
 VOL. 4, NO. 3, May 2014 ISSN 2222-9833
ARPN Journal of Systems and Software

©2009-2014 AJSS Journal. All rights reserved

http://www.scientific-journals.org

64

At the Cross-Roads between Human-Computer Interaction and Model
Driven Engineering

1 Gaëlle Calvary, 2 Anne-Marie Dery-Pinna, 3 Audrey Occello, 4 Philippe Renevier-Gonin, 5 Michel Riveill
1 Laboratoire d'Informatique de Grenoble, Campus de Grenoble – Bâtiment B – 385, avenue de la Bibliothèque – B.P. 53, F-38041

Grenoble Cedex 9, FRANCE
2, 3, 4, 5 Université de Nice - Sophia Antipolis - CNRS, Bâtiment Polytech’Sophia – SI 930 route des Colles – B.P. 145, F-06903 Sophia

Antipolis Cedex, France

ABSTRACT
Human-Computer Interaction (HCI) engineering was oriented during its infancy towards the use of models in order to
formulate its inherent knowledge. The formulation and exploitation of this know-how was then rapidly explored, through
the use of automatic User Interface (UI) generation tools, in order to reduce its development costs. However, because of
the disappointing quality of the resulting UI’s this approach was quickly abandoned. Nowadays, these same models are
being rediscovered under the umbrella of Model Driven Engineering (MDE), to tackle the requirements driven by dynamic
environments inherent to ubiquitous computing or cloud computing application domains for example. The present paper
recalls the key points of the interaction between HCI engineering and MDE, and reveals the compelling potential of
combining the research efforts of the two communities.

Keywords: Human-Computer Interaction, Model Driven Engineering, View, Actor, Phase.

1. INTRODUCTION

Interactive systems [Wegner 97] are commonly
described by a minimal breakdown distinguishing
between the Functional Core (FC) and the User Interface
(UI). The FC includes all means of processing data
independently of any user representation. The UI makes
choices in terms of presentation, as a function of the
targeted usage context and ergonomic properties to be
satisfied. The usage context includes: the user (his/her
characteristics, competencies, preferences, etc.), the
execution platform (its computational and communication
capacity, and available I/O interaction resources), as well
as the physical/social environment in which the user is
placed (conditions of lighting and noise, public or private
space, open or closed, etc.) [Calvary 03]. The ergonomic
properties refer to the quality of interactive system usage
(cognitive requirements of using interfaces). Ergonomic
criteria [Bastien 93] allow the latter to be characterised:
for example, the user’s workload when accomplishing a
task, or the UI’s compliance with standards.

Research in Human-Computer Interaction (HCI)
engineering has been strongly driven by improvements in
software and hardware. These have been numerous in
recent years, leading to a revolution in human-computer
interactions: from monolithic applications reserved for
experts in a fixed location, today’s research is oriented
towards widespread applications, accessible to all, at any
time, in any place (public transport, office, home, street,
etc.), with any sort of device (computer, basic or ‘smart’
phone, interactive display, domestic appliance, etc.). Such
interactions are implemented via new types of UI which
go beyond the interactional keyboard-mouse-screen
context, favouring new interactive means such as the
displacement of the devices themselves (location based
interaction but also shaking or tilting the device). These
UI’s represent a major break from conventional UI’s
based on windows, menus, etc.

The present paper deals with the contributions of

Model Driven Engineering (MDE) [Schmidt] to HCI
engineering. It covers its history, indicating the key events
of the use of MDE in HCI engineering, ranging from the
formulation of knowledge through models (Section 2), to
the formulation of know-how by means of model
transformations (Section 3). Today, the requirements of
ubiquitous applications are such that MDE has become
crucial to HCI engineering. Conversely, HCI engineering
represents a rich application domain for MDE, through
the diversity of its models, the maturity of its
transformations and the prospects for research into the
presentation of models to users (UI's of models). Section
4 presents some avenues for research at the intersection
between HCI engineering and MDE, i.e. promising MDE
techniques for HCI engineering, and research topics in
HCI engineering, which have a wealth of potential
applications in MDE. Our paper concludes with a set of
perspectives, which encourage further collaboration
between the two communities, in line with the widely
applauded French MDE initiative known as “Action
IDM”.

2. FORMULATION OF KNOWLEDGE:

FAMILIES AND MODELS USED IN
HCI ENGINEERING

Models are traditionally used in HCI engineering
to formulate knowledge of requirements and/or designs.
This section presents the models used in HCI engineering,
and their evolution through the needs which have
successively appeared with the mutation of computing:
democratisation of computing, mobile computing and
ubiquitous computing.

 VOL. 4, NO. 3, May 2014 ISSN 2222-9833
ARPN Journal of Systems and Software

©2009-2014 AJSS Journal. All rights reserved

http://www.scientific-journals.org

65

2.1 Modelling Interactive Applications and Their
Users

The democratisation of computing has placed the
user at the centre of HCI research. The challenges are to
improve the quality of human-computer interactions, and
to support the resulting developments using the high
performance methods and tools needed to ensure this
quality. User-centred approaches have evolved over the
course of time, from cooperative [Greenbaum 91], to
participative [Schuler 93], and currently contextual [Beyer
98] designs. Generally, the user-centred design processes
introduce specific steps and activities, whereby the human
is taken into account in the process. For example, Figure 1
takes the conventional V development cycle of UI’s one
step further, defining the ergonomic evaluation as the key
activity to be carried out at each step of the process.
Indeed, the regular evaluation of the ergonomics of an UI
reduces the risk of rejection at the end of a cycle.

Fig 1: Example of a user-centred design process.
Feedback to preceding steps is not indicated.

Historically, the main phases in which models

are involved are those concerning analysis and design:
analysis of the requirements, external specifications, and
software design. These three phases and the models they
use or produce are described in detail in the following
sections.

2.1.1 Analysis of Requirements and its Models

A key aspect at this stage is to establish a user
model. This model describes a typical user. It sets general
parameters (age, gender, etc.), professional competence
(novice/expert, etc.) and computing ability
(cautious/inquisitive/skilful, etc.) of the supposed user.
Studies in cognitive psychology allow some of these
characteristics to be quantified, which makes it possible to
predict the user’s ease or rapidity in performing a task.
For example, the degree of knowledge could be novice,
intermediate or expert, according to the Rasmussen model
[Rasmussen 83], knowing that the expert will have reflex
reactions (automatisms), whereas a novice will need to be
guided, trained or even reassured. The model of the user
currently remains informal, and is saved in the form of
free text.

The personality (persona) technique [Cooper 99,
Blomkvist 02] is currently a well-recognised approach for
the modelling of users. A personality is a key individual
(for example, Susie, a young, sparkling woman – Figure
2) whose model describes character traits, behaviour, etc.,
with some characteristics being standard, and others less

expected [Perfetti 07]. Such a model is produced
following observations and interviews with real users. The
personalities are then placed into scenarios, which
challenge them with objectives to be achieved.

Fig 2: Example of a personality.

