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Abstract—There is an increasing need to quickly understand
the contents log data. A wide range of patterns can be computed
and provide valuable information: for example existence of
repeated sequences of events or periodic behaviors. However
pattern mining techniques often produce many patterns that have
to be examined one by one, which is time consuming for experts.
On the other hand, visualization techniques are easier to under-
stand, but cannot provide the in-depth understanding provided
by pattern mining approaches. Our contribution is to propose a
novel visual analytics method that allows to immediately visualize
hidden structures such as repeated sets/sequences and periodicity,
allowing to quickly gain a deep understanding of the log.

I. INTRODUCTION

A large part of the huge volume of data available nowadays

are logs of some real world or computer processes. A log

is a sequence of timestamped events, where events are of

arbitrary complexity but often share a similar structure, usually

tuples of values or symbols. Such logs can hold valuable

knowledge: for example analyzing a network log can show

that an undesired intrusion took place and help to understand

the intrusion method.

Possible analysis of computer logs can discover a repeated

structure (main “regime”, disruptions of this main regime, or

changes between stable regimes. Understanding what consti-

tutes a regime is not trivial: it consists of some patterns of

repetition in the events, and these patterns can, depending on

the data and the use case, be of arbitrary complexity. They

can be as simple as a mere repetition of a fixed set of events,

or as complex as the respect of a complex sequencing of the

events combined with periodicity constraints in the repetition.

It would be of tremendous help to people analyzing logs to

have a way to view “at a glance” how such structures exist

over the trace, with the most prominent of those structures at

each period of the trace as well their evolution over the trace.

Existing methods for analyzing traces fall short to these

expectations. Many methods are based on data visualization.

They exploit various aggregation techniques to show the raw

data of the trace in an understandable way while trying to

minimize visual clutter. These methods do not explicitly show

the structures described above. Depending on the level of

abstraction chosen, some of these structure can be identified

by the user’s eye. On the other end of the spectrum are data

mining methods, more precisely pattern mining methods [1],

[2]. These methods are designed to find repeated structures

such as frequent itemsets, frequent sequences of various kinds,

or periodic patterns. However, their output is served as a

(long) list, where results have to be examined one by one.

Most visualization techniques for pattern mining results focus

on the problem offering a navigational interface over the set

of results, and we are not aware of any approach showing

different patterns in context withing the data, allowing an “at

a glance” understanding of complex structure evolution in the

data.

The contribution of this paper is to propose a novel vi-
sual analytics technique to understand at a glance the main

structures existing in the data, as well as their evolution over

time. This technique is designed for traces, and combines

a data visualization approach with techniques inspired from

pattern mining, but simplified for the purpose of making an

understandable visualization.

Our experiment demonstrates the interest of our approach

on a real use case: the execution trace of an embedded system

and shows how.

The paper is organized as follows: Section II starts by

exposing related work for visualizing the complex structures

discovered by pattern mining methods. Then, Section III

provides the main definitions necessary for the paper, and

Section IV describes our algorithm to compute the strutures.

Section V explains our structure visualization technique. The

interest of our approach is demonstrated experimentally in

Section VI, and Section VII concludes the paper and gives

some perspectives.

II. RELATED WORK

Many research have been done to propose visualization

techniques for traces. Most of them focus on providing an

overview of the whole trace using various aggregation tech-

niques to mitigate the aliasing when rendering a large volume

of data. Smart Traces uses multiple views that show different

aggregation level [3]. Viva aggregates separately the event

producers and the time axis and uses a treemap to visualize the

results [4]. Refer to the survey on performance visualization

tools for a complete review [5]. However, to our knowledge,

there exists no techniques to visualize the structures in a trace

to help the understanding of the main regime of the system

and the potential perturbations.

There has been a long interest to provide visualization

techniques helping to sift through the output of pattern mining

algorithms. These are the closer work to our approach, we give

below an overview of the existing work in this field.
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The initial approach was based on using parallel coor-

dinates [6], [7] to visualize association rules and frequent

itemsets. An itemset with k items (a k-itemset) is represented

with curves linking k vertical axis. The thickness of the links

encodes the support of the itemset. The items are placed

on vertical axis and ordered by groups. Items belonging to

the same group are ordered according their frequency in the

dataset. The number of vertical axis depends on the longest

itemset to represent. The different items are linked together

by lines that connect the vertical axis, thus, a line visually

presents an itemset. The pre-ordering done on the axis aims

to improve the readability of the representation by minimizing

intersections between the lines. The main limitation using

parallel coordinates is the lack of scalability. When many

patterns need to be visualized, the visualization becomes too

clutter with a large number of crossing lines making difficult

the reading of a pattern.

