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ABSTRACT

Latency in direct-touch systems creates a spatial gap be-
tween the finger and the digital object when dragging. This
breaks the illusion of presence, and has a negative effect on
users’ performances in common tasks such as target acqui-
sitions. Latency can be reduced with faster hardware, but
reaching imperceptible levels of latency with a hardware-only
approach is a difficult challenge and an energy inefficient so-
lution.

We studied the use of a continuous prediction of the touch
location as an alternative to the hardware only approach to
reduce the latency gap. We implemented a low latency touch
surface and experimented with a constant speed linear predic-
tion with various system latencies in the range [25ms-75ms].
We ran a user experiment to objectively assess the benefits
of the prediction on users’ performances in target acquisition
tasks. Our study reveals that the prediction length is strongly
constrained by the nature of target acquisition tasks, but that
the approach can be successfully applied to counteract a large
part of the negative effect of latency on users’ performances.
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INTRODUCTION

Direct touch is a key element of the success of touch-sensitive
devices, giving the sensation of moving digital objects with
a direct contact of a finger. However, the immediacy of di-
rect touch interaction and its “naturalness” comes up against
a technical limit: the latency of the system, defined as the
delay between a user action and the feedback of this action.
With direct touch, latency materializes as a spatial gap be-
tween the finger and the virtual object under control. Latency
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in direct touch systems can be perceived at levels as low as
2ms [15], and it was shown to deteriorate users’ target ac-
quisition performances at levels as low as 10ms [7]. How-
ever, current commercial touch-sensitive devices still suffer
from latencies in the range [S0ms-200ms] [15], providing a
sub-optimal experience to the users and a decrease in perfor-
mances. The spatial gap induced by latency increases when
the finger is moving faster to cover larger distances. This am-
plifies the negative effect of latency on large interactive sur-
faces compared to smaller devices such as tablet computers
or smartphones. The omnipresent hindrance induced by la-
tency may conceal the benefits of novel forms of direct touch
interactions. The compensation of hardware latency is thus
a core challenge for interaction designers on large interactive
surfaces.

A radical way to eliminate the negative effects of latency is to
develop a touch system that has a small enough latency that
it is not perceived by users. Ng et al. built such a system and
reached 1ms of latency by using custom developed sensor,
processing and display hardware [15]. This pure hardware
approach was successful in providing an experimental device
that allowed detailed studies on the perception and on the ef-
fect of latency. However, achieving Ims of latency came at
the cost of strong limitations: the system could not display
color, it had a width of only 24cm, and the software had to run
on an embedded real-time OS, hence it could not rely on com-
mon OSes and their graphics libraries. The display part of the
system also appears as a bottleneck: going from the vast ma-
jority of current 60Hz display refresh rate to the 1kHz refresh
rate of Ng et al. [15] requires a 17x improvement which is a
major technical challenge. Besides, augmenting the display
refresh rate for the sole purpose of reducing the latency gap
appears as a very inefficient use of computing and energy re-
sources. As such, the approach does not appear as a practica-
ble solution to the latency problem in general purpose direct
touch systems.

Here, we study the benefits of using a software prediction.
With prediction, the virtual object under control is not dis-
played at the most recently sensed location of the finger, but
rather at a location predicted based on the finger’s past tra-
jectory. Compensating latency with prediction has been well
studied in various domains such as robotics and virtual reality.
In the HCI literature, prediction has been used to anticipate
which target a user is aiming at. A single prediction was made
well before the end of the acquisition in order to guess the
end-point of a user controlled trajectory [2, 4, 8, 16]. These



efforts dealt with “large” prediction errors by requiring final
user adjustments. The single prediction approach was also
successfully used in direct touch in order to achieve “zero-
latency tapping” [20]. In this paper, we tackle a different
problem as we use the prediction to continuously reduce the
gap between the finger and the digital object while dragging.
This poses the challenge of predicting a “no-latency” position
at every sample. However, predicting the future always come
with uncertainty, which is a source of tracking mismatch on
its own. A predictive approach is only useful if the benefits
of reducing the latency gap surpass the negative effects of the
prediction mismatch. While device makers have started to use
continuous predictions to reduce touch latency on mobile de-
vices [18], the prediction is limited in length (16ms) and only
attempts to partially compensate the device’s latency. There
is no published work that informs about the amount of latency
that can be compensated through a continuous prediction and,
more fundamentally, that provides an objective evaluation of
the benefits of the prediction on users’ performances.

In this work, we studied the total compensation of a device’s
latency through continuous prediction. We selected users’
performances in target acquisitions as an objective measure
of the benefits of the prediction. The target acquisitions were
performed by sliding a digital object onto a target location,
which we chose as the most common direct touch dragging
interaction. In order to experiment with low levels of system
latency, we created an experimental device with a baseline la-
tency of 25ms. By artificially adding delays to this baseline,
we could experiment with higher system latencies at 42ms,
58ms and 75ms. Our main objective is to inform about the
levels of latency where a continuous prediction is a viable ap-
proach to users’ performance improvements.

