
	

Toward testing multiple
User Interface versions

Nelson Mariano Leite Neto, Julien Lenormand, Lydie du Bousquet,
Sophie Dupuy-Chessa
Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
CNRS, LIG, F-38000 Grenoble, France
{lydie.du-bousquet, sophie.dupuy}@imag.fr

Abstract:
More and more software systems are susceptible to be used in different
contexts. Specific user interfaces are thus developed to take into ac-
count the execution platform, the environment and the user. The multi-
plication of user interfaces increases the testing task, although the core
application remains the same. In this article, we explore a solution to
automate testing in presence of multiple user interfaces designed for the
same application (e.g. web-based, mobile, …). It consists of expressing
abstract test scenarios in a high-level language, and then to apply con-
cretization rules specific to each UI version to generate executable tests.

1. Introduction
With the rise of mobile devices such as notebooks, smartphones and
tablets, software systems are susceptible to be used everywhere and
in different contexts. A context of use involves three factors: the plat-
form (i.e. the type of device), the environment (e.g. the level of bright-
ness) and the user (e.g. with different levels of expertise) [1]. These
factors affect the interaction between the user and the system. That is
why different User Interfaces (UI) can be proposed in order to fit the
user’s needs. Systems with adaptable UIs are built to dynamically pro-
pose the relevant UI with respect to their interpretation of the contex-
tual situation. In these conditions, developing a set of relevant UIs can
become as complex as developing the core of the system [2].

This article is concerned with the problem of asserting quality while
developing different UIs in parallel for the same system (e.g., in order
to propose adaptable UIs). Quality is achieved during the development
and often evaluated by testing [2, 3, 4]. Testing becomes more and
more expensive and automation can be a key to reduce this cost.
Creation and maintenance of test scripts have to be taken into account
to make test automation cost-effective [4].

To be cost effective, our proposition is to factorize the testing process
as much as possible. Our starting point is a set of different UIs for the
same system. We aim at automatically generating executable test
scripts for each UI from a single description. To do that, we express
test scenarios in an abstract way, and concretizing them for each UI
version using specific translation rules. We think that this approach has
several advantages. An abstract test scenario is easier to write and
maintain than different executable test scripts. It is also easier to make
evolve a set of test scripts

This paper is structured as follows. First, the related work is presented.
Then, we introduce an illustrative example, using three web-based UIs
and one mobile UI. Next, we detail the approach. The last section con-
cludes and draws some perspectives.

2. Related Work
Our work concerns the problem of automating validation of multiple UI
for the same application that are developed to fit different contexts of
use. Executable test scripts are specific to each UI since they have to
match the widget and navigation specificities of each version. Our solu-
tion aims at factorizing the effort of testing required for the different
versions. In this section, we explore some approaches that have been
proposed to automate UI testing with factorization point of view.

UI test scripts can be manually written and then automatically executed
in some testing tools such as Abbot tool1 or Selenium WebDriver2. The
oracle is implemented as assertions in the code of the scripts. The
automation relies mainly on the execution part.
Writing scripts is a laborious task. To ease it, “capture and replay” tools
can be used to record user’s interactions with the UI. The recorded
interactions can then be replayed. Many tools propose this feature,
both for web-based or mobile application testing [5]. Oracle can rely on
visual inspection during re-execution of the captured scenarios, image
comparison or manual added assertions [6, 7].
Direct scripting and capture and replay approaches provide no direct
factorization possibilities for test generation. Each interface has to be
analyzed separately.

