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Abstract—Heterogeneity and dynamicity of pervasive, service-
based environments require the construction of flexible 
multimodal interfaces at run time. In this paper, we present 
how we use an autonomic approach to build and maintain 
adaptable input multimodal interfaces in smart building 
environments. We have developed an autonomic solution 
relying on interaction models specified by interaction designers 
and mediation components implemented by software 
developers. An interaction model is built around the notions of 
abstract device and abstract applications. The role of the 
autonomic manager is to build complete interaction techniques 
based on runtime conditions and in conformance with the 
predicted models. 

Keywords: multimodal interaction, service-oriented 
computing, mediation framework. 

I.  INTRODUCTION 
Pervasive computing is slowly changing the way we 

interact with computers [1, 2] and is gaining more and more 
attention from industrial and academic sectors. This 
computing domain relies on the use of smart, 
communication-enabled devices integrated in our 
environment in order to provide users with added-value 
services. Research is particularly active in domains like 
smart homes or smart buildings where societal needs must be 
addressed. The purpose here is to assist in our daily activities 
in a natural and non-intrusive fashion. For instance, 
monitoring devices can be used to allow disabled or elder 
people to stay safely in their home, longer. Similarly, 
intelligent devices can be used to make our working 
environment more dedicated and efficient. For instance, 
rendering devices can help visitors to follow the right 
directions in an unknown building. 

Pervasive devices are today becoming smaller and 
smarter.  They fade away in the environment and appear as 
potential services rather than concrete hardware devices. 
They have the ability to communicate with each other, 
perform context-based functions, and manage themselves in 
order to stay operational. Such devices define ambient 
ecologies [3] with the ultimate goal to serve people. In this 
context, Weiser’s exciting vision [1] where myriads of 
devices team up transparently to provide human beings with 
services of all sorts seem very reasonable! Indeed, plenty of 
devices have been designed and commercialized in the last 
few years. Surprisingly, however, applications seamlessly 
composing a number of devices are late to appear. We are in 
the strange situation where communication-enabled devices 
are not integrated and are still confined to limited usage. 

Many devices and applications are today presented as 
software services [4]. The very purpose of the service-
oriented approach is to build applications or interactions 
through the late composition of independent software 
elements, called services. Their capabilities are published at 
runtime and are subsequently discovered, chosen and called 
when needed. This is achieved within Service-Oriented 
Architectures (SOA) providing the supporting mechanisms 
for services description, publication, discovery, and 
invocation. 

Service orientation brings interesting features that have 
made it popular in the pervasive domain. If carefully 
planned, using services can effectively support the 
development of environments with important (temporal and 
stochastic) variation. Weak coupling between consumers and 
providers reduces dependencies among composition units, 
letting each element evolve separately. Late binding and 
substitutability then improve adaptability: a service chosen 
or replaced at runtime is likely to better fulfil the consumer 
expectations. The fact is that a number of service-oriented 
platforms have appeared in the last few years and are more 
and more used to build pervasive applications in various 
domains [5]. 

However, interaction in dynamic, heterogeneous 
environments remains a challenging issue. The problem 
actually occurs in two ways: how could one use volatile, 
heterogeneous device to pilot an application and how could a 
given device be used to pilot volatile, heterogeneous 
applications. Precisely, it requires us to dynamically bind 
devices like mobile phones and service-based applications 
like media player for instance to allow an interaction. 
Composition is context aware in the sense that it relies on the 
available interaction devices and on the currently running 
applications. The situation can change anytime. It is not 
possible to anticipate all the possibilities in a design time 
composition. 

In this paper, we present a flexible but controlled 
approach for the development and runtime management of 
input multimodal interfaces. Our approach relies on the 
autonomic management of interaction, realized with a 
mediation framework named Cilia. The paper is organized as 
follows. First we recall the key characteristics and 
requirements of pervasive multimodal interfaces. We then 
present our framework by describing the execution machine, 
the multimodal process and the autonomic manager. We 
conclude with an example that illustrates how the autonomic 
framework functions. 
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II. MULTIMODAL INTERACTION 
Pervasive environments lead people to reconsider the 

way they interact with electronic equipment. It seems, in 
particular, that graphical WIMP interfaces are too static and 
constrained to survive the proliferation of devices in our 
living environments. In saturated settings, users would better 
express their needs or desires with any available modalities, 
expecting the environment and its devices to react 
accordingly. 