In the remainder of the paper, we review previous work re-
lated to the effect of latency on HCI and to the use of users’
motion predictions. We then describe our experimental appa-
ratus, and our software prediction approach. We next report
on the user study that evaluates the benefits of this predic-
tion on user’s performances. We also provide an indication
of user’s preferences when comparing the system with and
without prediction in target acquisitions and free-movement
tasks. We finally discuss the results of the study in regard to
the effect of latency on touch interaction and the feasibility of
prediction in current systems.

RELATED WORK

Effects of latency

The detrimental effect of latency on HCI has been inves-
tigated from different viewpoints: from the subjective an-
noyance felt by users to the more objective measurement of
degradations in users’ performance. Studying visual immer-
sion, Meehan et al. compared users’ self reported sense of
presence and measured the change of heart rate when mov-
ing from a calm to a stressful virtual environment, under two
conditions of latency: 50ms and 90ms [13]. They found that
participants in the low latency condition had a higher sense
of presence and a higher change in heart rate. More recently,
Ng et al. used the just noticeable difference (JND) protocol
to objectively explore users’ ability to perceive latencies on

touch screens [15]. With an experimental device having only
Ims of latency, they showed that participants were able to per-
ceive latencies only 6ms above the baseline on average, with
some participants reaching 2ms. In another study, the abil-
ity to perceive latency was found to be strongly dependent
on the task [14]. Using a stylus, the perceivable latency was
found to be smaller when dragging a small square (2ms) com-
pared to a big square (6ms) and to scribbling (40ms). This
higher perceptual threshold for more demanding tasks was
confirmed by Annett et al.: the threshold was found around
53ms for writing or drawing [1]. Recent work from Deber
et al. [5] confirms that the latency is more perceivable with
direct interaction compared to indirect, and they show that
small improvements of latency (e.g. 8ms) are noticeable from
a wide range of baseline latencies, particularly when drag-
ging. These studies indicate that even though very small level
of latencies are perceivable, it may or may not be considered
an annoyance by users depending on their expectations from
the system and the task being performed.

Rather than explicitly asking participants about their percep-
tion of latency, an implicit effect of latency can be observed
by measuring users’ performances in the execution of a com-
mon task such as target acquisition. This was studied by
MacKenzie and Ware for regular mouse interaction [12]. By
testing 8ms, 25ms, 75ms and 225ms of latency, they showed
its strong negative effect on user’s performance, with the
movement time increasing by 63% and error rate jumping
from 9% to 21% when latency increased from 8ms to 225ms.
Users’ performance also degraded between 25ms and 75ms
of latency, but not between 8ms and 25ms. Ivkovic et al. ran
a similar experiment with mouse pointing but for a central
reticule-aiming task [6]. They observed performance degra-
dation when varying latency from 164ms down to 41ms, but
not between 41ms and 11ms. Although not studying exactly
the same pointing tasks, these two studies considered together
indicate that a threshold of the influence of latency on (indi-
rect) mouse interaction is in the range [41ms-75ms]. Ivkovic
et al. also demonstrated that latency could be efficiently coun-
teracted by the use of a target-aware “sticky target” tech-
nique. With the widespread diffusion of direct-touch interac-
tion through smart-phones and tablet computers, the influence
of latency on users’ performance came back as a major con-
cern. Using the same 1ms latency hardware as Ng et al [15],
Jota et al. studied users’ performances for a dragging task [7].
Contrary to mouse interaction, the detrimental influence of la-
tency was found at levels lower than 41ms. By doing a linear
regression on their experimental data, the authors suggest that
there may not be a floor effect and that users’ performance
may increase as long as latency decreases, at least down to
1Ims. However, due to the constrained size of the experi-
mental device, only “easy” dragging tasks were tested with
the highest Fitts’ Index of Difficulty (ID) at 2.58bit. Thanks
to the availability of a larger touch device, our work extends
these results to a more common range of IDs including “dif-
ficult” targets up to ID=6.3bit.

Predicting trajectories in HCI
Prediction has been used in several research efforts in an at-
tempt to speed up target acquisition in pointing tasks. Asano



et al. made a target prediction based on the peak velocity
of the pointer [2]. Subsequent efforts studied more complex
models of prediction: motion kinematics [8], neural networks
and Kalman filters [4], and kinematic template matching [16].
In all these efforts, complex models are used to address the
challenge of a long prediction: there are typically several
hundreds of milliseconds between the date of the prediction,
at the beginning of the pointing gesture, and the final target
acquisition. The prediction is never accurate enough to au-
tomatically select the target, and final adjustments from the
user are expected. The most recent efforts involve the learn-
ing of the model’s parameters from example trajectories [4,
16]. Our work focuses on similar target acquisition tasks, al-
though the approach is quite different: rather than guessing
which target the user is pointing at, we improve the coupling
between the user’s finger and the virtual object, aiming at the
ideal zero latency condition that would allow users to perform
the task with optimal performances.

Xia et al. recently studied the use of a prediction as a means to
reduce latency in direct touch systems, however they focused
on tapping tasks, i.e. when the finger makes the first contact
on the surface [20]. Using the hovering trajectory of the finger
before it touches the surface, they predicted both the endpoint
of the movement and the touch time by fitting a parabola on
the current trajectory and using a linear extrapolation on the
last phase of the gesture. The system was able to provide
an immediate feedback when the user was tapping, virtually
removing the latency of the system. Our work shares the same
objective, but we focus on dragging instead of tapping.

