
Innovative Key Features for Mastering Model Complexity:
FlexiLab, a Multimodel Editor Illustrated on Task Modeling

Nicolas Hili, Yann Laurillau, Sophie Dupuy-Chessa, and Gaëlle Calvary
Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

CNRS, LIG, F-38000 Grenoble, France
{firstname.lastname@imag.fr}

ABSTRACT

Modeling Human Computer Interaction (HCI) is nowadays
practiced by IT companies. However, it remains a straight-
forward task that requires some advanced User Interface (UI)
modeling tools to ease the design of large-scale models. This
includes tackling massive UI models, multiplicity of models,
multiplicity of stakeholders and collaborative editing.

This paper presents a UI multimodel editor for HCI, illus-
trated on task modeling. We present innovative key features
(genericity, creativity, model conformity, reusability, etc.) to
facilitate UI model design and to ease interaction.

ACM Classification Keywords

H.5.2 Information Interfaces and Presentation (e.g. HCI):
User Interfaces; D.2.2 Software Engineering: Design Tools
and Techniques

Author Keywords

Human Computer Interaction; Multimodel editors; Task
Model

INTRODUCTION

In the context of the growing use of User Interface (UI) mod-
els by IT industry (e.g. UIs for nuclear power plant’s con-
trol command [5]), we designed and implemented FlexiLab,
a new UI multimodel editor to master the complexity of UI
model design. It addresses several industrial concerns re-
lated to the complexity of UI model edition, such as massive
models, multiplicity of models, multiplicity of stakeholders,
and collaborative editing. Indeed, the primary goal of exist-
ing UI model editors (e.g. [8, 3, 6, 1, 7]) has so far always
been to support research on novel notations, novel UI models
or to illustrate novel approaches (e.g. Cameleon framework,
CEDAR architecture [4, 1]). There is now a need to propose
new editors and to invent new features to facilitate exploita-
tion by companies for large-scale systems.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

EICS’15, June 23-26, 2015, Duisburg, Germany

ACM 978-1-4503-3646-8/15/06.

http://dx.doi.org/10.1145/2774225.2775439

In order to address model multiplicity, scalability, reusability,
readability, and collaborative editing, we present a set of in-
novative key features for model design and user interaction
with massive models.

FLEXILAB, A MULTIMODEL EDITOR FOR HCI: OVERVIEW

FlexiLab is a multimodel editor implemented as a web-based
application for Human Computer Interaction (HCI) and sup-
ports editing of multiple UI models. It covers most of the
abstraction layers of the Cameleon framework [4]: task and
domain models, abstract user interface model (AUI) and mod-
els of context of use. Its architecture is composed of a client
side rendering and managing the UI on a web browser and
a server side running a NodeJS server. We chose web tech-
nologies to ease the deployment of FlexiLab, to facilitate the
development of the collaborative editing features thanks to
the client-server architecture, and as they are mature enough
to support model-driven engineering approaches. Multiplic-
ity of models is supported thanks to internal data representa-
tions based on JavaScript Object Notation (JSON) combined
with generic modules implementing metamodel compliance
checking and model import/export for various formats and
metamodels (e.g. eXtensible Markup Languages (XML)).

From a user perspective, Fig. 1 and 2 represent the general
layout of the main user interface: in order to support mul-
timodel edition, FlexiLab is designed to simultaneously dis-
play multiple editing areas 1 (cf. Fig. 1), one per type of
model (e.g. task and domain models) as well as to display a
single editing area (cf. Fig. 2), using the entire screen space
freed by the other editing areas. Separators between editing
areas 2 enable fast switching between editing areas as well
as switching between a multiple editing area view and a sin-

Figure 1: Overview of FlexiLab

http://dx.doi.org/10.1145/2774225.2775439

Figure 2: Overview of the FlexiLab Task Model Editor (single editing area view)

gle editing area view. On the left side of each editing area, a
contextual tool palette 3 is available and offers specific tools
depending on the type of model. Specific views (4 , 5 and
6) are displayed on the right side of the editing area (we will
further detail them). Finally, general features (e.g. open/save,
import/export, copy/paste, etc.) are accessible through stan-
dard menus in a menubar 7 .