An interaction modality is defined as the coupling of an 
interaction device with an interaction language (i.e., a set of 
transformations of raw data from input devices). A 
multimodal interface is able to manage multiple interaction 
modalities. We focus on input multimodal interaction that 
allows the user to control a given application by using 
several interaction modalities. On the one hand, 
multimodality may involve the usage of multiple modalities 
in a coordinated manner in order to interact with a given 
application: for instance when combining gesture and speech 
commands in a complementary way. There are two 
possibilities for combining modalities, namely Redundancy 
and Complementary as defined by the CARE properties [6]. 
Combination of modalities requires fusion mechanisms [7]. 
On the other hand, multimodality can also refer to the 
existence of choice of modalities: the modalities are then 
equivalent for a given task and the user has the choice of the 
modalities for performing the task: this corresponds to the 
Equivalence property of CARE. 

Multimodal interfaces have been shown to offer better 
flexibility and reliability than graphical WIMP interfaces [8]. 
Such interfaces fit well in the pervasive landscape. They 
offer a more natural way to interact with device-stuffed 
environments by means of speech, gestures or other 
modalities. Multimodal interfaces also allow users to employ 
a variety of devices to interact with an application, 
depending on the context (e.g. devices availability, 
reliability, user’s mood, etc.).  

The development of multimodal interfaces requires the 
integration of heterogeneous information sources, from 
devices to applications, in a timely fashion as defined by the 
Arch [9] interaction pattern. This involves a number of 
operations, including communication, synchronization, 
fusion, syntactic and semantic alignments. As schematized in 
Figure 2, these operations, often called mediation operations 
[10], demand some middleware support to be correctly 
developed, executed, and maintained. 

As illustrated by Figure 1, specific component-based 
frameworks have been recently proposed to support the 
development of mediation operations for multimodal 
interfaces [11,12]. These approaches bring appropriate 
separation of concerns, clearly distinguishing functional 
aspects like data fusion and non-functional aspects like 
communication or synchronization. These proposals, 
however, are made for well-delimited environments where 
applications to be controlled and devices to be used are 
known in advance. They cannot handle highly dynamic 
environments where devices, applications, and the way 
multimodal interactions unfold, are rapidly evolving. More 

dynamic features are needed both at the design language 
level and the runtime execution framework level. 

In a previous work, we developed component-based 
platform in order to better deal with environment 
unpredictability [13]. Here, we investigated the opportunistic 
composition of devices for a given application without 
having the complete interaction model that defines the 
multimodal interaction: This approach showed good results 
in emergency situations (e.g. a device breakdown) but clearly 
the resulting multimodal interaction may not be understood 
by the users. We need a more controlled approach and to put 
the user in the loop someway. 

 

Figure 1. Mediation layer between devices and applications. 

In the service computing field, Enterprise Service Buses 
(ESBs) have been defined in order to allow richer and better 
controlled interactions between clients and servers [14]. An 
ESB appears as a communication bus providing a unique 
interface to service providers and consumers. It can host 
mediation operations organized as processing chains 
transporting requests from consumers to providers and way 
back. Mediation chains are generally decomposed into 
specific components that implement mediation operations, 
which is an approach in conformance with the interaction 
framework mentioned before.  

A number of products have been recently developed, 
including open source versions like Apache ServiceMix1 or 
Mule2 for instance. Many existing solutions are built on top 
of dynamic platforms like OSGi, which allows for runtime 
adaptation. Such platforms are resilient to changes in the 
environment and, obviously well adapted to service 
orientation. Current ESBs, however, are not really adapted to 
the management of multimodal interfaces. There are at least 
two reasons for that. First, current solutions are big in size. 
They target Information Systems, not pervasive 
infrastructures. Also, current solutions are still very technical 
and technology-driven. The development, deployment and 
management of mediation chains generally require highly 
skilled people. Last, but not least, current solutions are not 
autonomic. Adaptations cannot be decided and performed by 
ESBs themselves. So, a skilled administrator is needed. 

To conclude, we believe that, one the great challenges of 
multimodal interfaces in pervasive environments, is then to 
build reliable and autonomic processing systems able to 
analyze and understand multiple communication means and 
reconfigure themselves in real-time. Solutions should be also 
implementable with the reasonable computed resources as 
generally available in pervasive settings. 

