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Abstract

Collective decisions are everywhere: choosing central or local governments, selecting
a candidate to hire for an open position, choosing a restaurant to share a dinner with
some friends are examples of collective decision making situations. Social Choice pro-
vides a lot of methods which can help people making a decision in such situations.
However, the diversity of these voting procedures and the mathematical background
necessary to understand them can be seen as obstacles to the use of these meth-
ods in everyday situations by laypersons. We claim that information visualization
techniques can help a lot the democratization of social choice, by providing people
with some easily interpretable information and, in the end, helping them making
informed collective decisions. In this paper, we present the Edge-Compressed Ma-
jority Graph, a technique dedicated to the visualization of the majority graph of
a preference profile. Using an insight-based evaluation method, we show that this
technique gives better results in conveying information about the preferences than
other classical visualization techniques.

1 Introduction
The need for collective decisions has played an important role from the beginning of
mankind’s first organized societies till nowadays. Democracy, which is considered from
an ethical point of view the ideal form of government is based on elections, where all citi-
zens have an equal say in the decisions that affect their lives. A major problem that arises
in democratic societies is how to interpret the will of people and bring out a satisfying col-
lective decision. Social Choice, and especially Voting Theory, is the field that addresses the
problem by providing a set of methods aiming at aggregating a set of individual preferences
into a collective preference or decision. The paradigmatic problem is here to aggregate a set
of N rankings representing the voters preferences on a set of m candidates into a collective
ranking using a voting rule.

Throughout the history of social choice many rules have been proposed, and each one of
them is trying to reflect the socially fairest outcome. In the case where there are only two
candidates (and an odd number of voters), majority voting1 is unanimously considered a
perfect method of selecting the winner. However, when there are three candidates or more,
no such obvious rule choice exist, and there exists numerous voting methods that all have
different axiomatic properties. Among these methods, a prominent family of rules are based
on the Condorcet principle. This principle was introduced by Nicolas de Condorcet, the
founding father of the mathematical theory of voting, who suggested a rule that extends
majority voting to multiple candidates [9]. A candidate x is said to beat candidate y in
a pairwise election (comparison) if the majority of voters prefer x to y, i.e., rank x above
y. A candidate that beats every other candidate in a pairwise election is the winner of the
entire election. Such a Condorcet winner, when it exists, is generally considered a good
social consensus. The family of Condorcet-consistent voting rules aim at reconciling the

1In majority voting, each voter only votes for one candidate (her top one). The candidate receiving the
highest number of votes wins the election.
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Condorcet winner with the fact that it may not exist, by electing it when it exists. This
family includes, among others, Simpson’s rule, Copeland’s method, [8], Dodgson’s rule [4]
and Young’s method [21]. Some of these methods are based on the (weighted) majority
graph: a directed graph where each node represents a candidate and the arc (x, y) exists if
and only if x beats y in a pairwise comparison. Even if some Condorcet-consistent methods
are not directly based on it, the majority graph is a good way to understand the rationale
behind these methods (namely, pairwise comparisons).

A fundamental question of Social Choice is the choice of the voting rule to use when
there are three candidates or more, as different voting rules can yield very different collec-
tive preferences (and hence different winners). The traditional approach in social choice
theory is prescriptive: facing a collective decision making problem, a society will choose a
voting procedure that satisfies good axiomatic properties (monotonicity, reinforcement...).
However, making an informed choice about the voting method requires a strong mathe-
matical background that most people do not have, leaving them with no solution but to
choose a black-box voting method by default. We believe that a good alternative is to use
(graphical) information visualization techniques to help people understanding the structure
of preferences without prescribing any ranking given by a voting method.

The domain of Information Visualization (InfoVis) deals with designing visual represen-
tations of abstract information to help the user increasing her knowledge about the internal
structure of the data and causal relationships in it. Information Visualization aims at provid-
ing techniques for the users to make discoveries, decisions, or explanations about patterns,
groups of items, or individual items. Most works in InfoVis aim at providing visualization
techniques that do not require any strong mathematical background or knowledge from the
user for her to be able to interpret the information. Our research direction is to try to apply
these techniques on social choice problems, where the information we want to visualize is
the votes and the interpretation of these votes.

As a first step, we focus, in this work, on the visualization of the weighted majority graph.
We believe that the weighted majority graph is an interesting intermediate aggregation level
between the complete preference profile and the collective preference issued by a particular
voting rule. It already contains compressed information about the individual preferences
but can still act as a proxy for a lot of Condorcet-consistent voting rules. We also believe
that a decision maker can learn a lot of information about the structure of individual and
collective preferences from an efficient graphical representation of the weighted majority
graph. It should be noticed, though, that choosing a representation based on this graph
is not neutral. It orients the decision towards candidates that are good according to the
Condorcet principle. This is not without loss of generality and will favour some types of
candidates.

