
A Predictive Approach for an
End-to-End Touch-Latency Measurement

Elie Cattan
University of Grenoble

LIG, UJF
Grenoble, France

elie.cattan@imag.fr
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ABSTRACT
With direct-touch interaction, users are sensitive to very low
levels of latency, in the order of a few milliseconds [3, 6]. As-
sessing the end-to-end latency of a system is thus becoming
an important part of touch-devices evaluation, and this must
be precise and accurate. However, current latency estimation
techniques are either imprecise, or they require complex se-
tups involving external devices such as high-speed cameras.

In this paper, we introduce and evaluate a novel method that
does not require any external equipment and can be imple-
mented with minimal efforts. The method is based on short-
term prediction of the finger movement. The latency estima-
tion is obtained on the basis of user calibration of the predic-
tion to fully compensate the lag. In a user study, we show that
the technique is more precise than a similar “low overhead”
approach that was recently presented [1].
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INTRODUCTION
Recent expansion of direct touch systems has prompted sev-
eral research efforts on the effect and measurement of sys-
tems’ end-to-end latency (or lag). The lag is defined as the
time between a user’s action and the display of the system’s
corresponding feedback. Lag was shown to reduce users’ per-
formances and the sense of presence in direct touch interac-
tion. Users are able to perceive latencies down to 6ms [6]
and their pointing performances are still affected at 10ms [3].
Most of current commercial touch surfaces exhibit levels of
latency higher than 50ms [3], i.e. levels that are far from
optimal. Researchers and designers of direct-touch systems
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should thus control the latency of their systems, which, as a
first step, requires measuring it.

Measuring the end-to-end latency of touch system, however,
is not an easy task. Several measuring instruments have been
proposed in the literature. These instruments often require
important efforts to set-up and operate, and they often require
additional hardware such as cameras, pendulums or oscillo-
scopes. Berard and Blanch recently introduced a novel ap-
proach that requires the assistance of a human operator, but it
is easy to implement and does not require any external hard-
ware [1]. The approach is based on users’ ability to accu-
rately trace a circular path at constant speed. This is actually
a difficult task that requires significant training to obtain good
results.

In this paper, we introduce a new method that follows a sim-
ilar approach of using the help of a human operator. The
method requires the operators to slide a finger in straight lines
at a constant speed of their choice, which is arguably an easier
task that tracing circles at a constant rotational speed imposed
by the system. This approach is based on the finger’s motion
prediction and the operator ability to perceive a mismatch be-
tween the finger and the lagging feedback. The technique
only requires minimal efforts to implement and does not re-
quire any external device, or specific skills. We compared
our predictive method to the low overhead (LO) method of
Berard and Blanch [1] in a user study and showed that our
new method is more precise than the LO method and gener-
ally preferred by participants.

RELATED WORK
Estimating latency requires that, at a particular instant, the
positions of the finger and the feedback are known. The feed-
back position is computed by the system and is thus easily
reported. By contrast, it is more difficult to measure the phys-
ical position of the finger at the moment the feedback was
displayed. A common approach to solve this problem is to
use an external video camera that takes pictures of both the
finger and the feedback [6]. However, this approach requires
the time consuming hand labeling of many images to account
for the variability of the latency. In addition, the precision of
the approach is limited by the thickness of the finger, which
makes difficult the estimation of the position of contact and
the speed of the finger.



Berard and Blanch recently introduced an automated method
of touch latency measurement [1]. It is based on the extrac-
tion of the finger position as well as the display frame number
by computer vision processing of the images captured by the
camera. The approach provides an accurate estimation of the
physical position of the finger. In addition, it allows the au-
tomated computation of latency on many samples, which re-
sults in an accurate estimation of the average latency, but also
provides the spread of the latency. However, the approach re-
quires an external camera, several calibration steps, and com-
plex software, which make it unsuitable for quick latency es-
timations.