The scenarios [Rosson 02] support the complete
development process: problem scenarios (problem
description), are then broken down into activity scenarios
(description of activities needed to deal with the problem),
and illustrated by interaction scenarios (staging of the
activity). The scenarios can be written in text form, drawn
in the form of scenario pictures (Figure 3), or even
recorded using other media forms such as a situational
video [Renevier 04]. These scenarios allow the different
players in the design process (computer scientists,
ergonomists, users, etc.) to communicate. Their informal
character stimulates creativity [Nielsen 93]. They are
recorded in the test plan [Lim 94] and are used during the
evaluation phase for the testing or commissioning of the
interactive system. They are also used in an early phase to
verify with the users the accuracy of the foreseen process.

Fig 3: An example of a scenario picture. Excerpt taken
from the European project GLOSS.

In order to refine the process, the task and

domain concept models are commonly used. The task
model formulates the user’s intentions (for example, book
a seat at a show) as well as the procedure used to achieve
this objective (for example, provide one’s identity and
then specify the desired seat). The procedure is a recursive
break-down of the main objective into sub-objectives,
with the latter being related to one another by logical
and/or temporal operators. The task model is certainly
more advanced and operational. Languages for task
modelling include, for example, the MAD (Méthode

 VOL. 4, NO. 3, May 2014 ISSN 2222-9833
ARPN Journal of Systems and Software

©2009-2014 AJSS Journal. All rights reserved

http://www.scientific-journals.org

66

Analytique de Description de tâches) [Scapin 89] and
CTT (Concurrent Task Tree) [Paterno 97].

Figure 4 is a graphical representation of a task
model written in CTT: it explains how to book a seat at a
show. It also shows that a task description is independent
of the presentation options: these options depend on the
external specifications. In addition, it shows that a task
manipulates concepts in the relevant field: for example,
notions related to seat, address, identity, etc. These
concepts are described separately in a concept model. The
UML class diagrams are widely used to formalise these
models.

Fig 4: Graphical representation of a task model written in

CTT.

2.1.2 External Specifications and their Models
Once the user-centred models have been

established, the design of an UI is built around models
which capture the UI’s presentation as well as its
interactions. The presentation models describe the UI in
terms of structure and/or rendering choice. The interaction
models describe the dynamics in the form of
events/reactions. These descriptions can be formulated in
natural language or expressed in languages and
formalisms such as UAN [Hix 93].

In order to create these models, a conventional
process involves starting with the task model or scenarios,
and enriching it by describing the interactions in
increasingly fine detail. Each refinement involves design
choices (structuring of the UI, preference for one or
another interactor, etc.). The UI development process has
been implemented in different ways. However, a
consensus has been reached around four levels of
abstraction [Szekely 96]: user tasks and field-specific
concepts, abstract UI, concrete UI and final UI.

The abstract UI model structures the UI into
dialog zones (the graphically shown interaction zones). It
organises the UI into abstract interactors (for example, the
notion of choice) without defining whether these should
be represented by drop-down menus, tick-boxes, etc. The
concrete UI model makes the rendering choices. At this
stage, all of the presentation choices have been made, but
their means of implementation have not yet been defined.
These choices are made at the so-called final UI stage
which sets the development and execution environment.
In addition to distinguishing between different objectives,
the formulation of these models allows the chosen options
to be validated by the various players involved: not only
users, but also ergonomists, graphic designers and
computer scientists.

A natural consequence of the formulation of
knowledge has been the operationalisation of the models,
in order to automate code generation. A number of tools
(for example, ADEPT [Johnson 93] have been proposed.
They comply with a model-based approach (MB-IDE for
Model-Based Design Environments). The four levels of
abstraction mentioned previously establish the
architectural basis for the currently explored methods.

2.1.3 Software Design and its Models

Once the UI has been designed, the next step is
to design the software architecture allowing the UI to be
linked to the functional core. Numerous studies in HCI
engineering have dealt with the software architecture of
interactive systems [Coutaz 01]. As in the case of
software development in general, the importance of the
architectural model in HCI engineering can be explained
by the iterative nature of the design. This calls for the use
of modular code corresponding to a reference
architectural style in order to simplify software upgrades
[Coutaz 01].

Two types of model allow the interactive system
to be structured. The first type of model is based on a
structure that isolates the functional part of an interactive
system from its presentation to the user, as in the case of
MVC (Model View Controller) [Reenskaug 79] or PAC
(Presentation Abstraction Control) [Coutaz 87, Avgeriou
05]. MVC distinguishes between three different aspects in
software: the ‘model’ (the business part), the ‘view’
(business data representation) and the ‘controller’
(management of user interactions). The model
communicates with the view in accordance with the
“observer-observable” design pattern, with the view being
able to query the model to obtain current values. The
controller manages the user events by initiating UI
updates and by transmitting any data changes to the
model. The PAC model has a slightly different
breakdown. The ‘A’ (Abstraction) facet corresponds to
the model part of MVC. The ‘P’ (Presentation) facet
corresponds to the view and controller part of MVC. The
PAC model thus introduces its own additional facet ‘C’:
control. The control has two purposes: to enable the
exchange of communications (and translations) between
abstraction and presentation, and also to ensure the UI’s
consistency, by means of a hierarchy (tree) of PAC units
linked together by their control facets.

The second type of model corresponds to a
functional breakdown of the interactive system. This is
the ARCH [UIMS 92] model which refines the UI into
four functions: a Functional Core (FC) adapter which
provides for data translation between the FC and the UI; a
Dialog Controller (DC) which drives the dynamics of the
UI; a logical presentation which assumes the role of an
adapter between the DC and the physical presentation;
and the physical presentation corresponding to the
implementation of the UI in the given language and
toolbox.

Mobile IT introduces a new dimension to these
notions: the development of multi-platform UI. This

 VOL. 4, NO. 3, May 2014 ISSN 2222-9833
ARPN Journal of Systems and Software

©2009-2014 AJSS Journal. All rights reserved

http://www.scientific-journals.org

67

dimension opens up new perspectives for the
aforementioned models.

2.2 Platform Modelling

The democratisation and success of mobile
media (mobile phones, personal assistants) has made the
task of UI developers more difficult. The aim is to avoid
having to redevelop an UI when the physical or software
platform changes, and to ensure ergonomic consistence
between versions. The European project CAMELEON
[Calvary 03] (http://giove.cnuce.cnr.it/cameleon.html)
was involved in the four previously established levels of
abstraction (Section 2.1) in order, firstly to enable multi-
target UI development, and secondly to provide tools for
such development. The abstract and concrete UI’s are
then recognised for their importance in terms of pivotal
models: they assume the role of a PIM (Platform
Independent Model) in a MDA (Model Driven
Architecture) context [OMG 01], whereas the final UI
assumes the role of the PSM (Platform Specific Model).
The variety of platforms, and more generally of prevailing
usage contexts motivated the search for multi-platform
UI’s (aka Plastic UI) in 2001 [Thevenin 01]. New models
were introduced in order to describe the usage context
(user platform, environment) and changes in usage
context. These are evolution models (a set of Event-
Condition-Action rules) and transition models, with the
purpose of the latter being to accompany the user in any
change (for example, by means of a deformation of the UI
enabling visual continuity).