CloseViz [8] adopts a different strategy. It visualizes only

closed patterns with a single line and represents the items

using a circle. It has the advantage of reducing significantly

the amount of patterns to visualize. It is based on previous

works FIsViz [9], WiFIsViz [10] and FpViz [11].

FIsViz [9] encodes the itemsets with polylines in a 2D

rendering. The horizontal axis has k nodes for a k-itemset. The

support of the items are encoded on the vertical axis. Similarly

than with parallel coordinates, this technique quickly becomes

tedious to read with many line crossing. WiFIsViz [10] and

FpViz [11] aims to solve this issue by grouping the patterns us-

ing common prefixes and horizontal lines instead of polylines.

While the visualization benefits from these improvements,

discovering relationships between the patterns and insightful

information about the dataset remains a difficult task.

Other visualization techniques use a radial layout. FP-

Viz [12] is a visualization tool for frequent itemsets. The items

are placed on concentric circles and are represented by circular

segments whose length encode its frequency. Therefore a k-

itemset is rendered with k circular segments. The support of an

itemset is encoded using a color-scale from green to red. When

working with a large amount of itemsets, the information

becomes tedious to read due to a high clutterness.

Bothorel et al. [13] proposed an other technique based on

a circular layout, placing the itemset on concentric circles

instead of items. The itemsets having the same cardinality

are located on the same circle. The 1-itemset are disposed

on the external circle and the k-itemsets on the kth circle.

Then, the frequent itemsets of each two neighbor circles are

linked together. To improve the readability, an edge bundling

algorithm is applied to simplify the graph between all the

consecutive circles.

PowerSet viewer [14] is an other frequent itemset visu-

alization tool. The screen space is divided into horizontal

bands, one band contains the itemsets of a given cardinality,

the 1-itemset being on the top. An itemset is represented by

a rectangle and its frequency is encoded in the color. This

technique allows to have an overview of the frequent itemsets

in the data but lack representation of the support, and is limited

to a single type of pattern.

Note that there is a promising line of research in that field

is to provide interactive interfaces for navigating the space of

patterns, such as MIME from Goethals et al. [15]. Such work

are not directly related to ours as they are designed around

interactions with the user to explore a potentially huge space

of patterns, while we focus on a smaller space of patterns but

aim at an immediate understanding of the visualization.

All the previous work make the understanding of the

individual items of the itemset a priority. They also rely

on the complete set of frequent itemsets. Our approach is

different: we consider patterns that are short (only 2 or 3

items, fixed length) but we put the focus on the different

structures organizing these items: set, sequence, periodicity.

Our visualization is built around this idea: the structures are

the main information shown by the visualization, avoiding

combinatorial explosion while showing valuable and usually

unseen information.

III. DEFINITIONS AND NOTATIONS

When analyzing logs or more generally time-oriented data,

the goal is to understand the global and local trends inside

the data and to find the outliers. A large panel of knowl-

edge discovery and data mining (KDD) techniques focus on

searching frequent patterns for meaningful information with

no previous knowledge on the data. They return the results

under the form of frequent patterns. Such patterns can be

itemsets [16], periodic itemsets [1] or sequential patterns [17].

Depending on the nature of the pattern, the amount of in-

formation conveyed vary. For instance, knowing the frequency

of an itemset gives less information about the dataset than

knowing the frequency of a sequence which itself convey less

information than the frequency of a periodic sequence and so

on. The more complex is the nature of a pattern, the more

information is given to the analyst. Moreover, revealing how

an itemset specializes into a sequence with the same items can

also indicate relevant information or help filtering-out some

parts of the dataset. In this section, we give basic definition

in the context of mining logs and introduce the notion of

structure.

A. Basic Definitions

Logs store a sequence of events. Each event has different

properties depending on the nature of the logged system or

application but common characteristics remain stable. All the

events have a timestamp that corresponds to the moment when

it has occurred. We note ts(e) the timestamp of the event e.