                                                             
1 http://servicemix.apache.org 
2 http://www.mulesoft.com 
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III. PROPOSAL 
We have developed an autonomic approach to deal with 

multimodal interactions in service-oriented, pervasive 
settings. Autonomic computing characterizes the notion of a 
computer system that is able to adapt to internal and external 
change with minimal conscious intervention from the human 
[15, 16]. Here, the purpose is to create and manage 
multimodal interaction code depending on the running 
applications, the available devices, and the users’ interaction 
preferences. Most devices and applications are service-based 
and are then highly dynamic. 

Our proposition is illustrated by figure 2. It relies on the 
following elements: 

• An introspectable and adaptable mediation 
framework, called Cilia, supporting the execution of 
multimodal processing. Cilia provides the necessary 
programming interfaces to create and update code at 
runtime and to sense internal and external context, 

• Interaction models and policies defining the 
interaction opportunities in an abstract way and the 
user’s preferences, 

• Mediation components, stored in a code repository, 
that can be instantiated at runtime whenever needed, 

• An autonomic manager, whose purpose is to actually 
create and manage the multimodal interaction code 
through the Cilia interfaces in a context-aware 
fashion, and following the interaction models and 
policies. 

 

 
Figure 2. Proposal overview 

Let us examine these different elements. In the first 
place, Cilia is a fully implemented mediation framework 
available in open source3. Its purpose is to simplify the work 
of developers and administrators by offering a well-defined 
set of abstractions to support the design, deployment and 
execution of mediation solutions. This framework hides 
many technical details and relies on autonomic capabilities to 
facilitate its administration. Technically speaking, Cilia is a 
domain-specific component model based on Java. 

                                                             
3 Cilia is available at https://github.com/AdeleResearchGroup/Cilia  

As introduced before, two kinds of interactions artefacts 
are prepared off-line: 

• Interaction models define multimodal processing in 
an abstract way. They are made of abstract devices, 
mediation components and abstract applications. An 
abstract device regroups coherent interaction 
modalities. An abstract application represents a class 
of applications sharing similar services. 

• Interaction policies define users’ high-level 
preferences like the favourite devices, the preferred 
modalities, or the applications to be prioritized. 

 
Mediation components implement mediation operations, 

in conformance with the Cilia development model. They are 
written in Java in a dedicated environment where generic 
Java classes can be reused or extended. Resulting 
components are stored in a code repository. One example of 
such a component is the Complementary component in order 
to combine two modalities. 

The autonomic manager is the central element of our 
architecture. Its purpose is to manage the interaction code, 
from generation to destruction, in a context-aware, 
opportunistic fashion. By opportunistic, we mean that the 
autonomic manager puts in place the possible interaction 
modalities depending on the available devices and on the 
applications of interest. 

The use of an autonomic manager limits the need for 
human intervention. Indeed, the autonomic manager uses the 
artifacts prepared off-line and on runtime information 
provided by the Cilia framework in order to meet its 
requirements. Precisely, it continuously scans the 
environment in order to get the available applications and 
interaction devices. It then manages the lifecycle of the 
mediation applications: 

 

• It opportunistically creates code allowing interaction 
from available devices to applications, 

• It dynamically updates running interaction code 
when execution conditions or users’ preferences 
change, 

• It deletes useless interaction code when devices or 
applications are no longer available. 

 

Our approach is then based on a two-phase process. The 
purpose of the first phase is to prepare off-line a number of 
domain-specific artefacts that will be used at runtime to 
implement concrete interaction modalities. Interaction 
models and users’ preferences are defined by experts in 
interaction whereas mediation code is implemented by 
software engineers, according to the specifications expressed 
in the interaction models. 

The second phase addresses the runtime aspects. An 
autonomic manager handles the interaction code on top of 
the Cilia framework depending on the current environmental 
situation and in accordance with the defined interaction 
models and policies. The autonomic manager is influenced 
by high-level goals expressed by users. 
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IV. THE CILIA FRAMEWORK 

A. Main concepts 
The Cilia mediation framework provides programming 

interfaces to dynamically create and assemble mediation 
components. It also provides facilities to update these 
assemblies at runtime. The programming interfaces handle 
domain-specific concepts. A number of technical aspects like 
synchronization are defined at a high level of abstraction and 
leads to low-level code generation. 