With the advent of ubiquitous computing, usage
context and changes in usage context are no longer always
predictable at design time. The HCI community has thus
been faced with new challenges.

2.3 Modelling the Usage Context

Ubiquitous computing as it was imagined by
[Weiser 91] promises citizens the permanent availability
of services: the user is mobile [Lyytinen 02]; he/she can
access his/her data and applications from anywhere, at
any time, from any device. This desire for universality
[Scholtz 99] calls for the modelling of knowledge and
know-how, in such a way as to prepare the system for
situations unforeseen at design time. The Meta approach
[Fischer 04] is thus an obvious solution, thereby
disrupting various dichotomies.

Between phases. The development and execution
phases were until recently distinct: development decisions
were the developer’s prerogative, whereas the execution
was driven by the user. With ubiquitous computing, since
the usage contexts are no longer systematically
predictable at design time, the system needs to be
endowed with generating capacity allowing it to deal with
usage contexts for which no tailor-made UI would have
been designed at the outset. The unification of design and
execution corresponds, in reality, to a shift to the Meta
level, in order to design what is no longer an interactive
system, but a generator tool. This transition in reasoning
requires the flexible points (i.e. decision points in HCI
engineering) of an UI to be identified, the corresponding

metamodels to be formulated, and calls for various
transformations of the corresponding models [Sottet 08].
Between players. The unification of design and execution
results in the abolition of the dichotomy between the
designer and the user. Now, the user shapes his interactive
space, just as the designer invents an UI. End user
programming [Smith 77] and DSL’s (Domain Specific
Language) [van Deursen 00] are domains, which are
today being rediscovered in HCI engineering. For
example, in Jigsaw, by means of a dedicated graphical
editor, the user builds simple programs by assembling
jigsaw puzzle pieces such as “If someone rings the
doorbell, take a picture and transfer it to the PDA”
[Rodden 04]. This perspective raises an interesting
question: that of the view associated with models and
metamodels. How can (meta)models be presented to users
who are not necessarily IT experts? How much control
can they be given, and via which UI? The question
remains open.

Between functions. The lack of consideration for
FC (Functional Core) is starting to change. Indeed, in
some applications it is important to recognise that the FC
exists inherently, independently of the use to which it is
put [Blay-Fornarino 07]. As a consequence, it is important
to see beyond the division between UI and the FC. Of
course, this modularity must be revisited in order for the
changes in FC to be suitably taken into account, in a
world in which services dynamically appear and
disappear. Indeed, service and component-based software
platforms simplify the dynamic assembly of components.
Changes in the assemblies can have an impact on the UI
by modifying, for example, the user tasks. This
observation has led some studies to propose solutions
which, at the level of the presentation and the interactions,
automate the interpretation of adaptations of the FC, the
latter being produced by means of a dynamic assembly of
services. We cite the work of [Bihler 07] dealing with the
creation of an UI based on a workflow of services, and
also the work of [Pinna-Dery 08] who proposes a platform
assisting with the coherent assembly of UI’s as a function
of the assembly of functional services. Such an approach
favours the re-use of existing solutions. The work of
[Mosser 08] transforms data workflows described at the
Mashup level (autonomous part of web pages, which
provides the UI and the functional part, and is generally
handled by administrator pages on the web), into service
orchestrations. The work of [Brel 10] reuses existing UI’s
for creating new applications by composition while
preserving user requirements of individual original
systems and keeping some of the links between the
functional part and the UI part in the resulting system. At
the heart of these approaches, are models and model
transformations, permitting either the transition from a
dataflow model to a workflow model, or the transition
from an abstract UI model to a concrete UI model in
which the UI’s are designed as assemblies.

Between technologies. Until recently, UI’s were
technologically homogeneous. With the possibility of
distributing a UI over several physical platforms (for
example, remote control on a PDA, content on a PC), it
has now become necessary to envisage hybrid UI’s,

 VOL. 4, NO. 3, May 2014 ISSN 2222-9833
ARPN Journal of Systems and Software

©2009-2014 AJSS Journal. All rights reserved

http://www.scientific-journals.org

68

combining different technologies: one part in html
(“conventional” UI composed of text, buttons, etc.),
another part in OpenGL (3D UI) or even in VoiceXML
(for speech synthesis of information). Some of these parts
can be generated, others can be reused. The generation
can be based on conventional toolboxes, or can
dynamically invoke advanced components [Demeure 08]
and thus depart from the form type of UI usually
generated up until now.

Figure 5 depicts a proposed classification for the
models used in the engineering of interactive systems. It
relies on an ARCH-like decomposition, which
distinguishes the presentation part (P) from the dialog
controller (DC) in the UI. The FC adaptor and the nuance
between logical and physical presentations are not
discussed here.

Fig 5: Model collaboration in HCI engineering.

For the FC part, one can cite as examples of

conceptual models: the use cases, class diagrams or
sequence diagrams, as proposed in UML (Figure 5). From
the point of view of its implementation, one could apply
SCA [Marino 09], Fractal [Bruneton 06] or OSGi [OSGi
alliance 03]. For the DC part, the best-known models are
Pétri networks [Palanque 96] or a hierarchy of PAC
agents as recommended in PAC-AMODEUS [Nigay 97].
In the latter case, there are heuristic rules for deriving the
DC from the external specifications. For the P part, the
more conventional models are often based on abstract or
concrete UI as proposed in UsiXML [Limbourg 04b], or
graphical multi-platform toolboxes.

Despite the FC/DC/P breakdown, the models are
not mutually exclusive. Indeed, they have an influence on
one another: their definition requires mutual feedback,
which is not always simple to implement, since the
players are not necessarily the same. For example, the
task model can be an extension of use cases manipulated
in the FC (Figure 5). The use cases model the system
functionalities only, without taking the UI into account,
whereas the task model is based on a similar approach,

but is potentially capable of integrating functionalities as
“system tasks”. When these (use case and task) models
are kept mutually consistent, this can be referred to as
‘horizontal collaboration’.

Starting from the task model, a dialog model and
an abstract UI model can be produced (Figure 5).
Conversely, starting from an abstract or a concrete UI, the
task model can be found. For example, Figure 4 is a
possible task model for the UI shown in Figure 6. If the
task and dialog models, the task and abstract UI models,
or even the abstract and concrete UI models are kept
mutually consistent, this can be referred to as ‘vertical
collaboration’.

 VOL. 4, NO. 3, May 2014 ISSN 2222-9833
ARPN Journal of Systems and Software

©2009-2014 AJSS Journal. All rights reserved

http://www.scientific-journals.org

69

Fig 6: UI (excerpt from [Nogier 05]) for which a possible
task model is that shown in Figure 4.

By preserving collaborative links during

execution, the design choices can be dynamically
reviewed, whenever the usage context changes. However,
such a revision requires the formulation of a certain
volume of know-how, i.e. transformations.