Model-based approaches have also been proposed to automate test
generation for UIs [8, 9, 10, 11, 12, 13, 14, 15, 16]. They offer more

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 http://abbot.sourceforge.net/	
2	 http://www.seleniumhq.org/	

	

possibilities of factorization, especially when the model is built manually
during the development process. But such a construction is quite diffi-
cult to carry out since it may require a high-level expertise [13]. Moreo-
ver, it is often difficult to maintain the equivalence of a model and the
implementation during the application evolutions.
To deal with this problem, different authors propose to extract auto-
matically the model from the existing interfaces [8, 9, 10, 12]. This type
of approach is less adapted to our needs, since each interface has to
be analyzed separately. However, being able to extract a specific
model from each interface can then allow checking automatically the
equivalence of interfaces [17].
When tests are generated from an abstract model, mapping from the
model to the code has to be expressed in order to produce executable
tests [14]. In [11], authors use a keyword machine to transform abstract
test cases into executable ones.

No related work directly addresses the problem of generating executa-
ble test scripts for each UI version from a single description. However
the idea of transforming abstract test cases into executable ones can
be of interest to factorize. In this article, our high-level scenarios that
are common to all interfaces were produced manually. But a model-
based approach to generate them should be possible if a model is
available. The next section describes small example of application.

3. Illustrative example
The illustrative example used in this work is a prototype for a smart
home energy management system. It allows users to control and moni-
tor the energy consumption in a home from different devices.

We have developed four UIs for this system: a mobile application for
Android (named “mobile”), a web interface for desktop browser (named
“web0”), and two web interfaces for mobile browsers (one with a menu
page named “web1”, the other with a menu bar, named “web2”). The
web-based versions are implemented in HTML5, JavaScript and
JQuery. The mobile version is developed in Java 1.8. All versions have
the same features. The differences between the different web versions
are of two sorts. First widgets are different. Second navigation among
pages is different.

Figure 1: goal and filter features
on the web0 interface

Figure 2: goal and filter features
on the mobile interface

In this paper, we focus on three features.

• Goal: the user can check information about the general energy
consumption per month. He can access the goal and actual con-
sumption in kWh for the chosen month (Fig. 1 and 2).

• Filter: the user has access to a list of all the objects in the house,
having the possibility to filter them per room. An object means
any component that can be controlled and whose energy con-
sumption can be registered, such as lights and electronic de-
vices (Fig. 1 and 2).

• Comparator: the user can choose two objects and compare, side
by side, their energy consumption charts (Fig. 3).

Figure 3: compare feature on the web2 interface

Test scripts for web versions are executed in Selenium [20], a tool
following a capture and playback approach for web-based application.
The Selendroid framework completes the Selenium environment for the
mobile version3.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3	 http://selendroid.io/	

	

4. Approach
4.1 Principles
As said previously, the four UI versions share the same features but
have different widgets and navigation paths. For this reason, to test
them, it is necessary to write four specific executable test script sets.
To avoid this tedious work, we propose the approach illustrated Fig. 4.

Abstract test “scenarios” are expressed in a high-level language. These
scenarios are common to all the UI versions. A scenario is composed
of a sequence of abstract instructions. A set of translation rules is used
to transform the abstract test scenario into executable test scripts. The
rules explicitly associate executable code to abstract descriptions. The
translation rules are specific to each interface and defined manually. A
translation rule simply rewrite an abstract instruction into an executable
one, taking into account the implementation specificities. Translation
rules can be the same for different UIs if they share the same widgets.
A tool is used to translate the abstract scenario into executable test
scripts.

Figure 4: our approach to test script generation

4.2 Principles put into Practice
To express the high level scenarios, we use an existing language
called TSLT (Test Schema Language for Tobias [18]). It is a textual
language that contains several types of constructs allowing the defini-
tion of complex system scenarios. It is used as input of a testing tool
called Tobias [18], which is responsible of the translation into the ex-
ecutable scripts.

Tobias is a test generator based on combinatorial testing. Combinato-
rial testing performs combinations of selected input parameter values
for given operations and given states. Tobias adapts this principle to
the generation of operation call sequences. It allows exploring system-

atically a large set of behavior sequences from a single abstract de-
scription, called scenario. An on-line version of Tobias is available at
http://tobias.liglab.fr/

In our use of Tobias for UI testing, we start by expressing the abstract
scenarios. Then we identify the executable code corresponding to each
abstract instruction. This correspondance is expressed by a translation
rule in TSLT. For the moment, this is carried out manually.