Each event has also a type, noted as et(e). We note the

set of event types as T = {et0, et1, . . . , etn} and |T | is the

total number of event types in the data. For instance, in the

case of web server logs, the event type can be the HTTP

request whether it is a GET, POST, etc. When working with

execution traces, the event type is the operation executed such

as a context switch, an entry or exit of an interrupt or a system

call.
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We also consider that events are generated by “event pro-

ducers” that we call actors. An actor is an entity that produces

at least one event of the dataset. We noteA = {a0, a1, . . . , an}
the set of actors producing at least one event in the dataset.

When working with network logs, an actor can be an IP

address. In the context of debugging embedded systems using

execution traces, an actor is an interrupt, a process, a kernel

module, etc. We note actor(e) the actor of the event e.

Our dataset D is a set of events contained in the log chrono-

logically ordered {e0, e1, . . . , en}. Given an event e ∈ D,

its identifier id(e) is its position in the dataset. We have

∀ ei, ej ∈ D, ts(ei) < ts(ej) if and only if id(ei) < id(ej).
The set of items I = T ×A = {i0, i1, . . . , in} is the set of

all the event types in the data tagged by an actor. This ensures

a finer-grained detailed patterns: it enables to differentiate an

event type et produced by the actor ai from an event type

et produced by the actor aj (i.e a system call performed

by two different processes will be differentiated in the set

of items). An item x occurs in the dataset D if and only if

∃ e ⊆ D, actor(e) ⊆ A, et(e) ⊆ T , et(e)× actor(e) = x.

An itemset, noted X = {x0, x1, . . . , xn} where xi is an

item i.e. xi ∈ I is an unordered set of items. A sequence,

noted S = 〈x0, x1, . . . , xn〉, where xi is an item i.e. xi ∈ I,

is an ordered set of items. A sequence S is a specialization of

the itemset X if and only if ∀xi ∈ S, xi ∈ X .

A sequence S ⊆ X occurs in the dataset D if and only

if ∀ xi, xj ∈ S, j − i = 1, ∃ em, en ∈ D, ts(em) <
ts(en), id(en) − id(em) = 1, et(em) × actor(em) =
xi, et(en) × actor(en) = xj . An itemset X occurs in the

dataset D if and only if there is at least one sequence S that

occurs in D so that S is a specialization of X .

B. Structure

The most basic information computable for an itemset X is

its frequency i.e. its number of occurrences in D. The support

of an itemset X , noted supp(X), is the total number of occur-

rences of its specialized sequences: supp(X) =
∑

i supp(Si),
with Si ⊆ X and supp(Si) the number of occurrences of the

sequence Si in D.

A more sophisticated information about an itemset is the

repartition of its specialized sequences. An itemset having k
items, a k-itemset, contains k × k sequences of k items.

As an example, the sequences 〈A,A〉, 〈A,B〉, 〈B,A〉 and

〈B,B〉 are all specializations of the 2-itemset {A,B}.
We define as dominant the sequence S that has the highest

support supp(S) among the specialized sequences of the

itemset X . We note the dominant sequence of an itemset X as

SX . This information is important to understand time-oriented

data: when considering a couple of events ei and ej , it is

insightful to know whether ei occurs before ej in most cases

or not. If not, none of these sequences brings more information

about the data than the itemset {ei, ej}.
Knowing whether a sequence is periodic or not also brings

meaningful insights about the log. Given a sequence S and a

period p, we define (S, p) the set of consecutive occurrences of

S separated by p items in the dataset. A sequence is periodic

if |(S, p)| is superior to a minimum threshold ρ. The coverage

of a periodic sequence is defined as
supp(S)
|(S,p)| .

This provides information about whether S is very periodic

or occurs mostly at irregular time intervals. Thus, for a given

itemset X , we can compute the periodicity of each of its

specialized sequences and determine what is the maximal

periodicity among all the sequences of an itemsets, noted as

pX .

With the combination of the support of an itemset, the

repartition of its sequences with their periodicity, it becomes

possible to find the sub-parts of the dataset that are mostly pe-

riodic as well as whether the dataset contains mainly itemsets

(no dominant sequences) or sequences.

We formalize this intuition with the concept of structure for

an itemset. We define a structure as follows:

Definition 1. A structure is a quadruple
(X, supp(X), SX , supp(SX), pX) with X ∈ X , SX the
dominant sequence of the itemset, supp(SX) the support of
SX and pX the maximal periodicity among the specialized
sequence of the itemset.

