limb Motions 

Theoretically, the SNR performance of RMS and MAV estimators, which are derived 

from the Gaussian model of EMG, can be expressed as 

 NSNR GaussRMS 2,
, (1) 

 NSNR GaussMAV 7519.1,
, (2) 

where N is the number of statistical degrees of freedom. On the other hand, the SNR per-

formance of RMS and MAV estimators, which are derived from the Laplacian model of 

EMG, can be expressed as 

 NSNR LaplaceRMS 8.0,
, (3) 

 NSNR LaplaceMAV ,
. (4) 

Hence, an optimal amplitude estimator when an EMG PDF is a Gaussian density is 

RMS, whereas an optimal amplitude estimator when an EMG PDF is a Laplacian density 

is MAV. More details about the relationship between EMG amplitude estimator, EMG 

PDF, and SNR performance in theoretical basis can be found in Refs. [15, 16]. 

Based on the theoretical and the experimental EMG PDFs, MAV should be an opti-

mal EMG amplitude estimator for MCIs based on flexor muscles in both genders and on 

extensor muscles for male subject. This finding is confirmed by the SNR performance, as 

shown in Tables 1, 3, 4 and 7. 

In case of the extensor-muscle-and-female-subject that the EMG PDF tends towards a 

Gaussian density, based on the theoretical, RMS should be an optimal EMG amplitude 

estimator. However, based on the SNR performance in Table 2, the SNR of MAV feature 

is higher than the SNR of RMS feature (4.98 > 4.88, 2.05% larger). This conflicting find-

ing can be explained by the simulated experiment in Clancy and Hogan [15]. The rela-

tionship is defined in Eq. (5), where 0 ≤ w ≤ 1, xG is a sequence generated by a Gaussian 

model, and xL is a sequence generated by a Laplacian model. Both sequences are a unit-

variance. It is possible that the EMG density y is closest to a Gaussian density but MAV 

has a higher SNR than RMS, when the w value is in the range of 0.375 and 0.525. 

 1G Ly w x w x  (5) 

Based on this relationship, MAV can be an optimal EMG amplitude estimator for 

MCIs based on extensor muscle for female subjects even though their EMG PDFs are 

closer to the Gaussian density than the Laplacian density. 

In contrast to Kreifeldt and Yao [30] in which the SNR of RMS is nearly equal or 

slightly better than the SNR of MAV, in our experiments the SNR of MAV is slightly 

better than the SNR of RMS. Our finding is consistent with the finding in a number of 

studies [15, 17, 31]. 
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4.2.1. Influence of all experimental factors on EMG PDF 

On average, the SNR performance from male and female subjects shows no statistically 

significant difference for both RMS (p = 0.89) and MAV (p = 0.06). On the other hand, 

the SNR performance of RMS and MAV estimators from extensor muscles is better than 

that from flexor muscles for both the experiments, a statistically significant difference (p 

< 0.001, and p < 0.01 in case of MAV SNR in Experimental Study Two). 

For the muscle contraction effect, theoretically the SNR is not influenced by muscle 

contraction level, but experimentally the SNR decreases with increasing muscle 

contraction level: 10%-75% MVC in [15] and 5%-25% MVC in [17]. In our experiments, 

the exact levels of MVC are unknown. Based on the power of EMG signals, we did not 

observe any consistent trend in the EMG power relative to the muscle contraction level. 

For instance, the EMG power of male subjects is higher than female subjects while the 

SNR from both genders are the same. On the other hand, the EMG power and SNR from 

extensor muscles are higher than the EMG power and SNR from flexor muscles. So it has 

a direct relationship. 

4.3. Accuracy of RMS and MAV in Classification of Upper-Limb Motions 

In order to confirm an optimal EMG amplitude detector in classifying upper-limb mo-

tions using forearm muscles for MCIs, classification accuracies of MAV and RMS using 

three classifiers, i.e., LDA, QDA and kNN, are presented in Table 5 (Experimental Study 

One) and Table 8 (Experimental Study Two). The classification accuracies of the MAV 

estimator are slightly higher than the RMS estimator based on various finger (flexion of 

the single and multiple fingers), hand (close and open), wrist (flexion, extension, radial 

and ulnar deviation) and forearm (pronation and supination) motions for all classifiers.  

The results are consistent with Oskoei and Hu [32] in which six motions: hand open 

and close, wrist flexion and extension, and arm flexion and extension were classified us-

ing LDA and artificial neural network based on six upper-arm and forearm muscles.  

In contrast to our experiments, if only the directions of wrist motion (i.e. forward, 

backward, left and right) during hand close are considered and the most of surface EMG 

channels are measured from extensor muscles, the classification accuracies of the RMS 

estimator are slightly higher than the MAV estimator and the results are also dependent 

on the classifier type [4, 33]. 

However, if the MCI is developed under the different motions of upper-limb includ-

ing finger, hand, wrist and arm, on average the MAV estimator would provide compara-

ble or slightly higher classification accuracy compared to the RMS estimator. Further-

more, the RMS and MAV estimators provide the same discrimination in feature space 

[34], thus only one of them should be used to avoid redundancy in a classification 

scheme. Due to a lower computational cost of the MAV estimator compared with the 

RMS estimator (see Appendix A), MAV is recommended to be used as a suitable EMG 

amplitude estimator for the upper-limb motions and the forearm muscles. 

Combined, SNR and accuracy results also suggest that EMG amplitude estimators 

based on the modification of MAV processing would provide better classification per-

formance than those based on the modification of RMS processing. For instance, classifi-

cation accuracies of QDA, LDA, kNN, and maximum likelihood estimation (MLE) used 

difference absolute mean value (DAMV) are higher than the difference absolute standard 

deviation value (DASDV), as presented in Kim et al. [4] and Yu et al. [33]. 
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5. Summary 

The PDF of surface EMG recorded from forearm muscles associated with finger, hand, 

wrist, and forearm motions, was examined experimentally. It was clearly seen from the 

figures that the observed densities fell in between the Gaussian and Laplacian densities, 

but based on the the absolute area difference, the experimental EMG PDF can be best 

adjusted with less error to the Laplacian density on average. Based on the EMG PDF and 

SNR performance, MAV is recommended to be an optimal EMG amplitude detector for 

EMG-based MCIs. The results are evaluated based on two experiments, twenty-six 

subjects, six forearm muscles, and eightteen different motions. This finding is confirmed 

by the classification results obtained from three state-of-the-art classifiers, i.e., LDA, 

QDA and kNN. 
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Appendix A.  EMG amplitude estimators 

RMS and MAV are two popular EMG amplitude estimators [14]. There are several ways 

for calling RMS and MAV features, for instance, RMS is similar to a standard deviation 

of surface EMG signal, where mean value of EMG is naturally nearly zero. There are 

many given names for calling MAV, e.g., average rectified value, averaged absolute 

value, integrated absolute value, and the first order of v-Order feature [34]. Mathematical 

definition of both methods can be expressed respectively as 

 2

1

1
RMS

L

i

i

x
L

, (A.1) 

 

1

1
MAV

L

i

i

x
L

, (A.2) 

where xi represents the i
th

 EMG amplitude sample and L denotes a length of analysis data 

window. Adjacent disjoint windows with a fixed L of 250 ms (256 samples for 

Experimental Study One and 1000 samples for Experimental Study Two) were used for 

both estimators. 
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