For instance, Listing 1 shows an abstract scenario in TSLT, designed
to check that the displayed values are the expected ones for each goal.
It consists of a sequence of three abstract instructions that allows to (1)
navigate to the appropriate view (@goToGoal), (2) choose a month
(@selectMonth) and (3) check that the displayed value is the expected
one (@verifyValues).
Instruction “Integer month = [1-3]” indicates to Tobias to repeat the
sequence for the first three months (combinatorial approach). Listings 2
to 5 show the four specific translations rules for “@goToGoal” abstract
instruction.

group testMonthValue[us=true] {
 Integer month = [1-3];
 @goToGoal;
 @selectMonth;
 @verifyValues;
}

Listing 1: Abstract scenario of the Goal test case

group goToGoal[us=false] {
 // does nothing
}

group goToGoal[us=false] {
 driver.get(siteAddress);
}

Listing 2: Translation rule of
@goToGoal for Mobile

Listing 3: Translation rule of
@goToGoal for Web0

group goToGoal[us=false] {
 driver.get(siteAddress);
 WebElement goalButton =
driver.findElement(By.xpath("/html/body/div/section/ul/li[1]/div/a"));
 goalButton.click();
}

Listing 4: Translation rule of @goToGoal for Web1

	

group goToGoal[us=false] {
 WebElement goalButton = driver.findElement(By.id("menu_goal"));
 goalButton.click();
}

Listing 5: Translation rule of @goToGoal for Web2

From these TSLT rules, Tobias is able to translate the abstract scenar-
ios into executable scripts. The executable scripts are executed in
JUnit with Selenium or Selendroid frameworks.

For testing the three features of our illustrative example, six scenarios
were designed, using 11 abstract instructions. Scenarios were trans-
lated into 21 executable test scripts in JUnit. The difference between
the number of abstract scenarios and the number of executable tests is
due to the combinatorial nature of Tobias. For example, the test case
shown in Listing 1 is translated into three JUnit tests, each one corre-
sponding to a different value for the month (1, 2, 3). By only changing
“Integer month = [1-3]” into “Integer month = [1-12]” it is possible to
generate the 12 test cases necessary to check all the months. It can
also be changed into “Integer month = [0-13];” and then generate ro-
bustness tests.

As said previously, it is important to have test suites easy to maintain.
The size of the description is one factor that impacts the cost of main-
tenance. Table 1 shows the number of lines written for the abstract
scenarios with the translation rules for each feature. It also displays the
number of line of code for the executable test scripts. Without the ap-
proach, those executable test scripts should have been written by
hand. It can be observed that the number of lines to write has been at
least halved.
This diminution of code between the abstract scenario and the execu-
table test case is also due to the fact that the JUnit syntax is not de-
scribed in the abstract scenarios nor in the translation rules. Tobias tool
automatically generate the JUnit packaging.

Feature
tested

Implementation Mobile Web0 Web1 Web2

Test scripts 161 143 151 147 Goal
Abstract scenario 76 67 69 68
Test scripts 529 350 402 369 Filter
Abstract scenario 117 88 93 92

Compare Test scripts 231 235 235 227

 Abstract scenario 65 60 59 58
Table 1: Number of lines for the abstract scenarios and generated tests

Feature Rule Mobile Web0 Web1 Web2

@goToGoal 0 0 3 2
@selectMonth 5 3 3 3
@verifyValues 4 4 4 4

Goal

@veryfyMonthsCount 6 3 3 3
@goToObjects 2 0 3 2
@selectRoom 3 5 5 5
@verifyObjectsFiltered 25 5 5 5

Filter

@selectRoomUncorrect 3 3 3 3
@goToCompare 2 3 3 2
@selectRoom 3 3 3 3
@verifyWidget 10 10 10 10

Compare

@verifyChart 0 0 0 0
Total 63 39 45 42

Table 2 : Number of lines for each rule for each version of each feature

Translation rules are quite simple. They consist in associating executa-
ble code to abstract instruction. For our example, the executable code
corresponds to 0 up to 25 lines of code, for a total of 189 lines of code
(see Table 2). Variation implementation details are thus expressed in a
very concise way and localized. It becomes easy to make them evolve.

