
Multimodal interactions in dynamic, service-oriented pervasive environments

Philippe Lalanda, Laurence Nigay and Morgan Martinet
Laboratoire Informatique de Grenoble

Joseph Fourier University
Grenoble, France

firstname.name@imag.fr

Abstract—Heterogeneity and dynamicity of pervasive, service-
based environments require the construction of flexible
multimodal interfaces at run time. In this paper, we present
how we use an autonomic approach to build and maintain
adaptable input multimodal interfaces in smart building
environments. We have developed an autonomic solution
relying on interaction models specified by interaction designers
and mediation components implemented by software
developers. An interaction model is built around the notions of
abstract device and abstract applications. The role of the
autonomic manager is to build complete interaction techniques
based on runtime conditions and in conformance with the
predicted models.

Keywords: multimodal interaction, service-oriented
computing, mediation framework.

I. INTRODUCTION
Pervasive computing is slowly changing the way we

interact with computers [1, 2] and is gaining more and more
attention from industrial and academic sectors. This
computing domain relies on the use of smart,
communication-enabled devices integrated in our
environment in order to provide users with added-value
services. Research is particularly active in domains like
smart homes or smart buildings where societal needs must be
addressed. The purpose here is to assist in our daily activities
in a natural and non-intrusive fashion. For instance,
monitoring devices can be used to allow disabled or elder
people to stay safely in their home, longer. Similarly,
intelligent devices can be used to make our working
environment more dedicated and efficient. For instance,
rendering devices can help visitors to follow the right
directions in an unknown building.

Pervasive devices are today becoming smaller and
smarter. They fade away in the environment and appear as
potential services rather than concrete hardware devices.
They have the ability to communicate with each other,
perform context-based functions, and manage themselves in
order to stay operational. Such devices define ambient
ecologies [3] with the ultimate goal to serve people. In this
context, Weiser’s exciting vision [1] where myriads of
devices team up transparently to provide human beings with
services of all sorts seem very reasonable! Indeed, plenty of
devices have been designed and commercialized in the last
few years. Surprisingly, however, applications seamlessly
composing a number of devices are late to appear. We are in
the strange situation where communication-enabled devices
are not integrated and are still confined to limited usage.

Many devices and applications are today presented as
software services [4]. The very purpose of the service-
oriented approach is to build applications or interactions
through the late composition of independent software
elements, called services. Their capabilities are published at
runtime and are subsequently discovered, chosen and called
when needed. This is achieved within Service-Oriented
Architectures (SOA) providing the supporting mechanisms
for services description, publication, discovery, and
invocation.

Service orientation brings interesting features that have
made it popular in the pervasive domain. If carefully
planned, using services can effectively support the
development of environments with important (temporal and
stochastic) variation. Weak coupling between consumers and
providers reduces dependencies among composition units,
letting each element evolve separately. Late binding and
substitutability then improve adaptability: a service chosen
or replaced at runtime is likely to better fulfil the consumer
expectations. The fact is that a number of service-oriented
platforms have appeared in the last few years and are more
and more used to build pervasive applications in various
domains [5].

However, interaction in dynamic, heterogeneous
environments remains a challenging issue. The problem
actually occurs in two ways: how could one use volatile,
heterogeneous device to pilot an application and how could a
given device be used to pilot volatile, heterogeneous
applications. Precisely, it requires us to dynamically bind
devices like mobile phones and service-based applications
like media player for instance to allow an interaction.
Composition is context aware in the sense that it relies on the
available interaction devices and on the currently running
applications. The situation can change anytime. It is not
possible to anticipate all the possibilities in a design time
composition.

In this paper, we present a flexible but controlled
approach for the development and runtime management of
input multimodal interfaces. Our approach relies on the
autonomic management of interaction, realized with a
mediation framework named Cilia. The paper is organized as
follows. First we recall the key characteristics and
requirements of pervasive multimodal interfaces. We then
present our framework by describing the execution machine,
the multimodal process and the autonomic manager. We
conclude with an example that illustrates how the autonomic
framework functions.