Our approach finds its inspiration in the efforts to create vi-
sual immersion in Virtual Reality systems. Latency has long
been acknowledged as a bottleneck for visual immersion: it
is a source of simulator sickness [9] and may completely
break the illusion of presence [19]. Continuous predictions
of the user’s head position and orientation have been used
in various attempts to compensate latency. Lengthy predic-
tions were used to deal with large latencies, typically in the
range of 300ms [19]. However, as improvements in sensing
and display have reduced systems’ latency, more simple pre-
diction models were used. LaViola showed that a prediction
based on simple linear regressions performed as well as ex-
tended Kalman filters when predicting head pose for 50ms
and 100ms [10]. More recently, LaValle et al. discussed the
predictive methods used in the popular Oculus rift HMD [9].
The method predicts head orientation for 20ms and 40ms us-
ing only “a few milliseconds of data” from 1kHz sampling of
angular velocity, and a simple constant acceleration model.
The authors emphasize the requirements for a successful pre-
diction: dense, accurate sensor data, and a limited length of
the prediction. Our work follows the same path of using only
the most recently sensed data, a simple prediction model, and
a short prediction. We aim at discovering if and how the same
convergence of fast hardware and accurate enough predic-
tion can be successful. Compared to visual immersion, direct
touch faces the challenge of touch sensors reporting positions
rather than speed, and usually at a much lower sample rate. In
addition, direct-touch interaction has different requirements

Figure 1. The experimental system in use during the experiment. The
finger is localized by optical tracking using a marker. Users touch the
red disc to bring it into the white target.

and may be even more sensitive to latency, as hinted by the
results from Jota et al. [7].

The soon to be released i0OS 9 mobile operating system offers
touch prediction services in order to reduce direct touch la-
tency [18]. While the details of the predictive algorithm are
not published, the system uses the 120Hz touch sampling of
the iPad Air 2 to provide positions predicted 16.7ms in the
future (i.e. one 60Hz display period). With the iOS render-
ing pipeline, the prediction theoretically reduces the latency
to 1.5 display period (25ms). We follow the same contin-
uous prediction approach to reduce latency, but we experi-
ment with a larger interactive surface that is subjected to more
visible lag due to faster dragging. We also experiment with
longer predictions in an attempt to entirely compensate the
system’s latency. We finally provide an objective assessment
of the prediction efficiency by measuring its effect on users’
performance.

EXPERIMENTAL SYSTEM

A low latency direct-touch surface

Previous efforts indicate that users’ performances in target ac-
quisition are very sensitive to tracking errors: even a small
gap created by 10ms of latency has a detrimental effect on
performances [7]. We thus anticipated that the continu-
ous prediction approach might not work for long predictions
meant to compensate the high latencies of currently available
commercial devices: for any prediction model, the longer the
prediction, and the larger the predicted error. We thus built
a specific touch device that allowed us to test various levels
of latency starting at 25ms. However, contrary to the system
used by Ng. et al [15], our system only relied on off-the-
shelves hardware that did not deviate too far from the capa-
bilities of standard direct touch hardware. In particular, our
system used a standard monitor that offers a width of 52cm
and a color display, and the software used a standard render-
ing pipeline on a common OS.

A 24inch Asus VG248E 1920x1080 LCD display without its
foot and horizontally set on a desk was used as the direct-



touch surface. The display was set in a “game mode” which
disabled any processing on the video signal to provide fast re-
sponse time. The display was driven at a refresh rate of 120Hz
(period of 8.33ms). To get fast touch sensing on the display,
we used two Natural Point Optitrack Flex-13 cameras for op-
tical tracking. The tracking system reported the 3 degrees of
freedom of reflexive markers at 120Hz. We calibrated the pa-
rameters of the display’s plane in the cameras’ 3D space by
sliding a marker on the surface of the display. A spherical
marker was attached to the participants’ index finger, as illus-
trated on Figure 1. The 3D position of the marker is used to
inform the system about the contact of the finger on the dis-
play and is then projected onto the display plane to get the po-
sition of the finger’s projection on the display. By recording
the sensed position of a stable marker put on the monitor, and
repeating the operation in various locations on the monitor,
we measured the precision of the sensing at less than 0.1lmm
(sub-pixel). The tracking software ran on a dedicated PC that
sent marker positions to the main PC via the UDP protocol
on a 1Gbit/s wired network. The round-trip time was mea-
sured below 0.5ms with low variability. The main PC was
running Mac OS X 10.9.5 on a quad-core 3.4GHz processor
and was equipped with an NVIDIA GeForce GTX 680MX
graphic card. The system’s software was custom written in
C++ and used the OpenGL library for graphical rendering.

We assessed the end-to-end latency of our system by us-
ing the “high accuracy” approach introduced by Berard and
Blanch [3]. Doing several measurements during the course of
the experiments, we verified that the average latency was sta-
ble. In each measurement, latency averaged at 25ms and var-
ied in the range [17ms-33ms]. From this variability, 8.33ms
can be explained by the display refresh period. The remaining
variability can be attributed to variable delays introduced by
the system’s components: computation of the 3D position of
the marker on the tracking PC, communication between the
tracking and main PCs, rendering of the scene and its com-
munication to the display. We implemented artificial latencies
by queuing finger motion events and releasing them only af-
ter a number of display cycles. We used 3 levels of latency in
addition to the baseline: 42ms (+2 cycles), 58ms(+4 cycles)
and 75ms(+6 cycles). The artificial latencies were controlled
using the same procedure as for the baseline, and showed the
same stability of the averages and the same variability around
the averages.