In the following, we illustrate our approach on the task model
editor (cf. Fig. 2).

INNOVATIVE KEY FEATURES FOR DESIGN

When designing huge models in IT companies, designers
have to face several requirements like model scalability,
reusability, readability and so forth. To this aim, we propose
some innovative key features to address them.

Metamodel-tolerant Approach for Combining Genericity,

Creativity and Conformity

Since HCI models can be used as support for design as well
as communication, bridging the gap between creativity and
conformity is a main requirement for HCI editors.

For this reason, we favored a “metamodel-tolerant” approach
where generic models are loosely tied to a metamodel defini-
tion and thus not constrained by this latter. The main benefit
of this approach is to not hinder the creativity of the designer
by constraining him to a particular definition of a metamodel.
For example, he or she can add a new task without binding it
to another one 8 and save the model in a non-valid state.

In order to combine creativity and conformity, we deciced
to support a loose model conformity control. Loose model
conformity means is “metamodel-tolerant” and is ensured by
rules handwritten inside the tool. Warning and error icons
can warn the designer of a non-valid state and guide him to
correct the problem. The main benefit of this approach is to
not prevent him to save the model in a non-valid state and
therefore not reduce creativity.

In addition, we plan to implement a complementary strict
model conformity control that could be performed on demand
or during an export to ensure that the model is conformed to a
specific metamodel. We currently investigate existing model
validators, like EMF Validation Framework 1 or moddle 2.

To support model genericity, we implemented export features
in several formats. Currently, FlexiLab can export in JSON
and XML formats. We chose to support both as JSON is eas-
ier to manipulate on the web while XML is more structured
and favored in modeling environments like Eclipse. This
also ensures the interoperability at syntactical level and al-
lows the designer to export the models according to different
metamodel definitions. In addition, FlexiLab also supports
graphical exports. Two formats are supported, Scalable Vec-
tor Graphics (SVG) and Portable Network Graphics (PNG).
This permits to use the model as support for communication.

Modular Design for Reusability

When designing huge models, there is a strong interest in fa-
voring a modular approach. We propose the concept of frag-
ment, a part of model designed in a previous project to be
reused. Fig. 2 illustrates this feature on the task editor. A li-
brary view 6 was implemented to import reusable fragments
on the current model. Fragment import is performed with a
Drag and Drop action in the same way as adding a graphi-
cal element from the palette. For example, the designer can
import a task tree fragment in a single action. The tree is col-
lapsed by default and the designer can expand it on the editor.

Sharing and Communication for Collaborative Work

To address the model scalability requirement and take advan-
tage of a modular design of huge models, collaboration is usu-
ally addressed at two different levels in existing collaborative
editors3: at informational level first, through communication
features (e.g. chat) between all the stakeholders of a project,

1https://wiki.eclipse.org/EMF/Validation
2https://github.com/bpmn-io/moddle/
3e.g. LucidChart (http://lucidchart.com)

https://wiki.eclipse.org/EMF/Validation
https://github.com/bpmn-io/moddle/
http://lucidchart.com

D

E F

A

B C

D

E F

G

Task tree #1 Task tree #2

Task tree #3 (aggregates #1 and #2)

A

B C

<< import >><< import >>

Figure 3: Aggregation of several task tree fragments

but also at design level with model sharing features. How-
ever, these features are currently not available in existing HCI
editors. In FlexiLab, we chose to cover both levels.

Communication between stakeholders is possible in real-time
through an interactive chat 5 . Besides, we implemented
a share feature that enables a designer to share a fragment
of model. This feature is accessible from the menubar 9 .
Combined with the library view, it allows several designers to
work on separate fragments of the same model. Fig. 3 illus-
trates this feature. Two designers can simultaneously design
task tree #1 and task tree #2 that will be further aggregated
by a third designer in the task tree #3.

Alongside the innovative key features for design, we also fo-
cused on implementing key features to ease interaction.

KEY FEATURES FOR INTERACTION

We essentially address the guidance, information density and
explicit control ergonomic criteria [2] by providing features
that ease the direct manipulation of models. These features
were validated through an experiment with two groups of
twenty students.