2014 IEEE International Conference on Services Computing

978-1-4799-5066-9/14 $31.00 © 2014 IEEE

DOI 10.1109/SCC.2014.41

251

II. MULTIMODAL INTERACTION
Pervasive environments lead people to reconsider the

way they interact with electronic equipment. It seems, in
particular, that graphical WIMP interfaces are too static and
constrained to survive the proliferation of devices in our
living environments. In saturated settings, users would better
express their needs or desires with any available modalities,
expecting the environment and its devices to react
accordingly.

An interaction modality is defined as the coupling of an
interaction device with an interaction language (i.e., a set of
transformations of raw data from input devices). A
multimodal interface is able to manage multiple interaction
modalities. We focus on input multimodal interaction that
allows the user to control a given application by using
several interaction modalities. On the one hand,
multimodality may involve the usage of multiple modalities
in a coordinated manner in order to interact with a given
application: for instance when combining gesture and speech
commands in a complementary way. There are two
possibilities for combining modalities, namely Redundancy
and Complementary as defined by the CARE properties [6].
Combination of modalities requires fusion mechanisms [7].
On the other hand, multimodality can also refer to the
existence of choice of modalities: the modalities are then
equivalent for a given task and the user has the choice of the
modalities for performing the task: this corresponds to the
Equivalence property of CARE.

Multimodal interfaces have been shown to offer better
flexibility and reliability than graphical WIMP interfaces [8].
Such interfaces fit well in the pervasive landscape. They
offer a more natural way to interact with device-stuffed
environments by means of speech, gestures or other
modalities. Multimodal interfaces also allow users to employ
a variety of devices to interact with an application,
depending on the context (e.g. devices availability,
reliability, user’s mood, etc.).

The development of multimodal interfaces requires the
integration of heterogeneous information sources, from
devices to applications, in a timely fashion as defined by the
Arch [9] interaction pattern. This involves a number of
operations, including communication, synchronization,
fusion, syntactic and semantic alignments. As schematized in
Figure 2, these operations, often called mediation operations
[10], demand some middleware support to be correctly
developed, executed, and maintained.

As illustrated by Figure 1, specific component-based
frameworks have been recently proposed to support the
development of mediation operations for multimodal
interfaces [11,12]. These approaches bring appropriate
separation of concerns, clearly distinguishing functional
aspects like data fusion and non-functional aspects like
communication or synchronization. These proposals,
however, are made for well-delimited environments where
applications to be controlled and devices to be used are
known in advance. They cannot handle highly dynamic
environments where devices, applications, and the way
multimodal interactions unfold, are rapidly evolving. More

dynamic features are needed both at the design language
level and the runtime execution framework level.

In a previous work, we developed component-based
platform in order to better deal with environment
unpredictability [13]. Here, we investigated the opportunistic
composition of devices for a given application without
having the complete interaction model that defines the
multimodal interaction: This approach showed good results
in emergency situations (e.g. a device breakdown) but clearly
the resulting multimodal interaction may not be understood
by the users. We need a more controlled approach and to put
the user in the loop someway.

Figure 1. Mediation layer between devices and applications.

In the service computing field, Enterprise Service Buses
(ESBs) have been defined in order to allow richer and better
controlled interactions between clients and servers [14]. An
ESB appears as a communication bus providing a unique
interface to service providers and consumers. It can host
mediation operations organized as processing chains
transporting requests from consumers to providers and way
back. Mediation chains are generally decomposed into
specific components that implement mediation operations,
which is an approach in conformance with the interaction
framework mentioned before.

A number of products have been recently developed,
including open source versions like Apache ServiceMix1 or
Mule2 for instance. Many existing solutions are built on top
of dynamic platforms like OSGi, which allows for runtime
adaptation. Such platforms are resilient to changes in the
environment and, obviously well adapted to service
orientation. Current ESBs, however, are not really adapted to
the management of multimodal interfaces. There are at least
two reasons for that. First, current solutions are big in size.
They target Information Systems, not pervasive
infrastructures. Also, current solutions are still very technical
and technology-driven. The development, deployment and
management of mediation chains generally require highly
skilled people. Last, but not least, current solutions are not
autonomic. Adaptations cannot be decided and performed by
ESBs themselves. So, a skilled administrator is needed.