4.3 Discussion and Analysis
Our focus is to show the feasibility to express test scenarios for multi-
ple UI versions of the same application, and to measure the effect of
the factorization. The factorization effect can be evaluated through the
difference of size between abstract and executable tests (Table 1). The
factorization contribution is clearly visible. With Tobias, it is easy to
increase artificially this difference, by playing on the combinatorial fea-
ture of the tool. But we deliberately limit the combinatorial exploration
(e.g. we check only three months, instead of the twelve).

TSLT language does not allow expressing directly loops, return state-
ments, exception handling nor proper functions in the translation rules.
This constraint has for origin to guaranty that the combinatorial engine
of Tobias will always succeed in the process of translating abstract
scenarios into executable tests. Here, those constructions are neces-
sary to express oracle condition and for scrolling handling navigation
on the mobile version. The limitation has been bypassed during the
experiment by separating code of the loops in a different file. To be

	

able to express all the translation rules in TSLT, the language has to be
extended. This does not affect the relevance of the approach.

As it can be seen on Table 2, some translation rules correspond to
zero line of code. The reason is that there is no corresponding instruc-
tion within Selenium/Selendroid (e.g. it is not possible to check that an
image is the one which is expected). This is directly linked to the test-
ing framework expression power. It is independent of the approach.

5. Conclusions and Perspectives
We are concerned by the validation of several UIs provided for the
same application for different contexts. Our motivation is to prepare the
validation of adaptive applications, where tests have to be chosen with
respect to the context. To do that, we would like to be able to automate
test in a cost effective way.

The work described here is a first step toward this goal and should be
considered as a feasibility study. Abstract scenarios and translation
rules were both expressed in an existing language called TSLT, asso-
ciated to a testing tool called Tobias. It is a combinatorial tool which
aims at unfolding scenarios to explore all combinations that are defined
by the scenario. It was not originally designed for UI testing but for
JUnit test script generation. That was the main reason why it was cho-
sen. The fact that the translation of abstract scenario into executable
scripts can be done in a combinatorial way is an advantage since it
helps in the process of factorizing code (and thus being cost effective).

Even if our illustrative example is simple, the different versions were
built to explore a variety of widgets. Different navigation paths were
also considered. This helps us to be confident in the fact that the fac-
torization can be generalized. Moreover, translating abstract scenarios
into executable ones can also be carried out for other testing frame-
work than JUnit, since Tobias is designed to fit other testing frame-
works. However, the example shows that the TSLT language is not
fully appropriate as it is designed now (see. Sect. 4)

The example also shows that the approach can decrease the work of
creating and maintaining testing suites. The size of the abstract scenar-
ios with the translating rules is much smaller than the size of the final
test scripts, which share a lot of identical code. Writing them is not
simpler, but definitively shorter.

Our perspectives are to consolidate the work by exploring larger exam-
ples, other versions of interfaces and testing frameworks. This will help
us to evaluate more precisely the amount of manual effort required with
respect to the automated one and the approach genericity. Once this
step is achieved, we will explore the possibility to associate translation
rules to a context definition, and then to provide a framework that is
able to generate tests during the execution, to fit the current execution
context. The final step will be to generate automatically the abstract
tests from a model, like those proposed in the Cameleon framework
[19] and/or to produce automatically the translation rules such as in
TESTAR [10].