Cilia is based on the notions of mediators and bindings. 
A mediator is a component implementing mediation 
operations like an aggregation, a transformation, a security 
function, etc. It declares a set of input and output ports. Input 
ports receive information to be treated and output ports 
provide the results of the mediation operation. Ports are the 
means to connect mediators and, thus, form mediation 
chains. Bindings are implemented as method calls by default. 
However, mediators can also be executed in different 
execution machines and bindings are realized in JMS (Java 
Message Service). 

A mediator is made of three elements: a scheduler, a 
processor and a dispatcher. These are Java classes that can be 
developed independently. The scheduler deals with 
synchronization issues among other things. Its purpose is to 
store the received data in a buffer and to apply a triggering 
condition. When the condition is met, the buffer content is 
sent to the processor, which realizes the mediation operation. 
The result of this operation is sent to the dispatcher, which 
places the results in the output ports. Adapters are special 
mediators. They constitute the entry and exit points of a 
chain. They communicate with the resources to integrate.  

More information about Cilia main concepts can be 
found in [17]. 

B. Cilia Runtime 
The Cilia runtime environment is built on top of OSGi4

and iPOJO [18]. OSGi provides the base mechanisms for 
modularity and dynamicity. iPOJO is the Apache service-
oriented component model. It facilitates the development of 
dynamic component-based applications on top of OSGI 
through, in particular, the autonomic management of service 
dependencies. The platform also integrates a specific 
module, called RoSe5 [19], which purpose is to constantly 
reflect the state of the computing environment in the 
execution machine. The RoSe framework captures services 
in the computing environment and reifies them as iPOJO 
components (proxies) in a local registry. It then manages the 
proxies’ lifecycle, creating or deleting them as a reaction to 
arrival and departure of matching services. RoSe also 
provides advanced facilities to specify the services of interest 
according to different properties like type, protocol, or 
number. ROSE currently handles several service-oriented 
protocols including Web Services, DPWS, UPnP, Zigbee 
and Bluetooth.  

 
                                                             

4 www.osgi.org 
5 RoSe is available at https://github.com/AdeleResearchGroup/ROSE  

As illustrated by figure 3, the Cilia runtime provides 
monitoring and adaptation interfaces or touchpoints. These 
touchpoints require deep knowledge of the managed 
elements. For that reason, the Cilia framework also allows 
the automatic construction of a configurable knowledge base 
storing runtime information about the mediation chains and 
the execution context. This knowledge base provides a 
model of runtime phenomena, with trends and past data, and 
is intended for use by autonomic managers. This model is 
causal in the sense that modifications made on the model 
representation are reflected on the Cilia runtime and vice 
versa. Using this knowledge module is a very convenient 
way for domain engineers to create autonomic managers. 
Management is done through high level programming 
interfaces and does not demand to be familiar with the 
intricacies of Cilia. 

 
Figure 3. Runtime information provided by Cilia 

Monitoring is flexible and configurable. It can be 
controlled in a dynamic way. This means that Cilia 
monitoring can be activated or deactivated globally. It also 
means that the elements to be monitored, and the way they 
are monitored, can be configured without interruption of 
service. Monitoring provides information about the 
mediation chains under execution, about the execution 
machine and about the external context (through RoSe). The 
dynamics of the mediation chains is encoded as state 
variables. Their values, called measures, are kept in circular 
lists in order to keep records of the past. The size of the 
circular lists is configurable and can be changed at runtime. 
From the knowledge thus acquired, adaptations can be 
decided. Specific mechanisms have been designed in order to 
protect ongoing computations while some code is being 
updated. Precisely, a quiescence mechanism has been 
implemented to preserve control flows and save the 
messages being processed. 

A Cilia application can thus be complemented with an 
autonomic manager. It is to be understood however that this 
manager is domain-specific. In our case, the purpose of the 
autonomic manager is to create and adapt the multimodal 
interactions, using the dynamic capabilities of the underlying 
component model (Cilia) and its knowledge about interaction 
management. 
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V. DETAILED APPROACH 
The big challenge tackled in our work is to dynamically 

link devices and applications that are not known at design 
time and to do so in a way that is understood and accepted by 
users. Our approach relies on an autonomic manager using 
design-time artefacts and runtime models to create and 
update multimodal interaction code in service-oriented 
environments. In particular, interaction models are defined 
off-line. They are based on the notion of abstract devices, 
mediation components, and abstract applications. This 
approach is in accordance with the architectural pattern of 
the Arch model (see section II). Let us now describe these 
different elements in the coming sections. 