To conclude, we believe that, one the great challenges of
multimodal interfaces in pervasive environments, is then to
build reliable and autonomic processing systems able to
analyze and understand multiple communication means and
reconfigure themselves in real-time. Solutions should be also
implementable with the reasonable computed resources as
generally available in pervasive settings.

1 http://servicemix.apache.org
2 http://www.mulesoft.com

252

III. PROPOSAL
We have developed an autonomic approach to deal with

multimodal interactions in service-oriented, pervasive
settings. Autonomic computing characterizes the notion of a
computer system that is able to adapt to internal and external
change with minimal conscious intervention from the human
[15, 16]. Here, the purpose is to create and manage
multimodal interaction code depending on the running
applications, the available devices, and the users’ interaction
preferences. Most devices and applications are service-based
and are then highly dynamic.

Our proposition is illustrated by figure 2. It relies on the
following elements:

• An introspectable and adaptable mediation
framework, called Cilia, supporting the execution of
multimodal processing. Cilia provides the necessary
programming interfaces to create and update code at
runtime and to sense internal and external context,

• Interaction models and policies defining the
interaction opportunities in an abstract way and the
user’s preferences,

• Mediation components, stored in a code repository,
that can be instantiated at runtime whenever needed,

• An autonomic manager, whose purpose is to actually
create and manage the multimodal interaction code
through the Cilia interfaces in a context-aware
fashion, and following the interaction models and
policies.

Figure 2. Proposal overview

Let us examine these different elements. In the first
place, Cilia is a fully implemented mediation framework
available in open source3. Its purpose is to simplify the work
of developers and administrators by offering a well-defined
set of abstractions to support the design, deployment and
execution of mediation solutions. This framework hides
many technical details and relies on autonomic capabilities to
facilitate its administration. Technically speaking, Cilia is a
domain-specific component model based on Java.

3 Cilia is available at https://github.com/AdeleResearchGroup/Cilia

As introduced before, two kinds of interactions artefacts
are prepared off-line:

• Interaction models define multimodal processing in
an abstract way. They are made of abstract devices,
mediation components and abstract applications. An
abstract device regroups coherent interaction
modalities. An abstract application represents a class
of applications sharing similar services.

• Interaction policies define users’ high-level
preferences like the favourite devices, the preferred
modalities, or the applications to be prioritized.

Mediation components implement mediation operations,

in conformance with the Cilia development model. They are
written in Java in a dedicated environment where generic
Java classes can be reused or extended. Resulting
components are stored in a code repository. One example of
such a component is the Complementary component in order
to combine two modalities.

The autonomic manager is the central element of our
architecture. Its purpose is to manage the interaction code,
from generation to destruction, in a context-aware,
opportunistic fashion. By opportunistic, we mean that the
autonomic manager puts in place the possible interaction
modalities depending on the available devices and on the
applications of interest.

The use of an autonomic manager limits the need for
human intervention. Indeed, the autonomic manager uses the
artifacts prepared off-line and on runtime information
provided by the Cilia framework in order to meet its
requirements. Precisely, it continuously scans the
environment in order to get the available applications and
interaction devices. It then manages the lifecycle of the
mediation applications:

• It opportunistically creates code allowing interaction
from available devices to applications,

• It dynamically updates running interaction code
when execution conditions or users’ preferences
change,

• It deletes useless interaction code when devices or
applications are no longer available.

Our approach is then based on a two-phase process. The
purpose of the first phase is to prepare off-line a number of
domain-specific artefacts that will be used at runtime to
implement concrete interaction modalities. Interaction
models and users’ preferences are defined by experts in
interaction whereas mediation code is implemented by
software engineers, according to the specifications expressed
in the interaction models.

The second phase addresses the runtime aspects. An
autonomic manager handles the interaction code on top of
the Cilia framework depending on the current environmental
situation and in accordance with the defined interaction
models and policies. The autonomic manager is influenced
by high-level goals expressed by users.

253

IV. THE CILIA FRAMEWORK

A. Main concepts
The Cilia mediation framework provides programming

interfaces to dynamically create and assemble mediation
components. It also provides facilities to update these
assemblies at runtime. The programming interfaces handle
domain-specific concepts. A number of technical aspects like
synchronization are defined at a high level of abstraction and
leads to low-level code generation.