Rather than using an external camera to measure the physi-
cal position of the finger, the system may require an operator
to follow a predefined trajectory with the finger. Hence, the
system does not have to actually measure the position of the
finger, it simply assumes that the finger is where it should
be. The idea was introduced and implemented by Berard
and Blanch [1] in their low overhead approach (or “LO ap-
proach”). This approach saves the requirement for external
equipment and complex calibrations, and it can be imple-
mented with minimal efforts. However, Berard and Blanch
used the tracing of a circle at constant speed as the predefined
trajectory. They report that the task was difficult to perform
by the operators, which resulted in a range of latency estima-
tions across participants having a width of 8ms. They also re-
port that the average estimation was offset by 2ms compared
to the ground truth, which gives an indication of its accuracy.
Our approach builds on the idea of benefitting from the help
of operators to save the complexity of external equipment, but
we chose a task that is simpler to perform in order to improve
the precision of the measure.

A predictive approach to measure the latency of the system
was introduced by Knibbe et al. [4]. Using a projector-camera
system, a trajectory prediction improved the accuracy of the
real-time projection on juggling balls. With no assumption on
its own latency, the system is able to calibrate itself: starting
from 0ms, the prediction length is incremented (by 33ms and
then by 5ms for refinement) and the projection error is mea-
sured at each step until a local minimum is found. The pre-
diction length when the error is minimal is then considered as
the end-to-end latency of the system. We follow a similar ap-
proach, but we adapt it to touch surfaces, and we ask human
operators to match the object and the feedback, which saves
the requirement for external cameras and calibration.

A NEW MEASUREMENT OF TOUCH LATENCY
Predicting the finger trajectory can reduce the perception of
latency and improve user performances [2]. With prediction,
the feedback is not displayed at its last known position but
at a predicted position so as to compensate the system lag.
A perfect prediction can theoretically compensate the latency
totally. Reasoning backwards, if the prediction length is ad-
justed until the feedback exactly matches the physical finger,
then the prediction length is equal to the system’s latency. We
use this as a means to measure the latency of the system.

Our approach consists in showing a simple vertical line to
users that follows the index finger on the touch surface. Users

can tune the prediction length until they observe the best
match between the position of their finger and the position of
the feedback. The prediction length is used as the latency es-
timation. Compared to the “LO approach” [1], users’ motion
is less constrained by the system. Users must perform straight
line trajectories at the (constant) speed of their choice, which
is arguably easier than tracing circles at a constant speed im-
posed by the system.

Ng et al. have showed that users are more likely to notice
difference of latency when dragging small objects compared
to bigger ones [5]. Therefore, we minimize the size of the
dragged object, to improve users’ perception accuracy: we
display a 1-pixel line (0.28mm). To ease the matching be-
tween the line and the finger, a line is also drawn (with a pen)
on users’ index finger, and the positions are matched on a
static finger.

This predictive approach provides accurate latency estimation
only if the prediction model is correct. However, predicting
the future is a difficult task prone to errors. We use a simple
constant speed linear model for the prediction [2]. At each
display cycle i, a predicted position x̂i is computed as

x̂i = xi + L ∗ ŝi ŝi =
xi − xi−1

∆t
(1)

where the x are the observed finger positions, ŝi is the speed
estimation and ∆t is the display cycle time. The prediction
length L is tunable and is used to measure the latency.

By design, this model perfectly predicts the finger position
only when the finger is moving at constant speed in straight
lines. But actual user trajectories are neither perfectly straight
nor performed at perfectly constant speed. We remove the
straight line problem by working in 1D: we ask users to make
mostly horizontal translations on the surface, and display a
vertical line at the x-position of the prediction. The constant
speed constraint is more problematic: every user trajectory
has an acceleration and a deceleration phase, which respec-
tively induce undershoots and overshoots of the prediction
model. We thus ask users to focus on the finger-feedback
alignment in the middle of their motion, and ask them to sta-
bilize their finger’s speed as much as possible. Even so, the
speed is never perfectly constant. However, a user choses the
best finger-feedback alignment after several translation ges-
tures in both directions. We assume that the prediction error
averages across these gestures and allows for an accurate la-
tency estimation. The accuracy is assessed in the user exper-
iment presented in the next section.