Predicting finger trajectories

Jota et al. decomposed target acquisition trajectories in 3
phases: initial reaction, large ballistic motion, and “feedback-
adjusted final adjustments” where the finger is inside the tar-
get area [7]. They found that the last phase was the most
affected by latency. This could be explained by the fact that,
with direct touch, the physical finger has no latency and al-
lows users to control their gesture during the large initial mo-
tion. The lagging digital object is only required at the end
of the gesture for its precise positioning within the target. To
get a better understanding of this phenomenon, we studied
twenty finger trajectories of different participants aiming at
small distant targets (amplitude = 33.2cm, width = 0.42cm).
We hand labeled the duration of the small final adjustments by

looking at the speed profiles. We found that correction last-
ing less than 70ms were frequent and were often separated
by even shorter motionless phases. We also observed that
these corrections were quite erratic and thus appeared as un-
predictable. This uncovers the challenge of a continuous pre-
diction for target acquisition: compensating latency is most
needed on the last phase of the acquisition gesture, which is
irregular and rapidly evolving. It results that the amount of
latency that can be compensated is bounded by the duration
of these small adjustment motions: a system with 70ms of
latency is only informed about the beginning of such short
motion when the motion has already finished in the physical
world; the system has no way to predict it.

These observations point to a highly reactive prediction
model using only the most recent sensor data, similar to the
most recent approach in visual immersion [9]. We considered
using a constant acceleration parabolic model by fitting two
parabolas (x and y) on the 3 most recent samples. To get a
sense of the prediction’s accuracy, we plotted a predicted tra-
jectory alongside a no-latency “physical” trajectory that we
simulated by removing a constant latency on each sample,
i.e. translating a recorded trajectory on the time axis by the
simulated latency. We used a simulated latency of 75ms to
magnify the effect of the prediction. As illustrated on Fig-
ure 2(A), we observed that the instability of the parabolic fit
interacted badly with the sensor noise and produced unstable
predictions. To deal with sensor noise, we added more sam-
ples to the fit. However, any added sample is 8.33ms older
than the previous one. The more sample added, and the less
reactive the model becomes as it represents outdated evolu-
tions of the trajectory. The phenomenon is revealed on Fig-
ure 2(B) with a 10 samples least-square optimized fit of the
parabolic model: the prediction is much smoother, but at the
cost of inertia that does not prevent strong under- and over-
shoots. We also experimented with a simpler constant speed
linear prediction. The benefit of using a first order polynomial
is that it only requires the two most recent samples for its esti-
mation; hence it is very reactive. In addition, it only requires
only one level of time integration for the position prediction,
which results in lesser amplification of sensor noise. The re-
sult is illustrated on Figure 2(C, D) for a 75ms and a 25ms
prediction.

We thus focused the scope of our study on the simple lin-
ear prediction model and with prediction lengths at or lower
than 75ms. We attempted to entirely counteract the system’s
latency: we made a prediction of Xms for a system that
has an average latency of Xms. In our model, we approx-
imated the latency of the system as a constant /, measured
with the “high accuracy” method of Berard and Blanch [3].
Although we observed some variability (+8ms) around the
average, we had no way to estimate the exact latency at each
sample. This situation is representative of most current di-
rect touch system running on standard time-sharing OSes.
We observed that the Optitrack sampling rate was very sta-
ble and thus we approximated the sample period as a constant
At =1000/120 = 8.33ms.
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Figure 2. Final phase of a target acquisition. Simulated physical trajectory (red line), raw trajectory with lag (blue line) and predicted trajectory (green
line). Prediction at 75ms of latency with a constant acceleration parabolic model fit on 3 samples (A) and on 10 samples (B), and with a constant speed
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Figure 3. Average error per sample between simulated no-latency trajec-
tories and lagging trajectories (in red) or predicted trajectory (in blue).

Finally, the predicted 2D position of the finger X; at display
cycle number i was computed as:

6]

Xi =X +1*§ Si =

where the x are the observed finger positions, § is the speed
estimation, [ is the measured system’s latency and At =
8.33ms. One of the benefits of this simple model is its user-
and target- agnostic nature; hence it can be implemented with
minimal effort in most direct-touch systems.

To get a sense of the accuracy of the prediction, we com-
puted the average position error per sample for raw and for
predicted trajectories. The error was computed by compar-
ison to no-latency “physical” trajectories simulated as de-
scribed above. These errors were averaged on 7428 trajec-
tories recorded during our experiments. The results are il-
lustrated on Figure 3. At 25ms of system latency, the aver-
age error is lowered from 0.66cm down to 0.11cm, an 84%
improvement. At 75ms, it is lowered from 1.6cm down to
0.61cm, a 63% improvement. Although this gives a very pos-
itive picture of the global prediction’s accuracy, looking at
trajectories in details gives another picture (i.e. Figure 2(C)):
the prediction introduces undershoots in accelerating phases

of a motion, and overshoot in decelerations. This is partic-
ularly visible at 75ms of system latency, and in the final ad-
justments of a target acquisition. In this particular case, the
challenge of predicting rapidly evolving corrections from late
data appears distinctly, with the prediction introducing more
perturbation than the lagging trajectory.