Contextual Toolbar

The first key feature we implemented is a contextual tool-
bar for recurrent actions and properties. Used alongside the
palette and the property menu for sporadic property editing, it
efficiently helps the designer who can favor it to perform the
most frequent actions and edit the most frequent properties.

The contextual toolbar is opened by a single click on a graph-
ical element. It is composed of several icons corresponding
to specific actions. For example, Fig. 4 illustrates the contex-
tual toolbar for a task. From left to right, the five actions are:
rename the task, add subtasks, connect to a subtask, edit the
properties and delete the task. The contextual toolbar for the

temporal relationship is illustrated on Fig. 2 10 . It offers a
quick way to change the temporal operator between two sub-
tasks without rebuilding the link from the palette.

Smart Connection and Disconnection

We implemented a smart connection and disconnection en-
gine in the multieditor. It ensures the correct ordering and

Figure 4: Contextual Toolbar for a Task

arrangement of subtasks sharing the same ancestor, during a
connection or disconnection action. Its main benefit is to au-
tomatically handle the creation and deletion of the temporal
relationships between tasks. In most exiting tools, the de-
signer has to manually create the relationships between tasks.
When a task is added or removed, he or she has to manually
reconnect the link in the best case scenario, or remove it and
create a new one in the worst case. In our tool, the smart con-
nection and disconnection engine automatically handles this,
thus reducing the effort of the designer.

Fig. 5a illustrates the disconnection of a task from its ances-
tor. When disconnecting the task, the two temporal relation-
ships are automatically merged in order to reconnect the two
distant tasks (see Fig. 5b). Conversely, when a task needs to
be added between two connected tasks (see Fig. 5c), the en-
gine is able to automatically split the temporal relationship in
order to connect the three tasks together (see Fig. 5d).

Additional Features

We also implemented some common features we can find in
other tools. Rearrangement helps the designer to manually or
automatically rearrange a task tree. Automatic rearrangement
optimizes the rendering and prevents graphical element over-
laps. If the designer wants to manually rearrange a task tree,
visual guidelines can guide him to align graphical elements
for readability purpose. We also provided some features to
address the problem of huge models that cannot be entirely
displayed on the screen: we implemented a view to display an

(a) Disconnecting a task from its
ancestor. . .

⇒

(b) . . . involves merging two tempo-
ral relationships

(c) Adding a task between two con-
nected tasks. . .

⇒

(d) . . . involves splitting the tempo-
ral relationship

Figure 5: Smart Connection & Disconnection Features

Table 1: Comparison between Task Editors

Editor Genericity Creativity Reuse Collaboration

CTTE No No Import No

KMADE Domain Yes No No

e-COMM Context (basic) No Basic No

HAMSTERS Yes Yes Yes No

outline 4 of the currently edited model. In addition, the de-
signer can also collapse and expand some tasks to reduce the
size of the task tree and increase the readability of the model.
A collapsed task is illustrated with a “+” symbol alongside

its icon 11 .

IMPLEMENTATION

We chose to develop FlexiLab as a web application to facili-
tate its use. We divided its implementation into two parts: a
client side displayed on a web browser and a server side run-
ning on a NodeJS server. JavaScript is used for both sides and
a SQL database is used to store the models on the server side.

On the client side, we use the Foundation4 framework to de-
sign the multimodel editor. The editor itself is based on the
HTML5 Canvas library.

Communication between the client side and the server side
is asynchronous. We mainly use Asynchronous JavaScript
and XML (AJAX) for passive communications between both
sides, and Web Sockets for the chat and the library views.
JSON was favored for data exchanges.

RELATED TOOLS: KEY FEATURES FOR DESIGN

Many tools and notations were proposed to design hierarchi-
cal task tree models [8, 3, 6, 7]. Based on CTT notation,
ConcurTaskTrees Environment (CTTE) [8] is a single-user
monomodel editor supporting task model design and analysis,
available as a Java standalone application. It supports reuse
through import/export of sub-tree fragments. For the design
of cooperative task trees, the editor supports parallel editing
of task trees (one per role plus the cooperative task tree).