A. Abstract device 
An abstract device groups a set of devices according to 

how they can be used as part of a modality. These modalities 
can be used together in a combined way (combined 
modalities) or not (atomic modalities). For instance, an 
abstract device may comprise a pad and a gyroscope. An 
interaction modality may rely on the pad and the gyroscope 
or on the pad only. Abstract devices focus on high-level 
interaction modalities and ignore low-level technological 
aspects. In our approach, these abstract devices are defined 
in terms of the following: 

 

• A name characterizing their purpose, 
• A set of interaction modalities, which are described 

in a unifying language, 
• A set of output ports providing data, 
• A set of properties, identified by their names and 

types, used to specify static and dynamic 
information about the devices. 

 

Abstract devices are dynamically associated with one or 
several concrete interaction devices at runtime. These 
concrete devices are manipulated by users to interact with 
their pervasive environment. A concrete device may 
correspond, for instance, to a Wii mote or to a smart phone. 
Properties attached to abstract devices are used to widen or 
to limit the runtime selection of concrete devices. Properties 
can actually be very specific about the expected concrete 
devices. Nothing prevents the interaction designer from 
using a concrete device (e.g., an iPhone 5) when specifying 
an interaction model. The idea, however, is not to provide 
extensive information and to leave sufficient room for 
runtime selection.  

Once a concrete device is selected at runtime, some code 
has to be generated or instantiated in order to effectively 
communicate with that device and link it to the appropriate 
mediation chain. As will be seen in the next section, such 
dynamic code generation relies on the RoSe framework and 
on the notion of communication proxy. 

B. Abstract application 
An abstract application represents a class of applications 

sharing similar functions or tasks. Formally, an abstract 
application is a service description that is independent of any 
given implementation technology. It retains the major 

features of the service orientation and ignores low-level 
technological aspects. For instance, an abstract application 
can be a media player described with the basic set of 
functions/tasks provided by such software.  

In our model, an abstract application is defined in terms 
of the following: 

 

• A set of functional interfaces specifying the provided 
functionalities. An interface can define either a set of 
operations to be invoked or a set of ports to be used 
for data flows.  

• A set of properties, identified by their names and 
types, used to store static and dynamic information 
about the applications. Such information can be 
related to functional or non-functional aspects. 

 
Abstract applications are dynamically associated with 

concrete applications at runtime. Concrete applications are 
the actual applications, dynamically available in the 
pervasive environments, and used by users to get services. A 
concrete application can be, for instance, the VLC media 
player. As for the devices, properties are used to select the 
appropriate applications at runtime. The variability expressed 
by the properties makes room for adaptation to a greater or 
lesser extent. However, as for abstract devices, the guiding 
principle is still to bring flexibility at runtime while 
preserving some invariants. So, it is expected not to be 
restrictive when setting properties. 

In our approach, concrete applications are implemented 
using service-based technologies. For instance, a concrete 
application can be exposed as a Web Service, an UPnP  
service or a DPWS service. Here again, when an application 
is selected at runtime, some code has to be instantiated. APIs 
between abstract and concrete applications can be different 
and alignments are often necessary. Proxies, managed by 
RoSe, are inserted in order to handle these differences and 
properly invoke the programming interfaces of the selected 
concrete application. 

C. Interaction models 
Interaction models express how to process data from 

abstract devices and route them to programming interfaces 
pertaining to abstract applications. As illustrated by Figure 4, 
abstract devices and abstract applications are respectively the 
entry points and exit points of Cilia mediation chains. The 
inside of the chains is made of mediation components.  

 

 
Figure 4. Interaction model 

A mediation component realizes one or several mediation 
operations like data transformation or data fusion. In our 
approach, mediation components are implemented as Cilia 
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components and specified accordingly. Contrarily to abstract 
devices and applications, they are concrete software 
artefacts, entirely developed in Java by software engineers. 