Note that in this paper we focus on the properties of itemset,

sequence and periodicity, but other properties could easily be

integrated in our tuple notation.

Let consider the following example:

〈A,B〉 〈A,B〉

{A,B}

〈B,A〉 〈B,A〉

25%

20%

80%

75%

In this example, the itemset X = {A,B} containing the

items A and B is present in the dataset D respectively 20%
and 80% of the time under the sequences 〈A,B〉 and 〈B,A〉.
The dominant sequence is SX = 〈B,A〉 and its support is

supp(SX) = 0.8. The period p of each sequence as well

as a coverage of the sequences respecting this period has

been computed. There is respectively 25% and 75% of the

sequences 〈A,B〉 and 〈B,A〉 that are covered by the periods.

The maximal periodicity of X is pX = 0.75. It gives a

structure noted ({A,B}, 〈B,A〉, 0.8, 0.75).
In this paper, we propose a novel interactive technique to

visualize these structure, normally hidden to the users and

show how it make apparent the underlying structures in the

data such as periodic behaviors and perturbations.

IV. STRUCTURE COMPUTATION

In this section, we explain our algorithm to compute effi-

ciently all the parameters of the structures. The goal of our

tool is to show information usually hidden with the support of

the structures. Therefore, it is important to keep the patterns

as simple as possible and being able to quickly compute all

the information necessary for the structures. Moreover, the

computed results do not need to have an exact precision

since they will serve as the input of a visualization. To fulfill

these constraints, we designed an algorithm that computes the

1185



patterns in a naive way but in a time short enough to be used

in an interactive visualization.

Algorithm 1 Build structures

Input: Dataset D, itemset I, minimum sequence supportρ,

number of time windows W
Output: all the structures that occur in the time windows of

D
function BUILDSTRUCTURES(D, I, ρ, W )

structs← [ ]
TW ← SLICEDATASET(D, W )
for all w ∈ TW do � in parallel for each w

freqItems← BUILDFREQITEMS(w)
S ← BUILDSEQUENCES(freqItems)
seqOccs← FINDSEQOCC(W, S)
P ← FINDPERIOD(seqOccs)
structsw ← BUILDSTRUCT(seqOccs, P, ρ)
ADD(structs, structsw)

return structs

The function SLICEDATASET splits the dataset D into W
time windows. Slicing the dataset is an important parameter to

set the precision of the results. It greatly influences the nature

of the patterns discovered by the algorithms. When working

with time-oriented data, the analysis becomes more local as the

number of time windows to slice the time dimension increases.

The task of the analyst may be to analyze globally the dataset

to study the high-level properties of the structures. In this case,

the dataset will be sliced in a few number of time windows. In

contrary, comparing local behaviors can support the discovery

of perturbations by detecting a different sets of structures in

a time window. For each time slice, all the parameters of

a structure described in section III are computed for all the

possible itemsets. Doing this produces local results detailed for

each time slice and makes possible to detect regular behavior

across of the windows as well as perturbations that happened

in a time slice. The structures are computed for each time

window in parallel.
The function BUILDFREQITEMS compute the number of

occurrences for each item xi ∈ I. It returns a set of items

freqItems so that the occurrences of all the items x ∈
freqItems covers 80% of the total number of the occurrences.

By doing so, we are able to discard a large number of items

that occur a few times and mitigates the computational time

of the algorithm. Also, as the visualization aims to show the

tendency inside the data, the sequences having a very low

support are unlikely to be visible on the final rendering. Thus,

discarding the least items that occur the least in the dataset

prevent the sequences whose support supp(S) is very low.
The function BUILDSEQUENCES generates exhaustively

all the possible sequences from the items contained in

freqItems. It returns a set S.
FINDSEQOCC find all the occurrences for the sequences in

freqItems. This function is the most time consuming task of

the algorithm so an efficient algorithm has to be used. We

have implemented the SOG algorithm [18]. It is based on

bit parallelism and q-Grams to perform exact multiple pattern

matching in linear time. In our case, the alphabet Σ is the set

of items I, whose size |Σ| = |I| = |T × A|, can potentially

be very large. The pattern to search in the dataset are the

sequences for which we limit their size to be small. We have

selected the SOG algorithm since it is the best performing

algorithm for multiple pattern matching with a large alphabet

size and a small pattern length [19]. We use 2-gram in our

implementation: benchmark shows that using 3-gram is much

slower and memory consuming than using 2-gram for up to

105 patterns.