K-MADe is an editor supporting the K-MAD notation [3],
available as a Java standalone application. It supports joint
editing of task and domain models. The editor supports cre-
ativity as an added task may be orphan: an alert box indicates
whether the model is compliant with the K-MAD notation.

e-COMM [6] is an online web-based editor using the Collab-
orative and MultiModal (COMM) notation, implemented in
C#/Silverlight. It addresses specification of multi-user mul-
timodal systems. It allows the designer to create task trees,
business roles and contexts of use (basic description through
a texfield). Reuse is basically supported by separated and par-
allel editing of task trees or sub-trees.

HAMSTERS [7] is a task tree notation related to ICO. The
editor is integrated in PetShop and handles: tasks, domain,
petri nets. It favours creativity rather than guidance (e.g. a
temporal operator may exist independently of any task con-
nector). Collaboration is covered by sub-tree fragments that

4http://foundation.zurb.com

can be added by reference in a task tree: if a fragment is mod-
ified, each reference is also automatically modified.

Compared to existing tools, FlexiLab supports cooperation
thanks to communication, fragment sharing and multiple
models. It also provides advanced features to support cre-
ativity and model conformity checking on demand.

CONCLUSION

This paper presents innovative key features to address the
complexity of HCI model design. Those features were im-
plemented in a multimodel editor for HCI.

In future works, we plan to generalize those features to other
models, with a special focus on collaborative development,
through the library and chat.

ACKNOWLEDGMENTS

This work is funded by the French Connexion Cluster (Pro-
gramme d’Investissements d’avenir / Fonds national pour la
société numérique / Usages, services et contenus innovants).

REFERENCES

1. P. Akiki, A. Bandara, and Y. Yu. 2013. RBUIS:
Simplifying Enterprise Application User Interfaces
Through Engineering Role-based Adaptive Behavior. In
Proceedings of EICS’13. ACM, New York, NY, USA.

2. C. Bastien and D. Scapin. 1993. Ergonomic criteria for
the evaluation of human-computer interfaces. (1993).

3. S. Caffiau, D. Scapin, P. Girard, M. Baron, and F.
Jambon. 2010. Increasing the expressive power of task
analysis: Systematic comparison and empirical
assessment of tool-supported task models. Interacting
with Computers 22, 6 (Nov. 2010), 569–593.

4. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L.
Bouillon, and J. Vanderdonckt. 2003. A unifying
reference framework for multi-target user interfaces.
Interacting with Computers 15, 3 (2003), 289–308.

5. E. Céret, G. Calvary, and S. Dupuy-Chessa. 2013.
Flexibility in MDE for scaling up from simple
applications to real case studies: illustration on a
Nuclear Power Plant. In 25ème conférence francophone
sur l’Interaction Homme-Machine, IHM’13. AFIHM,
ACM, Bordeaux, France.

6. F. Jourde, Y. Laurillau, and L. Nigay. 2010. COMM
Notation for Specifying Collaborative and Multimodal
Interactive Systems. In Proceedings of EICS’10. ACM,
New York, NY, USA, 125–134.

7. C. Martinie, E. Barboni, D. Navarre, P. Palanque, R.
Fahssi, E. Poupart, and E. Cubero-Castan. 2014.
Multi-models-based Engineering of Collaborative
Systems: Application to Collision Avoidance Operations
for Spacecraft. In Proceedings of EICS’14. ACM, New
York, NY, USA, 85–94.

8. G. Mori, F. Paternò, and C. Santoro. 2002. CTTE:
support for developing and analyzing task models for
interactive system design. Software Engineering, IEEE
Transactions on 28, 8 (2002), 797–813.

http://foundation.zurb.com

	Introduction
	FlexiLab, a Multimodel Editor for HCI: Overview
	Innovative Key Features for Design
	Metamodel-tolerant Approach for Combining Genericity, Creativity and Conformity
	Modular Design for Reusability
	Sharing and Communication for Collaborative Work

	Key Features for Interaction
	Contextual Toolbar
	Smart Connection and Disconnection
	Additional Features

	Implementation
	Related Tools: Key Features for Design
	Conclusion
	Acknowledgments
	REFERENCES