Bibliography
[1] Coutaz, J., and Calvary, G. HCI and software engineering: Design-
ing for user interface plasticity. Human-Computer Interaction: Devel-
opment Process (2009).
[2] Muccini, H., Francesco, A. D., and Esposito, P. Software testing of
mobile applications: Challenges and future research directions. In 7th
Int. Workshop on Automation of Soft. Test (AST), IEEE (2012), 29-35.
[3] Beizer, B. Software testing techniques. Dreamtech Press, (2003)
[4] Grechanik, M., Xie, Q., and Fu, C. Maintaining and evolving GUI-
directed test scripts. In IEEE 31st Int. Conf. on Software Engineering
(ICSE) (2009), 408-418.
[5] Gao, J., Bai X., Tsai W. T., and Uehara T. Mobile application test-
ing: a tutorial. IEEE Computer, 47:2 (2014), 26-35.
[6] Jung, H., Lee, S., and Baik, D.-K. An Image Comparing-based GUI
Software Testing Automation System. In SERP (2012), 318-322.
[7] Xie, Q., and Memon, A. M. Designing and comparing automated
test oracles for GUI-based software applications. ACM Transactions on
Software Engineering and Methodology (TOSEM) 16, 1 (2007).
[8] Aho, P., Suarez, M., Kanstrén, T., and Memon, A. M. Industrial
adoption of automatically extracted GUI models for testing. In EESS-
MOD@ MoDELS (2013), 49–54.
[9] Aho, P., Suarez, M., Kanstren, T., and Memon, A. M. Murphy tools:
Utilizing extracted GUI models for industrial software testing. In IEEE
7th Int. Conf. on Software Testing, Verification and Validation Work-
shops (ICSTW), (2014), 343–348.
[10] Vos, T. E., Kruse, P. M., Condori-Fernández, N., Bauersfeld, S.,
and Wegener, J. TESTAR: Tool support for test automation at the user
interface level. Int. Journal of Information System Modeling and Design
(IJISMD) 6, 3 (2015), 46–83.

	

[11] Nieminen, A, Jääskeläinen, A., Virtanen, H., Katara, M. A Com-
parison of Test Generation Algorithms for Testing Application Interac-
tions, 11th Int. Conf. on Quality Software (QSIC), (2011), 131-140.
[12] Amalfitano, D., Fasolino, A.R., Tramontana, P. A GUI Crawling-
Based Technique for Android Mobile Application Testing. IEEE 4th Int.
Conf. on Software Testing, Verification and Validation Workshops
(ICSTW), (2011), 252-261.
[13] Holzmann, G. J., and Smith, M. H. An automated verification
method for distributed systems software based on model extraction.
IEEE Trans. on Software Engineering (TSE), 28, 4 (2002), 364-377.
[14] Grilo, A., Paiva, A., and Faria, J. Reverse engineering of GUI
models for testing. In 5th Iberian Conf. on Information Systems and
Technologies (CISTI), (2010), 1-6.
[15] Nguyen, B., Robbins, B., Banerjee, I., and Memon, A. Guitar: an
innovative tool for automated testing of GUI-driven software. Auto-
mated Software Engineering (ASE) 21, 1 (2014), 65-105.
[16] Yuan, X., Cohen, M. B., and Memon, A. M. Towards dynamic
adaptive automated test generation for graphical user interfaces. In
IEEE Int. Conf. on Software Testing, Verification and Validation Work-
shops (ICSTW) (2009), 263–266.
[17] Oliveira, R., Dupuy-Chessa, S., and Calvary, G. Equivalence
checking for comparing user interfaces. The 7th ACM SIGCHI Sympo-
sium on Engineering Interactive Computing Systems, ACM, (2015).
[18] Triki, T., Ledru, Y., du Bousquet, L., Dadeau, F., and Botella, J.
Model-based filtering of combinatorial test suites. In Fundamental Ap-
proaches to Software Engineering (FASE). Springer, (2012), 439-454.
[19] Calvary, G., Coutaz J., Thevenin, D., Limbourg, Q., Bouillon, L.,
Vanderdonckt, J. A Unifying Reference Framework for Multi-Target
User Interfaces, Interacting With Computers, Vol. 15/3, (2003), 289-
308