In addition, large system latencies require large prediction
lengths, which result in larger prediction instabilities. We
thus envision that the precision of our approach will decrease
with increasing latency of the system. In the user experiment,
we evaluate two different levels of latency to study this phe-
nomenon.

VALIDATION: USER EXPERIMENT
We designed a user experiment to assess the precision and
accuracy of our approach. We also compared our approach to



Figure 1. A user executing the predictive approach measurement: the
finger, equipped with an optical marker, moves between the two guide-
lines. Users have to tune the prediction length to make the feedback
match their finger when moving. Several vertical lines appear because
of the exposure time of the camera.

the “LO approach”, considered as the state of the art in quick
latency measurements that require no external equipment.

8 participants took part in the experiment, with mean age =
26.75 [21-33], and including 3 women. All the participants
came from our lab and had previous knowledge in computer
science but no experience with neither the LO approach nor
the predictive approach.

Our experiment was performed on a custom device that al-
lowed us to control its latency with precision, and to test a
low level of latency (30ms). However, it should be clear that
the approach is not bound to this specific hardware and can
be easily implemented on any commercial tablet for example.
We used the same high performance touch system as in [2].
The system uses 120Hz optical tracking and requires that an
optical marker be taped to the user’s fingernail. The preci-
sion of the sensing was measured at less than 0.1mm (sub-
pixel). We used the “high accuracy” approach [1] to measure
the ground truth latency of our system at the various studied
levels.

Task
In the LO task, we used a wheel similar to the one used by
Berard and Blanch [1]: we displayed a circle of radius 8.8cm
with a spinning radius at constant speed s = 3rads−1. Partic-
ipants were requested to follow the intersection of the radius
and the circle. Pressing the space bar of a keyboard began and
ended the recording. We asked participants to perform at least
one and a half of a circle before ending the measurement.

In the predictive task, a white 1 pixel vertical line was dis-
played at the x-position of the finger. While the finger was
static on the surface, we asked participants to draw a line on
their fingernail that matched the feedback line on the screen.
As illustrated in Figure 1, two white horizontal lines were dis-
played, and we asked participants to try to keep their finger
within these lines when moving. Participants could tune the
prediction length with the keyboard: two keys were used for
±1ms increments, two others for ±0.1ms increments. Partic-
ipants were asked to tune the prediction length until the line
on the finger and the feedback line matched when executing
horizontal movements on the screen at a speed as constant as
possible.

Protocol
The experimental design includes two factors: METHOD
was either LO (following the LO approach) or PRED (fol-
lowing our prediction approach); LATENCY was either 30ms
or 80ms.

Participants were asked to execute 5 measurements in each
of the 4 conditions (2 METHOD x 2 LATENCY). We thus
recorded 160 latency measurements (8 participants x 4 con-
ditions x 5 repetitions). Presentation of conditions was or-
dered by METHOD first, then LATENCY. The order of pre-
sentation of METHOD and LATENCY was balanced across
participants as a means to equilibrate a potential order effect.
Post study ANOVA tests confirm no significant effect of or-
dering. At the beginning of the experiment, we explained
both methods to participants and gave them a demonstration.

When executing the LO method, participants were first given
1min to train to following the wheel. Then, they executed
five measurements in the first latency condition and five mea-
surements in the second one. To encourage participants to
improve their performances, standard error was displayed at
the end of each measurement.

When executing the predictive method, participants were
asked to move at the most constant speed as possible from
one side of the screen to the other and to focus on the mid-
dle of their motion when the speed is the most constant. The
prediction length, hidden to participants, was set to 0ms at
the beginning of the run. They were given as much time
as they wanted to tune the prediction length. The task was
more easily performed using the key repeat feature of the key-
board, which is hardly reproducible, and ensured that partici-
pants did not simply repeat the same keyboard actions at each
measurements. When they were satisfied with the feedback
matching their finger, the final prediction length was recorded
and reset to start another evaluation.