Interaction models can be more or less sophisticated 
(combined or atomic modalities), with various numbers of 
abstract devices and applications, different possible paths, 
and so on. In our approach, it is up to the interaction 
designers to define the appropriate level of variability of the 
interaction models depending on their intent, the users’ 
preferences and the problem at hand.  

D. Autonomic manager 
The role of the autonomic manager is to dynamically 

create and maintain interaction code while meeting the users’ 
expectations. To do so, the autonomic manager relies on 
interaction models and policies providing the knowledge 
necessary to set up the appropriate processing code given the 
runtime situation.  

The autonomic manager implements a control loop, 
typically divided into the following tasks [20]: 

• A monitoring task follows changes in the execution 
context.  It reports the devices and applications 
availability and, also, the performance of the running 
mediation chains and underlying execution machine, 

• An analysis task compares the interaction modalities 
actually implemented and those that could be 
implemented given the execution context. It decides 
whether modifications are necessary or not, 

• A planning task that is rather simple in our case. It 
schedules the management actions decided by the 
analysis task, 

• An execution task invokes the Cilia APIs and checks 
that the requested actions are actually implemented 
as expected. 

 

 
Figure 5. Model-based autonomic manager. 

 
As illustrated by Figure 5, our approach is based on the 

complementary notions of model and software architecture. 
Architectural models are used to define the goals of the 
autonomic manager in abstract terms and also to present a 
simplified, focused view of the runtime situation. It is to be 
noted here that the monitoring and execution tasks are 
realized via the runtime model, i.e. the Cilia knowledge base. 
The job of the autonomic manager here is simply to 
dynamically configure the monitoring policies and to trigger 
adaptation on the Cilia knowledge base, which is causal (see 
section IV).  

The advantage of this approach is that the code of the 
autonomic manager remains focused on the domain at hand, 
the management of multimodal interaction, and is not 
burdened by low level technical considerations.  

The management of volatile service-based devices and 
applications is performed by the RoSe framework, which is 
part of the Cilia execution machine. Precisely, RoSe tracks 
the appearance and departure of services and, in response, 
creates or deletes proxies. RoSe actually relies on the 
service-oriented architectural pattern and clearly decouples 
discovery and communication. This allows the dynamic 
extension of the framework: protocols and proxy 
management policies can be updated anytime. Also, RoSe 
only tracks devices meeting some filtering LDAP conditions 
regarding for instance protocols, addresses, provided 
services, properties, etc. This is extremely important in 
environments saturated with smart, communicating elements. 
Here again, filtering conditions can be updated anytime 
without service interruption. 

Proxies take the form of service-oriented iPOJO 
components. They are thus made available as services in the 
execution machine. It is to be noted that proxies are not 
generated but downloaded from a dedicated code repository. 
Thus, a device can be used in an interaction only if a proxy 
has been developed off-line and made available in the 
repository. p y

 

Figure 6. Executable chain. 
An important task of the autonomic manager is to link 

communication proxies to the mediation chains. This is done 
in two steps. First, the autonomic manager configures the 
RoSe framework so that it looks for the appropriate services 
and creates corresponding communication proxies. Second, 
when expected proxies are created, which the autonomic 
manager can then link to the abstract devices and abstract 
applications, as shown in Figure 6. At that point, a, 
interaction processing chain is created and can be started.  

VI. VALIDATION 

A. Performances 
We first evaluated the performance overhead of our 

framework regarding monitoring and adaptation. The 
diagram of Figure 7 presents the time needed for data to 
traverse a mediation chain, with and without monitoring. To 
obtain these figures, we sent up to 200 messages in the 
mediation chains through scripts [21]. It clearly appears on 
the figure that monitoring overhead remains stable when the 
number of messages increases. A difference in performance 
of a few milliseconds has no impact at all in our context.  
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Figure 7. Cilia monitoring cost. 

We also measured the processing times needed to update 
different aspects of a mediation chain. To do so, we have 
developed a specific autonomic manager whose purpose was 
to perform some pre-defined updates when receiving a 
signal. Table 1 shows the resulting findings. 

 
Operation Time (ms.) 

Mediator creation 130 
Binding creation 60 
Binding removal 50 
Mediator removal 115 
Mediator replacement 200 
Mediator 
reconfiguration 

7 

 

Table 1. Cilia dynamic adaptation overhead.  