2.4 Summary

The present section has described many models
in HCI engineering: user model, task model, dialog
model, platform model, environment model, evolutionary
model, transitional model, etc. Not all of these models are
treated in the same manner. Some are treated numerically
(the task model in particular), others are not (scenario
models in particular). Some of these are sufficiently
mature (for example, the task model) to be qualified as
metamodels, whereas others are not.

Currently, some languages are thus sufficiently
advanced and equipped with tools. For example, tasks
may be described using the CTT language and its CTTe
environment [Mori 02]. This is also the case for
grammatical structures such as UsiXML [Limbourg 04b],
which provide good coverage and are being standardised.
Nevertheless, some models such as concrete UI still
justify further improvements. This is also the case of the
“mapping model”, a key model for the dispatching of
vertical and horizontal collaborative links, since it links
models with different levels of abstraction (multiple
development paths) together, and allows links to be
maintained between the different UI representations. The
mapping model has strong similarities with the mapping
implemented between elements of a source model and a
target model, within a model transformation rule,
according to a traditional MDE process.

Figure 7 shows the mapping between an
interaction model and a concrete UI model. The tasks are
grouped into interaction or “Layout” areas (Interaction
Space), allowing them to be mutually structured. Each of
these areas is mapped (arrows) with interactors (windows,
tabs, etc.): the “Actions” are mapped to buttons, the
“Input Elements” to text fields, …

Fig 7: Example of a mapping model.

3. FORMULATION OF KNOW-HOW:
TRANSFORMATION OF MODELS IN
HCI ENGINEERING

HCI engineering forms a rich applicative
framework for MDE, as a result of the variety of
operations which can be made on the models: composition
by fusion, difference or joining of models in order to re-
use and compose different modelling types [Pinna-Dery
03], [Lepreux 06]. This section covers the history of the
transformations and various operations carried out on the
models in HCI engineering, from the standpoint of the
requirements identified in section 2.

3.1 Adapting UI’s to the Users

Numerous studies dealing with model
transformations make use of the task model and a
concrete UI to automate code generation for a given user
and platform. The four levels of abstraction can then be
viewed as different levels of refinement of the same UI,
despite the absence of a common metamodel.

In most studies, the task model is the starting
point of the transformations: the final UI is generated
from a task model, without it being possible, however, to
monitor the transformations or intermediate models. For
example, the UI shown in Figure 6 could be generated
automatically from the task model in Figure 4, by means
of model transformations associating (1) one text field per
leaf task, (2) an indicative text to the left of each text
field, accompanied if necessary by a user guide to the
right, and (3) a space to separate the information
“packets” of each intermediate task (here, identification of
the user specifying the seats).

The disappointing quality of generated UI’s
penalised this approach, and consequently the models
[Myers 00]. The boom in PDA’s has led to renewed
interest in models for HCI engineering: the wide range of
platforms indeed calls for economic solutions, to ensure
ergonomic coherence between platforms (for example, a
PC version and a phone version). On the assumption that
business evolves less rapidly than technology, the MDA
approach is dedicated to the management of the specific
aspect of software dependence on an execution platform.
The HCI community has thus naturally turned to MDA,
which provides a response to these new preoccupations
related to the generation of UI’s on multiple platforms, in
different languages.

 VOL. 4, NO. 3, May 2014 ISSN 2222-9833
ARPN Journal of Systems and Software

©2009-2014 AJSS Journal. All rights reserved

http://www.scientific-journals.org

70

3.2 Adapting UI’s to Platforms
In order to deal with the multitude of existing

platforms, the traditionally adopted approach of reverse
engineering is giving way to other conceptions. In
particular, different entry points can be selected (for
example, at the level of the concrete UI, to integrate the
use of layouts) and different monitored design paths (for
example, reverse engineering to recover the task model,
starting from an UI layout). The reference framework
CAMELEON [Calvary 03] was then proposed as a
methodological support, to assist with the design steps
and paths. This reference framework explicitly shows that
the transformations may be either manual or semi-
automatic: the justification for “all automatic” is no longer
applicable.

The designer can specify the model
transformations to monitor the quality of the UI’s
produced. The specification of transformations implies
integrating ergonomic criteria into the transformation
process. For example, if “error protection” [Bastien 93] is
a criterion considered to be important for a given UI, the
transformation of a choice should privilege radio buttons,
drop-down menus, or tick-boxes, rather than free text
fields such as those used in Figure 6 for the selection of a
morning or an evening session. Very often, a poor (i.e.
non-ergonomic) transformation implies, as a result, the
addition of interactors in order to provide the user with
compensatory guidance (guidance is another criterion in
ergonomics [Bastien 93]). In Figure 6, the text
“M = Morning, E = Evening” is an example of this.
Unfortunately, the text is very often ambiguous, thus
leading to other ergonomic errors. For example, in Figure
6 the text “Family name, First name” is ambiguous: some
users use a comma, others do not. [Sottet 08] shows how
each element of an UI can be justified by means of
transformations. If an element is not justified, then the
ergonomic criterion of conciseness [Bastien 93] is
transgressed.

When the variability and the unpredictability of
the usage context are then included in the debate, the HCI
community leaves MDA behind, in preference for MDE
as it is known and used today.

3.3 Adapting UI’s to the Usage Context

With the disappearance of the borders between
design and execution in ubiquitous computing, the models
become key elements, available during execution
[Bencomo 06], which are indispensable for the appraisal
of, and reaction to the applications’ execution [Muller 07].
The different UI models (tasks, concepts, abstract UI,
concrete UI, etc.) thus become observation points of the
interactive system, enabling the decision to be made to
suitably adapt UI’s whenever the usage context changes.

[Demeure 11] proposed to include a model flow
diagram (Figure 8, aka "Graph of models") in the
execution, to support dynamic adaptation. The model flow
diagram explicitly represents the transformations and
collaborative links between models, relating to:

- Interactive systems: the levels of abstraction of
the UI, the FC and its connection to the UI
(relationship with the concepts and the tasks);

- Usage context according to its three constituents
< User, Platform, Environment > and their inter-
relationships: user and platform position in the
environment (respectively Rel U-Env and rel Ptf-
Env) as well as the use of the platform’s I/O
devices (Rel U Input/output) by the user;

- Deployment of the interactive system on the

platform (Rel NF-Ptf and Rel Ptf- CUI, the latter
being refined to Rel Inputs/Outputs-CUI).

The strength of the model flow diagram lies in

the fact that it preserves the models (but does not consume
them) and makes the transformations between models
explicit. The relationships between models can thus be
seen as causal links, since they exist between a system
and the models at runtime to which it is related. The loss
of information was known as the “mapping problem”
[Clerckx 04] [Griffiths 01] [Limbourg 04a]. However, the
preservation of relationships between models at runtime
reduces the impact of this loss.

Fig 8: Model flow diagram. The (white and grey) boxes
represent models. The grey boxes indicate relationships

(Rel) between the models.

The Ecosystem allows the impact of a
modification on a model to be analysed. For example, the
modification of a task will imply changes to all of the
interactors to which it is related. Another example is given
by the movement of the users or rendering devices in the
environment, which could cause a given task to become
inaccessible (for example when searching for information)
if the corresponding interactors are not enlarged or
replaced by more suitable ones.