A user study was thus required to get an objective picture of
the benefits of the predictive approach on users’ performance.

USER EXPERIMENTS

The main objective of this user experiment was to evaluate if
the predictive approach could effectively counteract the neg-
ative effect of latency on target acquisition tasks in term of
users’ performance, but also in terms of users’ preferences.
Doing so, we wanted to find which levels of latencies were
tractable with the predictive approach. A secondary objective
was to reproduce Jota et al.’s results [7] assessing the detri-
mental effect of latency on users’ performance in direct-touch
target acquisitions, and extending it to higher Fitts’ ID.

The participants were 24 volunteers from our academic envi-
ronment (average age=27.4, range 22 to 39, 8 women). Af-
ter a short training session (10-15min), the participants per-
formed the first experiment involving target acquisitions with
varying Fitts’ IDs for about 25min. They were then invited
to perform the second experiment in order to express their
preferences when dragging a virtual object with or without
prediction.

EXPERIMENT 1: EFFECT OF LATENCY AND PREDICTION
ON TARGET ACQUISITION PERFORMANCES

Task

Participants’ task was to land their finger on a red disc ob-
Jject (1.38cm radius) and drag it on top of a white disc far-
get. The acquisition of the target was successful only when
the object was totally inside the target. Therefore, in the re-
mainder of the paper, we refer to the width of the targets in
terms of Fitts Index of Difficulty (ID): the target width is the



difference in diameter between the object and target discs.
The graphical display is illustrated on Figure 1. Participants
validated the acquisition by releasing their control on the ob-
ject, i.e. by lifting their finger from the surface. On finger
release, the target turned green or red depending on the suc-
cess or failure of the acquisition. After a random delay in the
range [0.2s-1.2s] to prevent participants’ anticipation, the tar-
get of the next trial appeared. Between two successive trials,
the object remained at the location where the user released it.
We asked participants to be as fast as possible while trying
to limit their error rate at “around one mistake between each
pause”, which corresponds to 5%. All targets were located
on a horizontal line vertically aligned with the middle of the
screen to avoid the occlusion of targets by the hand. Every
20 trials, the message “you can take a break” was displayed.
When they were ready, participant resumed the experiment
by grabbing the object again. We recorded the trajectory of
the object.

Design, measurement and analyses
Our design involved three main factors:

o PREDICTION. Two levels: false (no prediction) or true
(with prediction). When true, the prediction attempted to
entirely counteract the latency of the system: we did not
study partial compensations in order to limit the number of
experimental conditions;

o LATENCY. Four levels: 25ms, 42ms, 58ms and 75ms. The
smallest latency was defined by the best performance of
our system. For the upper bound, 75ms was a typical value
of the duration of the shortest corrective motions at the end
of target acquisitions.

o ID. Four levels: Fitts IDs are provided in bits and distances
incm.: 2.32 (d=11, w=2.77), 3.64 (d=22.14, w=1.94), 5.04
(d=22.14, w=0.69), 6.34 (d=33.2, w=0.42). These cover
big and small targets at large and short distances.

Overall, the experiment included 32 conditions (2 PREDIC-
TION x 4 LATENCY x 4 ID) and 20 repetitions for each con-
dition, which amounted to 15360 trials (24 participants x 32
conditions x 20 trials). The order of presentation of PRE-
DICTION and LATENCY was balanced across participants
as a means to equilibrate a potential order effect. Within each
block of PREDICTION x LATENCY, the presentation of the
80 targets (4 IDs x 20 repetitions) was randomized, but the
same order was used in all blocks and all participants. Pre-
sentation of conditions was ordered by PREDICTION first,
then LATENCY.

In our approach, touch detection was achieved by threshold-
ing the altitude of the finger above the surface, with a hystere-
sis to avoid instabilities. However, the finger 3D pose varies
depending on the touch location: the further away the user
is touching, the more horizontal the finger. This introduced
variability in the altitude of the marker, and required that the
threshold be defined for the pose that yielded the highest alti-
tude. The consequence was that our touch detection was not
as sensitive as on a typical capacitive or FTIR touch surfaces.
As aresult, the virtual object often remained under control of

the finger for a very short moment after the finger was lifted
from the surface, and this frequently generated unintended
object’s motions. Parasitic motion on release exists with any
kind of touch technology; however, our experimental optical
tracking approach clearly inflated the problem and increased
the acquisitions’ failure rate. As this may have biased our
participants to slow down, we verified that this was not the
case by looking at the evolution of the velocity profiles dur-
ing the experiment. They showed no sign of a slow down, but
rather a tendency of increasing speeds that we attributed to
the participants’ training to the task.

We then removed, for each subject and condition, trials with
duration at more than 1.5 interquartile above the upper quar-
tile or below the lower quartile. These outliers amounted to
3.125% of all trials.