Results and discussion
Finger’s speed during prediction measurements was variable
amongst participants. We observed a trend of increasing
speed during a single measurement. When the finger moves
faster, it is easier to perceive a gap due to uncompensated lag;
yet, speed also increases prediction error (as it is difficult to
maintain a constant high speed) and creates a blurry effect on
the feedback that makes difficult to match the lines. Glob-
ally, speeds peaked around 1.1m/s, where participants found
a tradeoff between precision and blur.

On the 160 latency measurements, we removed 10 within-
subject outliers that were 1.5 interquartile either above the
upper quartile, or below the lower quartile. Measurements of
participant 2 at 80ms with the LO method were around 35ms
and very variable. This whole condition was considered as an
outlier compared to the other results and was discarded from
the study, given 145 measurements left for analysis.

The within subject variability of the estimation was greater
with the LO method compared to the prediction method, as il-
lustrated on Figure 2. The standard deviation of the five mea-
surement repetitions, averaged across participants and the two
latencies was significantly smaller with the predictive method
(1.6ms) than with the LO method (8.4ms) (F1,7 = 21.9, p <
.005).

Estimating the latency with the prediction method takes more
time (between 30s to 1min depending on participants) com-
pared to a single run of the LO method (less than 10s). This
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Figure 2. Averaged measurement error for each participant at 30ms and
80ms latency with the LO method (red, left) or the predictive method
(blue, right). 95% confidence intervals indicate the within subject vari-
ability.
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Figure 3. Error of the most stable LO run (red, left) compared to the er-
ror of the first predictive measurement (blue, right) for each participant
at 30ms and 80ms latency.

is due to the multiple adjust and observe steps needed in the
predictive approach. However, Berard et Blanch recommend
that multiple runs of the LO method are performed by an op-
erator in order to select the best run, defined as the one with
lowest standard error. We thus compare a single run of the
prediction method (the first run) to the best of five runs of
the LO method, so that the operator time was similar. The
LO method was found to be surprisingly accurate when aver-
aged across participants: the best measurement average was
33.5ms at 30ms and 80.4ms at 80ms. The predictive approach
gives a similar accuracy of 28.1ms at 30ms and 78.4ms at
80ms. However, the confidence interval for the mean of the
measurement error (taking both 30ms and 80ms values) is
narrower with the predictive approach (2.0ms) than with the
LO approach (8.7ms). This indicates that a quick 2min la-
tency measurement will be as accurate and more precise with
the predictive method compared to the LO method.

With the LO method, the results uncover a high variability
within and between participants. This could be explained
by the limited training that the participants performed. The
task certainly required more training to be mastered. The LO
method provides good accuracy when averaged over several
users. However, our results indicate that using the estimation
of a single user could lead to large errors. On the contrary, the
predictive method provides better accuracy and more precise
results when considering the measurement of a single user.

The predictive measurements appear to suffer form a negative
offset, compared to the ground truth. It can be due to the pre-
diction length zeroed at the beginning of the measurement. A

convergence of the prediction length from lower value could
have lead to under-estimation. In further studies, we will set
different prediction values at the beginning of each evalua-
tion.

Contrary to our hypothesis, the predictive method did not
yield less precision at 80ms than at 30ms. One explanation is
that the human eye seems to be good at averaging the blurred
feedback caused by the prediction instabilities.

When asked, “Which approach was the easier to perform?”,
6 participants answered that they preferred the predictive ap-
proach. They argued that the wheel was hard to follow as
they were constrained by the system. By contrast, the predic-
tive approach allowed them to adopt their own rhythm.

Further evaluation will be needed to validate our approach at
lower sensing rate. Even if 120Hz sensing is already available
in commercial devices (for example, on the iPad Air 2), most
current commercial devices have lower sensing frequencies
in the range [60Hz-85Hz]. This could lead to more unstable
predictions. However, the similar results of our experiment
at 30ms and 80ms of latency indicate that users are good at
coping with blurry feedback due to unstable prediction.

In conclusion, we introduced a new latency measurement ap-
proach using prediction. It is easy to implement and does not
need any external device. A user study indicates that our ap-
proach is as accurate, more precise, and easier performed by
users compared to previous work.
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