The method FINDPERIOD takes as parameter all the posi-

tions of the occurrences for each sequence. For each sequence,

it performs a Fast Fourier Transform (FFT) and select the

period p which allows to maximize |(S, p)|.
The final step, implemented in the function BUILDSTRUCT

is to construct the structures from the results previously

computed. It returns all the structures sorted according to

support of the itemsets.

V. STRUCTURE VISUALIZATION

Visualizing the structures as defined in the previous section

can reveal meaningful information about the underlying be-

havior hidden in the data. According to Shneiderman [20],

a good visualization technique has to provide a pipeline

as Overview first, zoom and filter, then details-on-demand.

When designing our technique, we followed this guideline and

integrated an overview to visualize all the structures with a

detailed representation of a single structure.

We begin by explaining which tasks the visualization tool

has to support and what are the benefits it brings to leverage

the difficulty of analyzing the structures. We continue with

the description of the design of the visualization to render

in a clear way a huge amount of structures, providing an

overview of the dataset to understand the global trends and

perturbations. The structure overview is coupled with a log

overview, a stacked graph of the actors. Finally, we explain

how a structure selected by the user is rendered in a detailed

visualization. Figure 2 shows the whole interface with the

different views described below.

A. Goals

In this work, we propose a visualization technique to enable

the user to quickly understand the hidden structures in the data

and designed to address the following goals:

1) Quickly understand the underlying structures contained
in the dataset. Data mining algorithms provide a very

large number of patterns in most cases. These results

contain meaningful insights to support the understanding

of the dataset. However, it is a very complex and time

consuming task to take advantage of them and this task

requires an expert. Providing an intuitive visualization

technique is mandatory to harness the patterns and to

shorten the time needed for the analysis.

2) Simplified parameters settings. Data mining techniques

have different parameters to tune their output. The
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visualization has to provide user interactions to simplify

the exploration of the parameter space.

To better support the understanding of the structures, the

visualization has to show the nature of the patterns whether

it is an itemset, a sequential pattern and if it is periodic.

For a given itemset, the information about the sequences

repartition has also to be conveyed by the visual representation

as well as if the sequences are periodic or not. Therefore, the

visualization takes as input the support of the itemsets, the

repartition of its sequences and the percentage of sequences

covered by its period if any.

B. Log Overview

When analyzing logs, it is important to understand the

repartition of the events across time. We chose to integrate

a stacked graph, located at the top of the visualization, to

represent the event density for the whole dataset (Figure 2a).

The layers correspond to the actors of the log. To build the

graph, we slice the trace into p time windows where p is the

horizontal resolution in pixels of the screen space available.

For each time window, we compute the event density of each

actor and stack the values.

We chose a stacked graph [21] for its readability and for

its capacity to convey two bits of information at any time

of the trace: (1) the global number of events is visualized

on the overall shape of the graph and (2) the thickness of a

layer encodes the number of events an actor has produced at

a specific time.

C. Structures Overview

The algorithm to compute the structures takes as parameter

a number of time windows. Since the task cannot be pre-

determined, this parameter is controlled interactively by the

user at the moment of the analysis. By enabling this interac-

tions, our tool supports the study of the evolution of behavioral

patterns from a global to a local point of view.

1) Many Structures Visualization: To provide a clear vi-

sualization that does not overwhelm the user by the amount

of information, a structure has to be represented in a

compact yet clear way. Let consider a structure S =
(X, supp(X), SX , supp(SX), pX). The different components

of the structure are mapped on visual parameters. Figure 2a

shows the structures visualized below the log overview.

A structure S is represented with a rectangle whose support

supp(X) is encoded in the height of the rectangle. The vertical

space is completely filled with all the itemset. Its width is

constrained by the size of the time slice. In each time window,

the structures are ranked according to the support supp(X):
the greater its support, the higher its position. By doing so,

more visual space is given for the most frequent itemsets

which are concentrated at the top of the rendering. It ensures

that the most active actors are quickly detected by the eye.