The processing time engendered by updates varies a lot 
depending on the nature of the modification. 
Reconfigurations and binding manipulations are rather 
cheap. Contrastingly, creations and replacements of 
mediators are much more costly, which seems 
understandable, given the cost of the quiescence mechanism. 
These performance overheads are tolerable in our context. 

B. Scenario 
For testing the proposed approach, we have developed 

different scenarios illustrating the appearance of applications 
and interaction devices. In terms of multimodal interaction, 
the example illustrates a case of equivalence of modalities as 
defined by the CARE properties for multimodal interaction. 
While the example considers the equivalence of two 
modalities (one modality based on a TV remote controller 
and one based a controller for a video game console), our 
framework also supports the complementarity of modalities 
by providing fusion mechanisms of two modalities, for 
example a pointer for defining a point on a map and two 
buttons for defining the zoom factor in the case of a 
navigation task. 

We considered two applications: VLC6 and KSudoku7. 
We did not develop the two applications but reused them. It 
shows that we can integrate existing applications in our 
platform and control them with different interaction devices. 
The two applications can be accessed through an inter-
process communication, called D-Bus 8  protocol that is 
supported by our platform. A rather simple proxy is created 
by a developer for each application, without adding any code 
to the two existing applications. For interaction, we 
considered two devices: a TV remote controller, also called 
BDRC, and a video game console controller (Wii Remote, 
also called Wiimote in short).  

For guiding the autonomic manager, we have defined 
interaction models for the two applications and the two types 
of devices. Remember, the interaction models are expressed 
in terms of abstract devices and applications.  

Then, we played different scenarios. Let us examine one 
of them: the VLC media player is started in an environment 
simply composed of a TV remote controller. Therefore an 
interaction is generated: VLC can be controlled by the 
BDRC. When KSudoku is started, the environment is 
composed by one device and two applications. A policy 
leads the autonomic manager to stop the interaction with the 
first application, and bind the devices to the last discovered 
application. Finally, when the Wiimote is discovered, the 
current interaction is enhanced in order to enable the 
Wiimote to also control KSudoku, while interaction using 
the DBRC is still possible: two modalities are then 
equivalent for controlling KSudoku 

Figure 8 presents one example of a mediation chain 
between BDRC and VLC created at runtime. When the user 
will press the button “zero” of the TV remote control BDRC, 
the volume will be set to mute. By pressing the button 
“Pause” of BDRC, the movie currently showed will be 
stopped.  

 

 
Figure 8. Generated mediation chain for VLC and BDRC 

interaction. 

Figure 9 presents another example of a mediation chain 
generated at runtime between the Wiimote and VLC.  The 
“x” port of the Wiimote is bound to the volume port of VLC, 
and the button “a” of the Wiimote, to the port “playPause” of 
VLC. By moving the Wiimote horizontally, the volume will 
be increased or decreased, and the user must select the button 
“a” of the Wiimote to stop the movie.  

 

                                                             
6 www.videolan.org/vlc 
7 games.kde.org/game.php?game=ksudoku 
8

 http://dbus.freedesktop.org 
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Figure 9. Generated mediation chain for VLC and Wiimote 
interaction. 

VII. CONCLUSION 
In this paper, we have presented an approach to the 

construction of flexible multimodal interfaces at run time in 
pervasive, service-oriented settings. We believe that the 
heterogeneity and dynamicity of such environments call for 
autonomic solutions with solid software engineering 
foundations. Precisely, we have developed a modular 
approach clearly separating service management, mediation 
operations and the overall administration of the 
infrastructure.  

The framework being fully operational, as further work, 
we will first perform experimental evaluations with users. 
Such experiments will enable us to enrich the autonomic 
manager by identifying new policies. For example, the 
adaptation is currently realized without learning from the 
users’ inputs. However, several cases would obviously 
leverage the learning. For example, if a button is never used 
by a user, the framework could propose to bind this button to 
another function. The usage of an autonomic architecture 
will ease the machine learning process because sensing and 
effecting are already done. Moreover based on our 
framework we will study an important aspect of dynamic 
multimodal interfaces that is how to make observable by the 
users the performed changes in multimodal interaction for 
example due to a new discovered device.  

Our general research direction is to make the autonomic 
manager observable and controllable by the users by 
defining different levels for tuning the autonomic capacity of 
the framework and therefore making the user in control of 
her/his pervasive environments. 
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