Cilia is based on the notions of mediators and bindings.
A mediator is a component implementing mediation
operations like an aggregation, a transformation, a security
function, etc. It declares a set of input and output ports. Input
ports receive information to be treated and output ports
provide the results of the mediation operation. Ports are the
means to connect mediators and, thus, form mediation
chains. Bindings are implemented as method calls by default.
However, mediators can also be executed in different
execution machines and bindings are realized in JMS (Java
Message Service).

A mediator is made of three elements: a scheduler, a
processor and a dispatcher. These are Java classes that can be
developed independently. The scheduler deals with
synchronization issues among other things. Its purpose is to
store the received data in a buffer and to apply a triggering
condition. When the condition is met, the buffer content is
sent to the processor, which realizes the mediation operation.
The result of this operation is sent to the dispatcher, which
places the results in the output ports. Adapters are special
mediators. They constitute the entry and exit points of a
chain. They communicate with the resources to integrate.

More information about Cilia main concepts can be
found in [17].

B. Cilia Runtime
The Cilia runtime environment is built on top of OSGi4

and iPOJO [18]. OSGi provides the base mechanisms for
modularity and dynamicity. iPOJO is the Apache service-
oriented component model. It facilitates the development of
dynamic component-based applications on top of OSGI
through, in particular, the autonomic management of service
dependencies. The platform also integrates a specific
module, called RoSe5 [19], which purpose is to constantly
reflect the state of the computing environment in the
execution machine. The RoSe framework captures services
in the computing environment and reifies them as iPOJO
components (proxies) in a local registry. It then manages the
proxies’ lifecycle, creating or deleting them as a reaction to
arrival and departure of matching services. RoSe also
provides advanced facilities to specify the services of interest
according to different properties like type, protocol, or
number. ROSE currently handles several service-oriented
protocols including Web Services, DPWS, UPnP, Zigbee
and Bluetooth.

4 www.osgi.org
5 RoSe is available at https://github.com/AdeleResearchGroup/ROSE

As illustrated by figure 3, the Cilia runtime provides
monitoring and adaptation interfaces or touchpoints. These
touchpoints require deep knowledge of the managed
elements. For that reason, the Cilia framework also allows
the automatic construction of a configurable knowledge base
storing runtime information about the mediation chains and
the execution context. This knowledge base provides a
model of runtime phenomena, with trends and past data, and
is intended for use by autonomic managers. This model is
causal in the sense that modifications made on the model
representation are reflected on the Cilia runtime and vice
versa. Using this knowledge module is a very convenient
way for domain engineers to create autonomic managers.
Management is done through high level programming
interfaces and does not demand to be familiar with the
intricacies of Cilia.

Figure 3. Runtime information provided by Cilia

Monitoring is flexible and configurable. It can be
controlled in a dynamic way. This means that Cilia
monitoring can be activated or deactivated globally. It also
means that the elements to be monitored, and the way they
are monitored, can be configured without interruption of
service. Monitoring provides information about the
mediation chains under execution, about the execution
machine and about the external context (through RoSe). The
dynamics of the mediation chains is encoded as state
variables. Their values, called measures, are kept in circular
lists in order to keep records of the past. The size of the
circular lists is configurable and can be changed at runtime.
From the knowledge thus acquired, adaptations can be
decided. Specific mechanisms have been designed in order to
protect ongoing computations while some code is being
updated. Precisely, a quiescence mechanism has been
implemented to preserve control flows and save the
messages being processed.

A Cilia application can thus be complemented with an
autonomic manager. It is to be understood however that this
manager is domain-specific. In our case, the purpose of the
autonomic manager is to create and adapt the multimodal
interactions, using the dynamic capabilities of the underlying
component model (Cilia) and its knowledge about interaction
management.

254

V. DETAILED APPROACH
The big challenge tackled in our work is to dynamically

link devices and applications that are not known at design
time and to do so in a way that is understood and accepted by
users. Our approach relies on an autonomic manager using
design-time artefacts and runtime models to create and
update multimodal interaction code in service-oriented
environments. In particular, interaction models are defined
off-line. They are based on the notion of abstract devices,
mediation components, and abstract applications. This
approach is in accordance with the architectural pattern of
the Arch model (see section II). Let us now describe these
different elements in the coming sections.