3.4 Summary

The absence of some metamodels means that
some of the models are exploited manually by those who
develop or use the interactive systems, whereas other
models can be exploited automatically by means of MDE

 VOL. 4, NO. 3, May 2014 ISSN 2222-9833
ARPN Journal of Systems and Software

©2009-2014 AJSS Journal. All rights reserved

http://www.scientific-journals.org

71

tools. Here, we are interested in the types of
transformation which have been experimented with and
used in HCI engineering:

 Model-to-model, such as the transformation of a

task model into a presentation model. In the
CTTE environment [Mori 02], the task model is
represented by a tree whose nodes are the user’s
objectives, with the links between the nodes
being dependence relationships between these
objectives. It is then possible to transform the
task model firstly into a dialog model
representing the series of tasks such that the user
can accomplish them, and then into an
intermediate presentation model. This link
between the dialog controller (DC) and the
abstract presentation model is a case of
horizontal transformation (cf. Figure 5).

 Model-to-code for the automatic generation of
the final UI, starting from the abstract or
concrete UI. This is the case for MXML
transformations (concrete UI) into a Flash
executable in the Flex environment
(http://www.adobe.com/fr/products/flex/). The
transformations within UsiXML are further
examples of this. Both cases correspond to
vertical transformations (cf. Figure 5).

 Code-to-model for the serialisation of UI’s. Both

in the case of UsiXML and ALIAS [Occello 10],
the aim here is for the framework computation
not to depend on the final UI description, and for
it to remain independent of the execution
platform. The model thus obtained can then be
used when changing platform, or for UI
compositions.

Ultimately, the operationalisation of all models,

metamodels and transformations will open up possibilities
for true fast prototyping, providing support for creativity.
This creativity is essential in design, as well as in
evaluation. Indeed, [Tohidi 06] has demonstrated the
strength of a comparative assessment, with respect to an
absolute one: the ability to generate alternative UI’s at a
low cost offers attractive perspectives.

4. WHAT IS THE FUTURE OF HCI

ENGINEERING AND MDE?
This section proposes to take a step back from

the usage of models in HCI engineering. It shows how
research workers in HCI engineering and MDE can try to
solve, together, problems relevant to their respective
domains.

4.1 Promising Studies in MDE for HCI Engineering

Some needs in HCI engineering (sections 2 and
3) have found a partial response in the progress made in
the field of model engineering. The requirements in terms
of HCI engineering and “model-oriented” solutions have
evolved more or less consistently and separately, and

provide evidence of fruitful convergence between these
two domains. Other forms of collaboration could be
imagined, in view of the extensive range of MDE
applicability today. Indeed, this is the result of the
evolution of a set of approaches centred on the automation
of the software development process, which is likely to
provide solutions for other known requirements in HCI
engineering, such as product lines (Software Product
Lines or SPL) [Dikel 97], Model Integrated Computing
(MIC) [Sztipanovits 97], Domain Specific Modelling
(DSM) [Pohjonen 02] and Aspect Oriented Modelling
(AOM) [France 03].

Assuming software can be grouped into product
families, sharing a set of functionalities which satisfy well
defined requirements, the SPL approach emphasises
modelling and the processing of the variability between
different software packages within the same family [Perez
06]. This approach would then allow the variability of an
UI to be managed as a function of the usage context (a
typical example: the different versions of Google adapted
to desktop computers and mobile phones).

If the definition of a software product can be
broken down into a set of requirements (task model in
HCI engineering), an architecture (MVC model, or PAC
in HCI engineering), and an environment (platform
model), and these three aspects are required to evolve
together, then the MIC is based on a multi-model concept
and manages the composition and evolution of these
models. This approach is all the more relevant since the
different models used in HCI engineering today evolve
rapidly, and need to maintain coherent links (cf. model
flow diagram shown in section 3.3).

With the advent of MDE, the focus on models
has shifted, and code-related concepts such as the aspects
or languages specific to this domain have given rise to
model approaches based on these same concepts: DSM
and AOM. The DSM approach is of interest when
proposing suitable modelling tools for each type of model
(low and high fidelity mock-ups, interaction and dialog
models, task models, software architecture model) and its
associated player (designer, ergonomist, software
architect, developer, or even the end user). This approach
thus ensures the continuity of refinement and traceability
between these models through the use of a modelling tool
chain. The AOM approach can be used in work related to
UI composition, in order to facilitate inter-operation of the
different models involved.

4.2 Promising Studies in HCI Engineering for MDE

Exploration of the use of MDE in HCI
engineering has revealed promising opportunities for the
application of key MDE concepts, i.e. models,
metamodels and transformations. Here, HCI engineering
has a clear advantage with respect to other applicative
domains: the solid know-how developed in models and
transformations. Now that this tandem has been
discovered, and a common basis has been established, the
next step is to refine MDE usage in greater detail. Here,
we have identified various leads confirming that this

 VOL. 4, NO. 3, May 2014 ISSN 2222-9833
ARPN Journal of Systems and Software

©2009-2014 AJSS Journal. All rights reserved

http://www.scientific-journals.org

72

discovery is still in its early days, and that HCI
engineering can offer a true potential for the development
of MDE.

Relevance and quality of (meta)models. In HCI
engineering, the identification of metamodels has been
based on the past, re-adopting traditional task levels, and
abstract, concrete and final UI. However, have the correct
models been defined, in other words are the appropriate
variables used in this reflection? Could a method be
defined for the identification of these variables?

With models, it is important to describe their
quality. This has been shown to be crucial for UI
transformations, but can clearly be generalised to other
models. In HCI engineering, transformations are
operations in which ergonomics become relevant [Sottest
08a]. Indeed, if the task model includes part of the
ergonomics (the UI is useful), there is another component
of ergonomics which it does not take into account: its
usability. The latter can be expressed by ergonomic
criteria, such as those defined in [Bastien 93]. The
ergonomic properties of the transformation need to be
formulated during its adaptation, in order for the best
transformation, i.e. that which is likely to best satisfy the
user’s expectations (for example, a low work-load), to be
selected.

Properties of the model flow diagram. One of the
hypotheses proposed today is that the model flow
diagrams are complete and correct (as far as consistency
is concerned): an UI is described from all points of view
(tasks, structure, interactors, program) and these aspects
are mutually consistent. In reality, these two properties
might not be achieved:

 Incompleteness. In the case of an open approach,

the dynamic adaptation of UI can be achieved by
recruiting components. It can be expected that
these components will not all be described in
accordance with all of these aspects. The model
flow diagram can thus be incomplete. Two
approaches are possible: either complement the
descriptions using automatic model recovery
(model recovery through reverse engineering)
perhaps with an associated confidence level with
respect to the inferred models; or reason on the
basis of incomplete information by installing
“stoppers”. If these approaches seem reasonable
for the models used today, this is less true for
more informal models which have not yet been
considered, since they are far from being
operational: this is the case for the user model.
Nevertheless, this model is fundamental to the
construction of an UI. How can it be integrated?