Based on these pre-processing, we then computed, for each
subjects and experimental condition:

e mean_time as the mean target-acquisition time defined as
the time span between the touch and release of the finger;

e err_rate as the ratio of failed trials over the number of ana-
lyzed trials. The acquisition was considered as failed when
the object was not entirely within the target on release;

o the throughput 7P as defined in Soukoreff and MacKen-
zie [17], expressed in bits per second.

The effects of PREDICTION, LATENCY and ID and their
interaction were evaluated with within-subjects ANOVAs.
Paired Student’s t-tests were computed to test for the effects
of planned comparisons related to our hypotheses: (1) a nega-
tive effect of latency on users’ performance and (2) a positive
effect of prediction for lower latencies.

Results

Effect of latency on users’ performances

In order to compare our study with previous work [12] and
to test the effect of latency on a larger range of ID than in
Jota at al. [7], we analyzed the effect of LATENCY and ID
on mean_time, err_rate and T P. This analysis concerns only
the subset of data in the PREDICTION=false condition. As
previous work didn’t include a condition with prediction in
their design, we first added the presentation order of PRE-
DICTION levels (true first vs. true second) as a between sub-
ject factor to the ANOVAs. The effect of order on mean _time,
err_rate and TP was not significant and didn’t significantly
interact with the effect of LATENCY and ID. We thus merged
the two groups for further analyses. We refer to this subset of
the experimental data as the “no prediction” dataset. The ef-
fects of ID was always highly significant, the following anal-
yses focus on the effect of latency and its interaction with
IDs.

mean_time significantly increases with LATENCY (F3¢9 =
13.6, p < .0001, Figure 4) between 25ms and 42ms (+61ms,
1(23) = 2.9, p = .017) and between 58ms and 75ms (+80ms,
1(23) = 3.1, p = 0.005), the change between 42ms and 58ms
was not significant (+4ms, #(23) = 1.3,p > .2). The effect
of LATENCY on mean_time was also larger for higher IDs
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Figure 4. Effect of system latencies on the mean target-acquisition time
when no prediction is used. The condition with prediction at 25ms of
latency is added on the figure for comparison. The points are the mean
values across 24 participants and error bars give the 95% confidence
intervals of the means. The lines are linear fits of the data in each condi-
tion.

than smaller ones (Fgz07 = 4.7, p < .0001): the slopes of a
linear regression of mean_time according to ID increased with
LATENCY (F369 = 7.3, p < .001) between 25ms and 42ms
(+0.016, #(23) = 2.4, p = .023) and between 58ms and 75ms
(+0.015, #(23) = 2.6, p = 0.015), the slope change between
42ms and 58ms was not significant (#(23) = 0.1,p > .9).
TP decreased with increasing LATENCY (F369 = 21.0,p <
.0001), changes were significant between 25ms and 42ms (-
0.22bit/sec, #(23) = 2.1, p < .05), between 42ms and 58ms
(-0.34bit/sec, 1(23) = 3.0, p < .006) and between 58ms and
75ms (-0.28bit/sec, 1(23) = 3.2, p < .005). There was no
global effect of LATENCY on err_rate (F3g9 = 0.99,p >
4), and no interaction between LATENCY and ID (Fg 07 =
1.7,p > .1).

Effect of the prediction on users’ performance

The effect of the prediction on users’ performances was ana-
lyzed using the full dataset. The individual effects of ID and
LATENCY were comparable to the ones observed in the “no
prediction” dataset. We thus only focus on the effects related
to PREDICTION.

The global effect of PREDICTION on mean_time was not sig-
nificant (F 23 = 0.4, p > .5), due to different effects of PRE-
DICTION according to LATENCY and ID (Fg 97 = 4.0, p <
0.0001, Figure 5). PREDICTION appears to have a negative
effect at 75ms, a neutral effect at 58ms and a positive effect at
25ms and 42ms. Independent within subjects ANOVAs with
PREDICTION and ID as factors were ran for each of the LA-
TENCY conditions to better understand these interactions. At
25ms of latency, the average mean _time across IDs and partic-
ipants was significantly reduced by 6.2% with the use of the
prediction (-57ms, Fi23 = 6.4,p = .02). A non-significant
tendency was observed at 42ms (F 23 = 3.9, p = .06) but no
effect of PREDICTION was found at 58ms and 75ms (F 23 <
1.1, p > .3 in both cases). The effect of PREDICTION didn’t
clearly depend on ID at 25ms (F369 = 1.8, p = .16), while it
tended to increase with higher IDs for the three higher levels
of LATENCY (F369 > 3.2, p < 0.03).

err_rate was significantly affected by PREDICTION (F 3 =
41.6, p < .0001, Figure 6). However, PREDICTION had dif-
ferent effects on err_rate according to ID (F369 = 29.9,p <
.0001) and LATENCY (F369 = 12.7, p < .0001). Indepen-
dent ANOVAs for each levels of LATENCY showed that,
at 25ms, err_rate was globally not significantly affected by
PREDICTION (Fi,3 > 3.3, p > .0.08). PREDICTIONS ef-
fects on err_rate were significant for 42ms, 58ms and 75ms
(F1’23 > 18.5,p < 001)