A. Abstract device
An abstract device groups a set of devices according to

how they can be used as part of a modality. These modalities
can be used together in a combined way (combined
modalities) or not (atomic modalities). For instance, an
abstract device may comprise a pad and a gyroscope. An
interaction modality may rely on the pad and the gyroscope
or on the pad only. Abstract devices focus on high-level
interaction modalities and ignore low-level technological
aspects. In our approach, these abstract devices are defined
in terms of the following:

• A name characterizing their purpose,
• A set of interaction modalities, which are described

in a unifying language,
• A set of output ports providing data,
• A set of properties, identified by their names and

types, used to specify static and dynamic
information about the devices.

Abstract devices are dynamically associated with one or
several concrete interaction devices at runtime. These
concrete devices are manipulated by users to interact with
their pervasive environment. A concrete device may
correspond, for instance, to a Wii mote or to a smart phone.
Properties attached to abstract devices are used to widen or
to limit the runtime selection of concrete devices. Properties
can actually be very specific about the expected concrete
devices. Nothing prevents the interaction designer from
using a concrete device (e.g., an iPhone 5) when specifying
an interaction model. The idea, however, is not to provide
extensive information and to leave sufficient room for
runtime selection.

Once a concrete device is selected at runtime, some code
has to be generated or instantiated in order to effectively
communicate with that device and link it to the appropriate
mediation chain. As will be seen in the next section, such
dynamic code generation relies on the RoSe framework and
on the notion of communication proxy.

B. Abstract application
An abstract application represents a class of applications

sharing similar functions or tasks. Formally, an abstract
application is a service description that is independent of any
given implementation technology. It retains the major

features of the service orientation and ignores low-level
technological aspects. For instance, an abstract application
can be a media player described with the basic set of
functions/tasks provided by such software.

In our model, an abstract application is defined in terms
of the following:

• A set of functional interfaces specifying the provided
functionalities. An interface can define either a set of
operations to be invoked or a set of ports to be used
for data flows.

• A set of properties, identified by their names and
types, used to store static and dynamic information
about the applications. Such information can be
related to functional or non-functional aspects.

Abstract applications are dynamically associated with

concrete applications at runtime. Concrete applications are
the actual applications, dynamically available in the
pervasive environments, and used by users to get services. A
concrete application can be, for instance, the VLC media
player. As for the devices, properties are used to select the
appropriate applications at runtime. The variability expressed
by the properties makes room for adaptation to a greater or
lesser extent. However, as for abstract devices, the guiding
principle is still to bring flexibility at runtime while
preserving some invariants. So, it is expected not to be
restrictive when setting properties.

In our approach, concrete applications are implemented
using service-based technologies. For instance, a concrete
application can be exposed as a Web Service, an UPnP
service or a DPWS service. Here again, when an application
is selected at runtime, some code has to be instantiated. APIs
between abstract and concrete applications can be different
and alignments are often necessary. Proxies, managed by
RoSe, are inserted in order to handle these differences and
properly invoke the programming interfaces of the selected
concrete application.

C. Interaction models
Interaction models express how to process data from

abstract devices and route them to programming interfaces
pertaining to abstract applications. As illustrated by Figure 4,
abstract devices and abstract applications are respectively the
entry points and exit points of Cilia mediation chains. The
inside of the chains is made of mediation components.

Figure 4. Interaction model

A mediation component realizes one or several mediation
operations like data transformation or data fusion. In our
approach, mediation components are implemented as Cilia

255

components and specified accordingly. Contrarily to abstract
devices and applications, they are concrete software
artefacts, entirely developed in Java by software engineers.

Interaction models can be more or less sophisticated
(combined or atomic modalities), with various numbers of
abstract devices and applications, different possible paths,
and so on. In our approach, it is up to the interaction
designers to define the appropriate level of variability of the
interaction models depending on their intent, the users’
preferences and the problem at hand.