Next, the color encodes the information indicating whether

an itemset has a dominant sequence or not. We define a thresh-

old ρ to determine if the itemset has a dominant sequence. If

ρ ≤ supp(SX), the itemset X has a dominant sequence. In this

Dominant sequence Periodic sequence Rendering
� 0%
� 40%
� 90%
� 0%
� 40%
� 90%

TABLE I: Visual representations of a structure

Fig. 1: Visualization of a structure. Each branch corresponds

to one of its specialized sequence SX that occurs at least once

in the dataset. The thickness of the first and second segments

respectively encode supp(SX) and pX . The branch colored in

red represents the sequence currently highlighted by the user

while exploring the data. On the top left are rendered all the

items belonging to the itemset of the structure.

case, the rectangle is rendered in blue otherwise, the rectangle

of the itemset is filled with black. Areas of the logs where the

data are more structured can be quickly spotted.

Lastly, we encode in the channel alpha (i.e. in the opacity)

of the rectangle the periodicity of the sequence SX , pX .

The more a sequence is periodic, the more transparent is

the rectangle representing the structure. When working with

dataset where the structures are mostly periodic, it is important

to fade out the periodic data since it corresponds to the correct

behavior. Table I shows different rendering of an itemset

depending on the value of the parameters.

When hovering a structure, all the rectangles representing

SX become red (Figures 2b, 3) as well as the layer of the

actors present in the sequence. This shows the distribution of

a single sequence over the whole dataset. A visualization of

the structure also appears next to the cursor to show a detailed

representation of the itemset, its sequences and periodicity.

D. Visualizing Structure Details

Following the Shneiderman’s guidelines, more details can

shown when requested by the user. When hovering a structure,

a tooltip appears representing all the values of the structures.

On the overview, to better make apparent the regular

behavioral patterns, partial information about the itemsets

and their specialized sequences are shown, hiding important

information: how an itemset specializes into its sequences and

what are precisely the items.

The tooltip shows these information using a Sankey

diagram (Figure 1). Traditionally used to represent flow

of energy and resources, it encodes here the differ-

ent parameters of a structure. The figure represents the

structure (X = {C@2401, E@2401, C@Idle}, SX =
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〈C@Idle, C@2401, E@2401〉, supp(SX) = 0.53, pX =
0.46).

On the top left of the tooltip, the items of X are listed next

to a square filled with the color of the actor used in the log

overview. The root of the diagram (on the left) is the itemset X
of the structure, in black to be consistent within the different

views as an itemset with no dominant sequence is rendered

in black. The itemset split into different branches, one branch

per specialized sequence of the itemset that has at least one

occurrence in the dataset. The branch are colored according to

the user defined threshold ρ that set the minimum coverage of

a periodic sequence and their thickness encodes the support

of the sequence. The branch corresponding to the highlighted

structure is colored in red. At the end of each branch, the

sequence is represented using one square per item. Each square

is filled with the actor’s color of the item and the event type

is written on the square.

On Figure 1, the highlighted branch is half the height of the

itemset since supp(SX) = 0.5.

The last segment of the branches corresponds to pX . The

wider the last segment, the higher pX . It shows intuitively to

the user how periodic the sequences are. In our example, we

have pX = 0.46, thus the last segment is 0.46× as wide as

the previous segment.

VI. EXPERIMENT

In this section, we present a use case with execution traces

for embedded systems. We begin by describing the input

data, what are the events, the event producers, the actors

and how we built the dataset D. The experiment shows that

visualizing structures can efficiently reveal structural behavior

and perturbations quickly.

The data are traces recorded during the execution of a

streaming multimedia applications used to play music and

video.

Multimedia applications receive the video and/or the music

as an encoded stream. They have to decode it in real-time and

send it to one or several output such as a television or speakers.

In order to provide a smooth playback to the end user (i.e. no

video artifacts or audio glitches), the decoding process has

to respect some QoS properties [22]. Typically, when playing

a movie, the decoding application has to output 25 frames

per second. Under these conditions, traditional debuggers are

irrelevant since using breakpoints pauses the execution and

breaks the real-time constraints. Instead, the typical debugging

method in this context is to record a trace during the execution

of the application and analyze it post-mortem. There exists

different tools to record execution traces such as KProbes

that comes natively with the Linux kernel [23] or commercial

solutions like KPTrace developed by STMicroelectronics [24].