The effect of LATENCY on TP was significantly different
according to PREDICTION (F(3,69) = 9.3, p < .001). The
prediction increased throughput at 25ms (+0.15) but not sig-
nificantly (#(23) = 1.4,p > .17), at 42ms, the throughput
remains stable. The prediction decreased throughput at 58ms
and 75ms (#(23) > 2.5, p < .03).
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EXPERIMENT 2: EFFECT OF LATENCY AND PREDICTION
ON USER’S PREFERENCES

Task and design

Performance is not the only criteria to design a good user-
interaction: users’ comfort is another important aspect. We
evaluated users’ preference for the interaction with or with-
out prediction. We asked participants to interact with a drag-
gable virtual disc in two conditions A and B. Both conditions
had the same amount of latency, one was using the predic-
tion and the other was not. As in experiment 1, the prediction
was set to entirely compensate the systems’ latency. Partici-
pants were not told which of A or B was using the prediction
and the assignment of prediction to A or B was randomized
across trials. Participants could switch between A and B by
pressing the space key on a keyboard as many times as they
wanted. They ended each trial at their convenience, by ex-
pressing which of A or B they found “the most comfortable”.
They were asked to always provide an answer, even when the
difference between the 2 conditions was difficult to perceive
(mostly at low latencies).

As the preference may depend on the type of task performed,
we split the sessions in two parts. In the four first trials, the 4
latencies were tested with no specific task: participants could
explore freely the dragging interaction with the disc. In the
next 16 trials, participants were asked to do target acquisition
tasks for the 4 IDs and 4 latencies. The order of presentation
of the latencies was balanced across participants. For a given
latency, IDs were presented in the following order: 2.32, 5.04,
3.64, and 6.34.

Results

Figure 7 illustrates the results of the preference experiment.
We tested each preference score with a chi-square to check
if the null hypothesis of a random choice could be re-
jected. When asked to perform target acquisitions, partic-
ipants preferred the “no prediction” condition in the three
highest latencies (y>(1,96) > 13, p < 0.001), but the random
choice hypothesis could not be rejected at 25ms (y»(1,96) =
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Figure 7. Proportion of participant preferring the “with prediction”
condition during the subjective experiment.

0.67,p > 0.41). When freely interacting, 17 out of 24 par-
ticipants (70.8%) preferred the condition with prediction at
25ms latency (y2(1,24) = 4.17, p < 0.05), while a random
choice could not be rejected for the three highest latencies
(x2(1,24) < 1.50, p > 0.22).

DISCUSSION

Effect of latency on users’ performances

The analysis of the “no prediction” dataset replicates and
confirms previous work, which showed the strong detrimen-
tal effect of latency on users’ performance in target acquisi-
tion tasks [7, 12]. Latency acts as a multiplicative factor of
the index of difficulty: as latency increases, the throughput
decreases and the slopes of the performance curves in Fig-
ure 4 increase. Performance continued to improve as latency
was reduced to our lowest achievable value of 25ms. This
is coherent with the results from Jota et al. [7], which we
extended to the acquisition of targets IDs greater than 2.6bit
up to 6.3bit. The first outcome of this replication of previ-
ous work was to validate our system and our experimental
design. It also provided an indication of the expected users’
performance depending on latency, which we discuss later in
the paper.

Counteracting latency with a continuous prediction
Using prediction with latencies above 42ms did not yield bet-
ter users’ performances overall. Performances with predic-
tion were the lowest for the two targets with the highest IDs.
The small sizes of these targets (0.7cm and 0.4cm) required
precise control and thus several adjustments in the final phase
of the acquisition. Our results corroborate previous studies
that indicate that latency has its strongest negative influence
on the final adjustment phase of target acquisitions [7]. In
addition, the study reveals that the continuous prediction ap-
proach has a rather low upper bound on the amount of latency
that it can compensate, at least when used to perform tasks
that require precise positioning. 42ms may appear as a small
prediction length compared to typical prediction lengths used
in endpoint prediction, which often exceed 100ms. However,
endpoint prediction is essentially based on the initial motion
of a target acquisition, which is much more regular (and thus
predictable) than the final adjustment motions. In addition,
endpoint prediction is generally used for target identification,
which has a lower accuracy requirement compared to latency
compensation.



By including target acquisitions of high IDs in our experi-
ments, we probably have selected tasks that are amongst the
most sensitive to prediction errors. Other direct-touch tasks,
such as scrolling in lists or navigating in maps typically don’t
require sub-centimeter precision. As a consequence, our re-
sults should be considered as a worst-case scenario of the use
of a continuous prediction in direct-touch interaction. In ad-
dition, the subpar touch-release detection of our experimental
device should also be taken into consideration when consid-
ering the measured error rates: larger than average final par-
asitic motions probably increased the number of errors. Bet-
ter touch release detection on common capacitive or FTIR
surfaces would provide lower error rates in all the conditions
represented on Figure 6. However, as the prediction amplifies
the parasitic motions on release, the error rates with predic-
tion should see greater improvements, hence the gap in error
rates with and without prediction is expected to decrease.