D. Autonomic manager
The role of the autonomic manager is to dynamically

create and maintain interaction code while meeting the users’
expectations. To do so, the autonomic manager relies on
interaction models and policies providing the knowledge
necessary to set up the appropriate processing code given the
runtime situation.

The autonomic manager implements a control loop,
typically divided into the following tasks [20]:

• A monitoring task follows changes in the execution
context. It reports the devices and applications
availability and, also, the performance of the running
mediation chains and underlying execution machine,

• An analysis task compares the interaction modalities
actually implemented and those that could be
implemented given the execution context. It decides
whether modifications are necessary or not,

• A planning task that is rather simple in our case. It
schedules the management actions decided by the
analysis task,

• An execution task invokes the Cilia APIs and checks
that the requested actions are actually implemented
as expected.

Figure 5. Model-based autonomic manager.

As illustrated by Figure 5, our approach is based on the

complementary notions of model and software architecture.
Architectural models are used to define the goals of the
autonomic manager in abstract terms and also to present a
simplified, focused view of the runtime situation. It is to be
noted here that the monitoring and execution tasks are
realized via the runtime model, i.e. the Cilia knowledge base.
The job of the autonomic manager here is simply to
dynamically configure the monitoring policies and to trigger
adaptation on the Cilia knowledge base, which is causal (see
section IV).

The advantage of this approach is that the code of the
autonomic manager remains focused on the domain at hand,
the management of multimodal interaction, and is not
burdened by low level technical considerations.

The management of volatile service-based devices and
applications is performed by the RoSe framework, which is
part of the Cilia execution machine. Precisely, RoSe tracks
the appearance and departure of services and, in response,
creates or deletes proxies. RoSe actually relies on the
service-oriented architectural pattern and clearly decouples
discovery and communication. This allows the dynamic
extension of the framework: protocols and proxy
management policies can be updated anytime. Also, RoSe
only tracks devices meeting some filtering LDAP conditions
regarding for instance protocols, addresses, provided
services, properties, etc. This is extremely important in
environments saturated with smart, communicating elements.
Here again, filtering conditions can be updated anytime
without service interruption.

Proxies take the form of service-oriented iPOJO
components. They are thus made available as services in the
execution machine. It is to be noted that proxies are not
generated but downloaded from a dedicated code repository.
Thus, a device can be used in an interaction only if a proxy
has been developed off-line and made available in the
repository. p y

Figure 6. Executable chain.
An important task of the autonomic manager is to link

communication proxies to the mediation chains. This is done
in two steps. First, the autonomic manager configures the
RoSe framework so that it looks for the appropriate services
and creates corresponding communication proxies. Second,
when expected proxies are created, which the autonomic
manager can then link to the abstract devices and abstract
applications, as shown in Figure 6. At that point, a,
interaction processing chain is created and can be started.

VI. VALIDATION

A. Performances
We first evaluated the performance overhead of our

framework regarding monitoring and adaptation. The
diagram of Figure 7 presents the time needed for data to
traverse a mediation chain, with and without monitoring. To
obtain these figures, we sent up to 200 messages in the
mediation chains through scripts [21]. It clearly appears on
the figure that monitoring overhead remains stable when the
number of messages increases. A difference in performance
of a few milliseconds has no impact at all in our context.

256

Figure 7. Cilia monitoring cost.

We also measured the processing times needed to update
different aspects of a mediation chain. To do so, we have
developed a specific autonomic manager whose purpose was
to perform some pre-defined updates when receiving a
signal. Table 1 shows the resulting findings.

Operation Time (ms.)

Mediator creation 130
Binding creation 60
Binding removal 50
Mediator removal 115
Mediator replacement 200
Mediator
reconfiguration

7

Table 1. Cilia dynamic adaptation overhead.

The processing time engendered by updates varies a lot
depending on the nature of the modification.
Reconfigurations and binding manipulations are rather
cheap. Contrastingly, creations and replacements of
mediators are much more costly, which seems
understandable, given the cost of the quiescence mechanism.
These performance overheads are tolerable in our context.