 Incorrectness. On the model flow diagram
(Figure 8) expressing the “why” of design
(design rationale), it is important that the model
flow diagram be consistent, since there would
otherwise be a risk of incorrectly steering the
transformations. Inconsistencies could be

introduced by the designers, or be produced by
incorrect descriptions. Whatever their origins, it
is important for such inconsistencies to be
detected and corrected.

UI of the model flow diagram. Since models,

metamodels and transformations can now be placed under
the control of the user (today, the designer, in time,
perhaps, the user), the problem of the fractal nature of the
description is raised: the UI’s of these (meta)models can
themselves be modelled, leading to new model flow
diagrams. It is thus important, from the methodological
point of view, to correctly circumscribe the studied object
and to understand in which cases it is relevant to produce
an UI for these (meta)models. And what sort of UI’s? For
example, thanks to MDE, UI’s are potentially auto-
explanatory, of the type “Why and Why not ?” [Myers
06]: how and when should such explanations be given?
Presentation is important. It is known, for example, during
the design phase, that low fidelity mock-ups provide a
more active support for the exploration process [Hong
01]: the inaccuracy of the contours indeed allows the
users to be more freely critical of the system. It can thus
be productive to artificially deteriorate the quality of the
general contour, to give the impression of an early design
stage, and an approximate mock-up (Figure 9). The model
flow diagram’s representation could thus be adapted
according to the life-cycle instant under consideration.

Fig 9: Fidelity levels. Excerpt from [Hong 01].

5. CONCLUSION

Through the multitude of models and
transformations used in HCI engineering, the present
paper has shown that HCI engineering constitutes a fertile
terrain for experimentation in MDE. It has also shown that
MDE has been able to provide answers to the needs of the
HCI community. Some of the methods, concepts and
techniques used in MDE have been, and continue to be,
successfully used in HCI research projects: MDE provides
the theoretical and technical foundations, bringing about
rigor and knowledge capitalization through UI models, as
well as know-how through the transformation of UI
models.

However, as has been emphasised earlier in this
paper, the relevance of the models or their representations
used in HCI engineering should perhaps be queried, in
particular in the context of end user programming [Smith
77], where these models or their representations should
ultimately be manipulated by the end user. Similarly,

 VOL. 4, NO. 3, May 2014 ISSN 2222-9833
ARPN Journal of Systems and Software

©2009-2014 AJSS Journal. All rights reserved

http://www.scientific-journals.org

73

since it appears desirable to reinforce the links between
the functional cores (FC) and their UI, for reasons of
modularity and recomposition, the models used in HCI
engineering, which have separated FC from UI, should be
revisited.

ACKNOWLEDGEMENTS

We wish to thank the ANR CONTINUUM
2009_2012 project for supporting this study. We also
wish to thank the members of the CESAME workshop
from the GDR 13 “Design and evaluation of interactive
systems capable of adapting to their usage context in an
evolving world” for highly fruitful exchanges on the topic
of the relationships between HCI engineering and MDE.

REFERENCES

[1] [Avgeriou05] Avgeriou, P., Zdun, U.

"Architectural patterns revisited - a pattern
language". Proceedings of 10th European
Conference on Pattern Languages of Programs,
Irsee, Germany, pp. 1–39, 2005.

[2] [Bastien93] Bastien, J.M.C., Scapin D.
Ergonomic Criteria for the Evaluation of Human-
Computer Interfaces, Rapport technique INRIA,
N°156, Juin 1993.

[3] [Beyer98] Beyer, H., Holzblatt, K. Contextual

Design, Kaufmann, 1998.

[4] [Blay-Fornarino07] Blay-Fornarino, M., Hourdin,

V., Joffroy, C., Lavirotte, S., Mosser, S., Pinna-
Déry, A.-M., Renevier, P., Riveill, M., Tigli, J.-Y.
"Architecture pour l'adaptation de Systèmes
d'Information Interactifs Orientés Services" in
Revues des Sciences et Technologies de
l'Information (RSTI), pp. 93-118, Lavoisier, 2007.

[5] [Bencomo06] Bencomo, N., Blair, G.,

France, R., "Summary of the Workshop
Models@run.time at Models 2006" in Lecture
Notes in Computer Science, Satellite Events at the
Models 2006 Conference, Springer-Verlag, pp.
226-230, 2006.

[6] [Bihler07] Bihler P., Kniesel G. "Seamless Cross-

Application Workflow Support by User Interface
Fusion" In proceedings of Workshop on Ubiquitous
User Interface Design, Aarhus, Denmark, pp. 5-8,
2007.

[7] [Blomkvist02] Blomkvist, Stefan. "The User

as a Personality. Using Personas as a Tool for
Design. Topic 4 The blurred user" in Workshop
Theoretical perspectives in Human-Computer
Interaction (HMI656) at IPLab, KTH, 2002.

[8] [Brel10] Brel C., Renevier P., Occello A., Pinna-

Déry A-M., Faron-Zucker C., Riveill M.
"Application Composition Driven By UI

Composition" in Proceedings of the Human
Computer Software Engineering 2010 (HCSE
2010), IFIP International Federation for
Information Processing, pp. 198-205, LNCS, 2010.

[9] [Bruneton06] Bruneton, E., Coupaye, T.,

Leclercq, M., Quéma, V., Stefani, J.-B. "The
Fractal component model and its support in Java:
Experiences with auto-adaptive and reconfigurable
systems", Software—Practice & Experience ,
36(11-12), pp. 1257-1284, 2006.

[10] [Calvary03] Calvary, G., Coutaz J.,

Thevenin, D., Limbourg, Q., Bouillon, L.,
Vanderdonckt, J. "A unifying reference framework
for multi-target user interfaces", Interacting With
Computers, Vol. 15/3, pp 289-308, 2003.

[11] [Clerckx04] Clerckx, T., Luyten, K.,

Coninx, K. "The Mapping Problem Back and
Forth: Customizing Dynamic Models while
Preserving Consistency" in Proc. of the 3rd Int.
Workshop on Task Models and Diagrams for User
Interface Design TAMODIA’2004 (Prague,
November 15-16, 2004). ACM Press, New York,
(2004), pp. 33-42.

[12] [Cooper99] Cooper, A. The inmates are

running the asylum. Macmillan, 1999.

[13] [Coutaz87]Coutaz, J. "PAC, an Object Oriented

Model for Dialog Design" in Proceedings
Interact'87, North Holland, pp. 431-436, 1987.

[14] [Coutaz01]Coutaz, J. Architectural Design for User

Interfaces; The Encyclopedia of Software
Engineering, J. Marciniak Ed., Wiley & Sons
Publ., second edition, 2001.

[15] [Demeure08] Demeure, A., Calvary, G.,

Coninx, K. "COMET(s), A Software Architecture
Style and an Interactors Toolkit for Plastic User
Interfaces" in Design, Specification, and
Verification, 15th International Workshop, DSV-IS
2008, T.C.N. Graham & P. Palanque (Eds), Lecture
Notes in Computer Science 5136, Springer Berlin /
Heidelberg, Kingston, Canada, pp. 225-237, 2008.