Even with high precision target acquisitions, the prediction
did improve users’ performance when the latency of the sys-
tem was at 25ms. To get a sense of the scale of the improve-
ment we used the “no-prediction” dataset: in Figure 4, the
improvement from 41ms to 25ms is similar to the improve-
ment provided by the use of prediction at 25ms. As in Jota
et al. [7], we computed a linear regression of the average task
accomplishment time across IDs and participants, depending
on latency. We found a good fit (R* = 0.984), and used it as an
indicator of the performance that could be expected depend-
ing on the latency of the system. We identified the latency of a
hypothetical device that would yield an average task accom-
plishment time of 0.795s, which corresponds to the perfor-
mances of participants using prediction at 25ms. The linear
regression indicates that the prediction allowed users to per-
form as well as with a 9ms of latency system, a 64% improve-
ment over 25ms. In summary, assuming that the baseline la-
tency of the system is low enough, the experiment demon-
strated that the continuous prediction approach can bring the
apparent system latency much closer to the ideal no latency,
and this allows users to improve their performances.

Users’ preferences

The results of the users’ preferences experiment bring another
light on a similar picture: participants favored the prediction
only for the lowest levels of latencies, and only when we did
not ask them to perform a task that required notable accuracy.
When free to interact as they wanted, participants tended to
make slow and smooth movements. This favored the predic-
tion since there was no sudden speed variation and the ampli-
tude of the prediction error remained small. In this context,
the preference of participants was largely in favor of the pre-
diction at 25ms of latency as illustrated in Figure 7 (right).

When asked to perform target acquisitions, participant pre-
ferred the “no-prediction” condition overall, as illustrated in
Figure 7 (left). To justify their choice, participants com-
mented that they felt “instability” and “absence of control”
of the dragged object. In addition, the parasitic motion gener-
ated by our system may have played as a negative bias against
the preference for the prediction. At 25ms of latency, some
participants expressed difficulties in perceiving a difference

between the two conditions. This is coherent with the non-
rejection of the null hypothesis in this condition: a random
choice is expected from undistinguishable conditions. Con-
sidered in regard to the performance increase shown in the
first experiment, this result indicates that even though users
may not perceive the difference, reducing the virtual object’s
lag allows them to be more efficient in precision tasks.

Applicability to current hardware

Current commercial and experimental devices usually have
baseline latencies well above 25ms. However, reaching 25ms
of latency does not seem out of reach or to require significant
hardware improvements. 120Hz displays are widely avail-
able thanks to the push for stereo 3D. The iPad Air 2 already
senses touch at 120Hz, and recent research work demon-
strated touch sensors running at 4000Hz and with 0.04ms of
latency [11]. USB3 cameras offer high spatial and tempo-
ral sensing for the implementation of large FTIR interactive
surfaces (e.g. 2048x1088pixels at 170fps). A 120Hz display
has Oms of latency just after refresh, 8.33ms just before the
next refresh, hence it introduces 4.17ms of average latency
to the system. This leaves more than 20ms of additional av-
erage latency that may come for the other sources such as
the sensing, the graphical rendering, and the synchronization
overheads. The time needed to render the graphical feedback
can vary greatly depending on the complexity of the scene,
but for simple 2D user interfaces, this is typically done in a
few milliseconds by current graphic cards'. With a 60Hz dis-
play refresh rate, 17ms of average latency are still available
once the 8.33ms of average display latency are removed.

Our study should thus provide a strong incentive for touch
system and application designers to maintain the non-display
sources of latency in the range of 20ms. When this is the
case, the continuous prediction offers a low effort instrument
to provide users with a close to ideal system. Contrariwise,
reaching 9ms of system latency using a pure hardware ap-
proach appears to be more difficult and energy inefficient.

However, the relevance of the predictive approach could be
more general than the single case of 25ms latency systems.
This points to further studies, as detailed below.

Future work

Deber et al. recently demonstrated that small improvements
of latency, such as 16ms, were easily perceived by users in a
direct touch dragging task on systems with various baseline
latencies ([8.3ms-167ms]) [5]. Combined with our study, this
creates strong expectations for a follow up study on the use of
a continuous prediction for a partial compensation of latency
on high latency systems.

In addition, ways to improve the continuous prediction and
allow longer prediction lengths should be investigated. We
observed that adding touch samples to average sensor noise
had the negative effect of adding inertia to the prediction.
Increasing the sample rate, however, allows increasing the
number of samples without looking further in the past. Us-
ing high touch sampling rate, such as 4kHz demonstrated by

The very simple scene of our system was rendered in less than 2m:s,
which we attributed mostly to OpenGL synchronisation overheads.



Leigh et al. [11], should be a promising approach to allow
the use of higher degrees of freedom prediction models that
remain reactive. A more ambitious path of improvement will
be to study if some regularity can be found in the final adjust-
ment motions of target acquisition. If it is the case, this could
used to inform a specific prediction model.

CONCLUSION

In this paper, we have provided the first objective evaluation
of the benefits of a continuous prediction to reduce latency
and improve users’ performances in direct touch systems.
We showed that the length of the prediction is strongly con-
strained by the fast adjustments that make the end of target
acquisition gestures. However, the experiment revealed that
the continuous prediction approach could compensate a large
part of latency’s negative effect on target acquisition perfor-
mances when running on a 25ms latency system. These re-
sults contribute to the quest of zero-latency direct touch.
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