B. Scenario
For testing the proposed approach, we have developed

different scenarios illustrating the appearance of applications
and interaction devices. In terms of multimodal interaction,
the example illustrates a case of equivalence of modalities as
defined by the CARE properties for multimodal interaction.
While the example considers the equivalence of two
modalities (one modality based on a TV remote controller
and one based a controller for a video game console), our
framework also supports the complementarity of modalities
by providing fusion mechanisms of two modalities, for
example a pointer for defining a point on a map and two
buttons for defining the zoom factor in the case of a
navigation task.

We considered two applications: VLC6 and KSudoku7.
We did not develop the two applications but reused them. It
shows that we can integrate existing applications in our
platform and control them with different interaction devices.
The two applications can be accessed through an inter-
process communication, called D-Bus 8 protocol that is
supported by our platform. A rather simple proxy is created
by a developer for each application, without adding any code
to the two existing applications. For interaction, we
considered two devices: a TV remote controller, also called
BDRC, and a video game console controller (Wii Remote,
also called Wiimote in short).

For guiding the autonomic manager, we have defined
interaction models for the two applications and the two types
of devices. Remember, the interaction models are expressed
in terms of abstract devices and applications.

Then, we played different scenarios. Let us examine one
of them: the VLC media player is started in an environment
simply composed of a TV remote controller. Therefore an
interaction is generated: VLC can be controlled by the
BDRC. When KSudoku is started, the environment is
composed by one device and two applications. A policy
leads the autonomic manager to stop the interaction with the
first application, and bind the devices to the last discovered
application. Finally, when the Wiimote is discovered, the
current interaction is enhanced in order to enable the
Wiimote to also control KSudoku, while interaction using
the DBRC is still possible: two modalities are then
equivalent for controlling KSudoku

Figure 8 presents one example of a mediation chain
between BDRC and VLC created at runtime. When the user
will press the button “zero” of the TV remote control BDRC,
the volume will be set to mute. By pressing the button
“Pause” of BDRC, the movie currently showed will be
stopped.

Figure 8. Generated mediation chain for VLC and BDRC

interaction.

Figure 9 presents another example of a mediation chain
generated at runtime between the Wiimote and VLC. The
“x” port of the Wiimote is bound to the volume port of VLC,
and the button “a” of the Wiimote, to the port “playPause” of
VLC. By moving the Wiimote horizontally, the volume will
be increased or decreased, and the user must select the button
“a” of the Wiimote to stop the movie.

6 www.videolan.org/vlc
7 games.kde.org/game.php?game=ksudoku
8

 http://dbus.freedesktop.org

257

Figure 9. Generated mediation chain for VLC and Wiimote
interaction.

VII. CONCLUSION
In this paper, we have presented an approach to the

construction of flexible multimodal interfaces at run time in
pervasive, service-oriented settings. We believe that the
heterogeneity and dynamicity of such environments call for
autonomic solutions with solid software engineering
foundations. Precisely, we have developed a modular
approach clearly separating service management, mediation
operations and the overall administration of the
infrastructure.

The framework being fully operational, as further work,
we will first perform experimental evaluations with users.
Such experiments will enable us to enrich the autonomic
manager by identifying new policies. For example, the
adaptation is currently realized without learning from the
users’ inputs. However, several cases would obviously
leverage the learning. For example, if a button is never used
by a user, the framework could propose to bind this button to
another function. The usage of an autonomic architecture
will ease the machine learning process because sensing and
effecting are already done. Moreover based on our
framework we will study an important aspect of dynamic
multimodal interfaces that is how to make observable by the
users the performed changes in multimodal interaction for
example due to a new discovered device.

Our general research direction is to make the autonomic
manager observable and controllable by the users by
defining different levels for tuning the autonomic capacity of
the framework and therefore making the user in control of
her/his pervasive environments.

VIII. REFERENCES
[1] Weiser, M. 1991. The computer for the 21st century. Scientific

American, 265(3), 66-75
[2] Satyanarayanan,M. 2001. Pervasive computing: vision and

challenges. IEEE Personal Communications, Vol. 8 (August 2001),
10-17

[3] C. Escoffier, J. Bourcier, P. Lalanda, J. Yu, “Towards a home
application server”, 5th IEEE Consumer Communications and
Networking Conference, CNNC 2008. Pages 321-325, 2008.