[16] [Demeure11] Demeure, A., Masson, D.,

Calvary, G. "Graphs of models for exploring
design spaces in the engineering of Human
Computer Interaction" in Proceeding of the 2nd
SEMAIS workshop of the IUI’11 conference,
Springer HCI, 2011.

[17] [Dikel97] Dikel, D., Kane, D., Ornburn, S.,

Loftus, W., Wilson, J., "Applying Software
Product-Line Architecture", IEEE Computer, pp.
49-55, 1997.

[18] [Fischer04] Fischer, G., Giaccardi, E., Ye,

Y., Sutcliffe, A.G., Mehandjiev, N. "Meta-design: a

 VOL. 4, NO. 3, May 2014 ISSN 2222-9833
ARPN Journal of Systems and Software

©2009-2014 AJSS Journal. All rights reserved

http://www.scientific-journals.org

74

manifesto for end-user development",
Communications of the ACM, Volume 47 , Issue 9
(September 2004), End-user development: tools
that empower users to create their own software
solutions, Special Issue: End-user development,
ACM Press, pp. 33-37, 2004.

[19] [France03] France, R., Georg, G., Ray, I.,

"Supporting Multi-Dimensional Separation of
Design Concerns" in AOSD Workshop on AOM:
Aspect-Oriented Modeling with UML, 2003.

[20] [Greenbaum91] Greenbaum, J., Kyng, M.

Design At Work - Cooperative design of Computer
Systems, Lawrence Erlbaum, 1991.

[21] [Griffiths01] Griffiths, T., Barclay, P.J.,

Paton, N.W., McKirdy, J., Kennedy, J.B., Gray,
P.D., Cooper, R., Goble, C.A., da Silva, P.
"Teallach: a Model-Based User Interface
Development Environment for Object Databases”.
Interacting with Computers, 14, 1, pp. 31-68, 2001.

[22] [Hix93] Hix D., Hartson R., Developing user

interfaces, ensuring usability through product &
Process, Wiley, 1993.

[23] [Hong01] Hong, J.I., Li, F.C., Lin, J., and Landay,

J.A. "End-User Perceptions of Formal and Informal
Representations of Web Sites" in Extended
Abstracts of Proc. of ACM Conf. on Human
Factors in Computing Systems CHI’2001 (Seattle,
March 31-April 5, 2001). ACM Press, New York,
pp. 385-386, 2001.

[24] [Johnson93] Johnson, P., Wilson, S.,

Markopoulos, P., Pycok, J. "ADEPT - Advanced
Design Environment for Prototyping with Task
Models", Proceedings of InterCHI’93, Amsterdam,
The Netherlands, pp. 56-57, 1993.

[25] [Lepreux06] Lepreux, S., Vanderdonckt, J.

"Towards Supporting User Interface Design by
Composition Rules", Proc. of 6th Int. Conf. on
Computer-Aided Design of User Interfaces
(CADUI’06), Chapter 19, Springer-Verlag, Berlin,
pp. 231-244, 2006.

[26] [Lim94] Lim, K.Y., Long, J. "The MUSE

Method for Usability Engineering", Cambridge
University Press, 330 pages, 1994.

[27] [Limbourg04a] Limbourg, Q., Vanderdonckt,
J. "Addressing the Mapping Problem in User
Interface Design with UsiXML" in Proc. of the 3rd
Int. Workshop on Task Models and Diagrams for
User Interface Design TAMODIA’2004, ACM
Press, New York, pp. 155-163, 2004.

[28] [Limbourg04b] Limbourg, Q., Vanderdonckt,
J., Michotte, B., Bouillon, L., Florins, M.,
Trevisan, D., "UsiXML: A User Interface
Description Language for Context-Sensitive User

Interfaces" in Proceedings of the ACM AVI'2004
Workshop "Developing User Interfaces with XML:
Advances on User Interface Description
Languages", Luyten, K., M. Abrams, Limbourg,
Q., Vanderdonckt, J. (Eds.), Gallipoli, pp. 55-62,
2004.

[29] [Lyytinen02] Lyytinen, K., Yoo, Y. "Issues

and challenges in ubiquitous computing".
Communications of the ACM, Volume 45, Issue
12, pp. 62-65, 2002.

[30] [Marino09] Marino, J., Rowley, M.

Understanding SCA (Service Component
Architecture), Part of the Independent Technology
Guides series, Addison-Wesley Professional, 2009.

[31] [Mori02] Mori, G., Paternò, F., Santoro C.

"CTTE: Support for Developing and Analyzing
Task Models for Interactive System Design", IEEE
Transactions on Software Engineering, pp. 797-
813, 2002.

[32] [Mosser08] Mosser S., Chauvel F., Blay-

Fornarino M., Riveill M. "Web Service
Composition: Mashups Driven Orchestration
Definition" (long paper) in Proceedings of the
International Conference on Itelligent Agents, Web
Technologies and Internet Commerce
(IAWTIC'08), IEEE Computer Society, Vienna,
Austria, 2008.

[33] [Muller07] Muller, P.-A., Barais, O. "Control-

theory and models at runtime", Proceedings of the
Models Workshop on Models@Runtime,
Nashville, USA, 2007.

[34] [Myers00] Myers, B., Hudson, S.E., Pausch, R.

"Past, Present, and future of user interface software
tools", ACM Transactions on Computer-Human
Interaction (TOCHI), Volume 7, Issue 1 (March
2000), Special issue on human-computer
interaction in the new millennium, Part 1, pp. 3-28,
2000.

[35] [Myers06] Myers, B., Weitzman, D.A., Ko, A.J.,

Chau, D.H. "Answering why and why not
questions in user interfaces", Proceedings of the
SIGCHI conference on Human Factors in
computing systems CHI’06, Montréal, Québec,
Canada, pp. 397-406, 2006.

[36] [Nielsen93] Nielsen, J. Usability

Engineering, Academic Press Professional, 362
pages, 1993.

[37] [Nigay97] Nigay L., Coutaz J. "Software

architecture modelling: Bridging Two Worlds
using Ergonomics and Software Properties". Book
Chapter, Formal Methods in Human-Computer
Interaction, Palanque P., Paterno F. Eds., Springer-

 VOL. 4, NO. 3, May 2014 ISSN 2222-9833
ARPN Journal of Systems and Software

©2009-2014 AJSS Journal. All rights reserved

http://www.scientific-journals.org

75

Verlag: London Publ., ISBN:3-540-76158-6, pp.
49-73, 1997.

[38] [Nogier05] Nogier, J.F. Ergonomie du logiciel et

design Web : le manuel des interfaces utilisateur,
3ème édition, Dunod, 272 pages, 2005.

[39] [Occello10] Occello A., Joffroy C., Pinna-

Déry A-M, Renevier-Gonin P., Riveill M.
"Experiments in Model Driven Composition of
User Interfaces" in Proceedings of the 10th IFIP
International Conference on Distributed
Applications and Interoperable Systems (DAIS'10),
vol. 6115, Eliassen F., Kapitza R. Eds., Springer-
Verlag, pp. 98-111, 2010.