Execution traces basically store all the events that occurred

during the execution of an application on a system. It stores

low-level events such as entry and exit of interrupts, events

that occurred at the operating system level such as the system

calls and the context switches and the entry and exit of the

user applications. The dataset D contains all the events that

occurred during the execution. The set of actors A are the

processes and interrupts that produced at least one event during

the execution, noted with their process id (PID) in the tool.

The event types T are the instructions executed. It can be a

context switch (C), an entry (E) or exit (X) of a system call, an

entry or exit of an interrupt respectively noted as I and i in the

visualization. Examples of items contained in the set of items

I = A×T are C@1234 (a context switch on process 1234),

E@4321 (a system call performed by the process 4321) and

i@Interrupt 567 (exit of the interrupt 567). In this use

case, we show how understanding the structures in the data

supports the developers to debug their application.

The stacked graph at the top represents the event density

for each of these producers, hence a peak on the graph shows

a local increase of the number of events on the system. In

this use case, the execution trace has been recorded on an

embedded system that decodes a multimedia stream for the

television. The stream is received through the network on the

Ethernet port.

During the execution, the user has changed three times the

channel to decode (channel zap). These moments correspond

to the three peaks of activity that appear on the stacked graph

(see the log overview on Figure 2).

On the structure overview (Figure 2), three horizontal areas

appear: a gray area on the top, a clear middle section and a

mostly blue area at the bottom. The top grey bar shows that

the most frequent structure on the whole trace is a structure

that has no dominant sequence and limited periodicity. It

involves a single process (the process 2400) that performs

a huge amount of system calls (Figure 2b). The itemset has

no dominant sequence due to its small size (2 items) and a

high frequency. Its behavior is disturbed when a zap occurs:

there is a much higher number of frequent itemset involving

different processes. The structures show that during a zap, a

single process mostly works, performing many system calls

(Figure 2c). No periodic sequence appears: this reflects the

perturbation of periodic decoding behavior when switching the

stream to decode.

A very periodic sequence occurs regularly among the most

frequent structures and appear as white bands on Figure 2,

highlighted on Figure 3a. It shows a behavioral pattern at a

lower frequency involving an interrupt named GIC, namely

General Interrupt Controller (Figure 3). It consists in a general

hardware resource to manage the interrupts.

The visualization shows a periodic sequence: it consists in

the entry and the exit of the interrupt and shows a periodicity

breaking by a blue bar (noted as (�) on Figure 2a). It shows

the developer that an abnormal behavior happened in this time

window.

The middle section contains a large amount of periodic

structures. This is induced by the nature of the application:

decoding a multimedia stream is a very periodic task: frames

are decoded at a constrained rate (typically 25 frames per

second) to ensure a smooth video playback. On the bottom

we have many sequences. This is a normal behavior since the

functions are called sporadically, generating many entry/exit
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(a) Global visualization interface with the log overview on the top and the structure overview on the bottom.

(b) Dominant structure in the trace. It involves a single process whose PID is
2400 that performs a huge number of system calls.

(c) Dominant structure during a zap channel. The process
1561 performs many system calls.

Fig. 2: Structures of an execution trace. The orange rectangle on Figure 2a corresponds to the area for Figure 2b and Figure 2c.

events in the trace.

VII. CONCLUSION

We have presented a novel visual analytic technique that

shows the hidden structures in logs. It enables the analysts of

such logs to understand “at a glance” the repetitive behaviors

that can be complex patterns involving sequences of events

and periodicity, depending on the nature of the data. The

regular behavior that implies repetitive structures are easily

detected as well as the perturbations over the trace. Through

an experiment, we have shown the relevance of our technique

for the analysis of execution traces, proving our approach can

be applied with a broader type of data than computer logs.

Our work opens several perspectives. A direct perspective

is to improve the performances of the computation algorithm

for the structures to achieve an interactive response time

(up to 10ms). The core of our algorithm is the multiple

pattern matching SOG algorithm. Existing work has described

a solution to implement it on GPU to reduce significantly the

computation time [25].

Other perspectives consist in investigating visualization

techniques of more complex structures. In this work, we

have used the itemsets, sequences and periodic sequences as

patterns. An other type of data structure can include a graph for

the study of structures in logs of dynamic graphs. For instance,

this could be used to visualize the evolution of structures in

social graphs such as Twitter or Facebook. The main challenge

relies in the mapping of a larger number of parameters of a

structure onto visual attributes while having an uncluttered

rendering to keep visualizing such structure “at a glance”.
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