[4] Papazoglou,M. P. and Georgakopoulos,D. 2003. Service-Oriented
Computing: Introduction. Communications of the ACM 46, 10
(October 2003), 24-28.

[5] Escoffier C., Chollet S. and Lalanda P., “Lessons learned in building
pervasive platforms”, The 11th IEEE Consumer Communications and
Networking Conference, Las Vegas, January 2014.

[6] Coutaz, J., Nigay, L. Salber, D., Blandford, A, May, J., and Young,
R.M. 1995. Four easy pieces for assessing the usability of multimodal
interaction: the CARE properties. In Proceedings of IFIP TC13
Interantional Conference on Human-Computer Interaction
INTERACT, (June 1995), Chapman & Hall, 115-120.

[7] Serrano, M, and Nigay, L. 2009. Temporal Aspects of CARE-based
Multimodal Fusion: From a Fusion Mechanism to Composition
Components and WoZ Components. Proceedings of International
Conference on Multimodal Interfaces ICMI, (Nov. 2009), ACM, 177-
184.

[8] Oviatt, S. 2007. Multimodal interfaces. Human-Computer Interaction
Handbook: Fundamentals, Evolving Technologies, and Emerging
Applications. L. Erlbaum Assoc. Inc., Hillsdale, NJ, USA. (2007),
Chap. 14, 286-304.

[9] The UIMS tool developers workshop. 1992. A metamodel for the
runtime architecture of an interactive system. SIGCHI Bulletin 24, 1
(January 1992), 32-37

[10] Wiederhold, G. and Genesereth, M. 1997. The Conceptual Basis for
Mediation Services. IEEE Expert: Intelligent Systems and Their
Applications 12, 5 (September 1997), 38-47.

[11] Bouchet, J., Nigay, L. and Ganille, T. 2004. ICARE software
components for rapidly developing multimodal interfaces.
Proceedings of International Conference on Multimodal Interfaces
ICMI, (October 2004), ACM, 251-528.

[12] Serrano, M., Nigay, L., Lawson, J.-Y. L., Ramsay, A., Murray-Smith,
R. and Denef, S. 2008. The openinterface framework: a tool for
multimodal interaction. Proceedings of SIGCHI Conference on
Human Factors in Computing Systems Extended Abstracts CHI EA,
(April 2008), 3501-3506.

[13] Avouac P.A., Lalanda P. and Nigay L., “Autonomic management of
multimodal interaction: DynaMo in action”, Proceedings of the 4th
ACM SIGCHI symposium on Engineering interactive computing
systems, 2012.

[14] Hérault C., Thomas G. and , Lalanda P., “Mediation and Enterprise
Service bus: a position paper”, Proceedings of the First International
Workshop on Mediation in Semantic Web Services (MEDIATE
2005), pp. 67-80, 2005.

[15] Horn P., “Autonomic Computing: IBM's Perspective on the State of
Information Technology”, IBM, 2001.

[16] Lalanda, P., McCann, J., and Diaconescu A., A. Autonomic
Computing: Principles, design and implementation. Springer Verlag,
London, 2013

[17] Garcia, I., Pedraza, G., Debbabi, B., Lalanda, P., Hamon, C. Towards
a service mediation framework for dynamic applications. In Proc.
APSCC 2010, IEEE Asia-Pacific Services Computing Conference,
IEEE (2010), 3-10.

[18] Escoffier, C., Hall, R. S. and Lalanda, P. 2007. iPOJO: an Extensible
Service-Oriented Component Framework. Proc. of SCC 2007. IEEE
Computer Society, Washington, DC, USA, 474-481.

[19] Bardin J., Lalanda P., Escoffier C., Towards an automatic integration
of heterogeneous services and devices, IEEE Asia-Pacific Services
Computing Conference, pp. 171-178, 2010

[20] Kephart, J. O. and Chess, D. M. 2003. The vision of autonomic
computing. Computer 36, 1 (Jan.), 41–50

[21] Lalanda P, Hamon C., Escoffier C., and Leveque T., “iCasa, a
development and simulation environment for pervasive home
applications”, The 11th IEEE Consumer Communications and
Networking Conference, Demonstration, Las Vegas, January 2014.

258