[40] [OMG01] OMG, Model Driven Architecture,

OMG Document ormsc/2001-07-01, 2001.

[41] [OSGi alliance 03] OSGi alliance, OSGi Service

Platform, Release 3, IOS Press, 2003.

[42] [Palanque96] Palanque, P., Bastide, R.

"Time modelling in Petri nets for the design of
interactive systems". Revue SIGCHI bulletin,
ACM Vol. 28, n°2, pp. 43-47, 1996.

[43] [Paterno97] Paterno, F., Mancini, C.,

Meniconi, S. "ConcurTaskTrees: A Diagrammatic
Notation for Specifying Task Models", Proceedings
of the IFIP TC13 International Conference on
Human-Computer Interaction Pages, Interact’97,
pp. 362-369, Sydney, ISBN:0-412-80950-8,
Chapman & Hall, 1997.

[44] [Pérez06] Pérez, J., Laguna, M. A., Crespo, Y.,

González-Baixauli, B., "Requirements Variability
Support through MDD and Graph
Transformations", International Workshop on
Graph and Model Transformation (GraMoT05),
Tallinn, Estonia. ISSN: 1571-0661, Volume 152,
pp. 161-173, 2006.

[45] [Perfetti07] Perfetti, Christine. Goal-

Directed Design: An Interview with Kim Goodwin.
User Interface Engineering,
http://www.uie.com/articles/goal_directed_design/,
2007.

[46] [Pinna-Déry03] Pinna-Déry, A.-M., Fierstone,

J. "Component model and programming: a first
step to manage Human Computer Interaction
Adaptation" in Proceedings of the 5th International
Symposium on Human-Computer Interaction with
Mobile Devices and Services (Mobile HCI), L.
Chittaro (Ed.), vol. LNCS 2795, pp. 456-460,
Springer Verlag, Udine, Italy, 2003.

[47] [Pinna-Déry08] Pinna-Déry A.-M., Joffroy C.,

Renevier P., Riveill M., Vergoni C. "ALIAS: A Set
of Abstract Languages for User Interface
Assembly" in Proceedings of the 9th IASTED

International Conference Software Engineering and
Applications (SEA'08), IASTED, pp. 77-82, ACTA
Press, Orlando, Florida, USA, 2008.

[48] [Pohjonen02] Pohjonen, R., Kelly, S.,

Domain-Specific Modeling, Dr. Dobb's Journal,
2002.

[49] [Rasmussen83] Rasmussen, J., "Skills, rules,

knowledge; signals, signs, and symbols, and other
distinctions in human performance models". IEEE
Transactions on Systems, Man and Cybernetics,
13, pp. 257-266, 1983.

[50] [Reenskaug79] Reenskaug, T. M. H., MVC

XEROX PARC 1978–1979,
http ://~heim.ifi.uio.no/ trygver/themes/mvc/mvc-
index.html, 1979.

[51] [Renevier04] Renevier, P., Nigay, L.,

Bouchet, J., Pasqualetti, L. "Generic interaction
techniques for mobile collaborative mixed
systems" in Proceedings of CADUI’04, pp. 307-
320, 2004.

[52] [Rodden04] Rodden, T., Crabtree, A.,

Hemmings, T., Koleva, B., Humble, J., Akesson,
K.P., Hansson, P., "Configuring the Ubiquitous
Home" in Proc of the 2004 ACM Symposium on
Designing Interactive Systems, Cambridge,
Massachusetts: ACM Press, 2004.

[53] [Rosson02] Rosson, M.B. and Carroll, J.M.

Usability Engineering: Scenario-based
Development of Human-Computer Interaction.
London Academic Press, 2002.

[54] [Scapin89] Scapin, D.L., Pierret-Golbreich, C.

"Une méthode analytique de description des
tâches". Colloque sur l’ingénierie des Interfaces
Homme-Machine, Sophia Antipolis, pp. 131-148,
1989.

[55] [Schmidt06] Schmidt, D. C. "Model-Driven

Engineering", IEEE Computer, 39(2), pp. 25-31,
2006.

[56] [Scholtz99] Scholtz J., Muller M., Novick

D., Olsen D.R., Schneiderman B., Wharton C. "A
Research Agenda for Highly Effective Human-
Computer Interaction : Useful, Usable, and
Universal", SIGCHI bulletin, ACM/SIGCHI,
Volume 31, Number 4, pp. 13-16, 1999.

[57] [Schuler93] Schuler, D., Namioka, A.

Participatory Design: Principles and Practices,
Lawrence Erlbaum, 1993.

[58] [Smith77] Smith, D. C., Pygmalion : A Computer

Program to Model and Stimulate Creative Thought.
Basel, Stuttgart, Birkhauser Verlag, 1977.

 VOL. 4, NO. 3, May 2014 ISSN 2222-9833
ARPN Journal of Systems and Software

©2009-2014 AJSS Journal. All rights reserved

http://www.scientific-journals.org

76

[59] [Sottet08] Sottet, J.S., Calvary, G., Coutaz, J.,
Favre, J.M. "A Model-Driven Engineering
Approach for the Usability of Plastic User
Interfaces" in the proceedings of Engineering
Interactive Systems 2007, University of
Salamanca, Spain, J. Gulliksen et al. (eds), LNCS
4940, pp. 140-157, 2008.

[60] [Szekely96] Szekely P., "Retrospective and

Challenges for Model-Based Interface
Development, Design, Specification and
Verification of Interactive Systems'96",
Proceedings of the Eurographics Workshop in
Namur, Belgium, F. Bodard, J. Vanderdonckt
(eds), 1996.

[61] [Sztipanovits97] Sztipanovits, J. , Karsai, G.,

"Model-Integrated Computing", Computer, vol. 30,
no. 4, pp. 110-111, 1997.

[62] [Thevenin01] Thevenin, D., Calvary, G.,

Coutaz, J. "A Development Process for Plastic
User Interfaces" in Proceedings of CHI'01
workshop, Seattle,WA, USA, 2001.

[63] [Tohidi06] Tohidi, M., Buxton, W., Baecker, R.,
Sellen, A. "Getting the right design and the design
right", Proceedings of the SIGCHI conference on
Human Factors in computing systems, Montréal,
Québec, Canada, pp. 1243-1252, 2006.

[64] [UIMS92] UIMS, "A Metamodel for the Runtime

Architecture of an Interactive System", The UIMS
Tool Developers Workshop, SIGCHI Bull., ACM,
24, 1, pp. 32-37, 1992.

[65] [van Deursen00] van Deursen, A., Klint, P.,

Visser, J. "Domain-specific languages : An
annotated bibliography", SIGPLAN Notices, 35(6),
pp. 26-36, 2000.

[66] [Wegner97] Wegner, P. "Why interaction is

more powerful than algorithms". Communications
of the ACM, 40(5), pp. 80-91, 1997.

[67] [Weiser91]Weiser, M. "The computer of the 21st

century". Scientific American, 265(3), pp. 66-75,
1991.