Giving an efficient graphical representation of the majority graph is not straightforward.
Being a complete directed graph, the traditional node-link representation quickly becomes
unusable as the number of candidates grows. In this paper, we propose (in Section 4) a
visualization called the Edge-Compressed Majority Graph, and compare it with the clas-
sical node-link representation and a representation based on the adjacency matrix. The
experiments (provided in Section 5) show that people are able to extract a lot more useful
pieces of information from the Edge-Compressed Majority Graph visualization technique
than from the other classical ones.

2 Related work
The application of Information Visualization in Social Choice is a relatively new field, how-
ever visualization in elections is widely used in many forms. Occasionally, there are many
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graphs and animations published in the newspapers or news websites visualizing the results
of different kinds of political elections. However, most voting rules used in political contexts
do not ask the voters to give their preferences in the form of linear orders (rankings), but
rather ask e.g. either to give one’s preferred candidate, or to approve a set of candidates.
This is why techniques based on the majority graph (like Condorcet consistent rules and
the visualization techniques we use in this paper) are not relevant in this context. This
motivated us to study meticulously the visualization of more complex election settings and
voting rules, like the one promoted by Social Choice theorists.

To the best of our knowledge, the study of visualization techniques applied to Condorcet-
consistent voting rules is new. However, the usage of majority graphs in this kind of voting
rules have been being studied for years in the Social Choice literature, with the application
of tournament solutions. One such method, which was proposed by Copeland [8], constitutes
one of the most important tournament solutions. Other significant tournament solutions
were proposed by Levchenkov [15, 13]; Fishburn [12] and Miller [16]; and Banks [1]. An
analytic survey of tournament solutions can be found in Laslier’s book [14].

Perhaps the closest work to our approach is the one by Betzler et al. [3]. In their work,
they propose a set of data reduction techniques to compute the winner of the Condorcet-
consistent Kemeny’s rule (which is NP-hard to compute). One of their data reduction
techniques is based on the computation of clusters of candidates using the strongly connected
components in the majority graph. As we will see in Section 4, our Edge Compression
Majority Graph uses a very similar reduction technique. The main difference is that we use
it for visualization purposes, where Betzler et al. use it for theoretical (complexity) results.

3 Preliminaries
We consider a set N = {1, . . . , n} of voters and a set C of m candidates. Each voter i has a
linear order �i on C, where x �i y means that voter i prefers candidate x to y. Let LC be the
set of linear preferences over C. A preference profile � = 〈�1, . . . ,�n〉 ∈ Ln

C is a collection
of preferences for all the voters. A voting correspondence is a mapping f : Ln

C → 2C \ {∅}
from preference profiles to non empty subsets of candidates, the co-winners of the election.
A voting rule maps a preference profile to a unique winner. Most voting rules are built from
the composition of a voting correspondence and a tie-breaking rule.

Let � ∈ Ln
C . The majority margin m is the function that maps each pair (x, y) of

candidates to the difference between the number of voters that prefer x to y and the number
of voters that prefer y to x, namely: m(x, y) = |{i ∈ N : x �i y}|− |{i ∈ N : y �i x}|. The
majority relation is the binary relation �Maj defined as the subset of elements (x, y) ∈ N2

such that m(x, y) ≥ 0. The binary relation �Maj is the strict part of �Maj; therefore if
x �Maj y, we say that x (strictly) beats y in a pairwise election (or comparison). The
majority graph is the directed graph representing �Maj. A Condorcet winner is a candidate
that strictly beats every other candidate in a pairwise election.

Among the set of Condorcet-consistent voting rules, some of them are based on the
majority relation. In particular, the Copeland rule works as follows. For each candidate x,
the Copeland score of x is the number of candidates y such that x �Maj y. The candidate
with the highest Copeland score is the winner of the election. Some other Condorcet-
consistent voting rules, among which the Kemeny rule, are based on the information provided
in the weighted majority graph. Finally, some rules use the information contained in the full
preference profile. In particular, the Dodgson rule works as follows. For each candidate x,
the Dodgson score of x is the smallest number of sequential exchanges of adjacent candidates
in the preference profile needed to make x a Condorcet winner.

In the following, we will have to resort to a Condorcet consistent voting rule when an
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order is required for some specific graphical attribute (as is the case in the Pairwise Com-
parison Matrix and our Edge-Compressed Majority Graph techniques. Dodgson’s voting
rule is intuitively appealing and one of the most well-studied voting rules in the literature.
However it is hard to compute since the Dodgson score decision problem is NP-complete, as
shown by Bartholdi, Tovey and Trick [2]. In order to apply a Condorcet-consistent voting
rule that will be computed efficiently (polynomial time) we will use the one proposed by
Caragiannis et al. [7]. They proposed the following Dodgson approximation rule which is
an extension of Tideman’s simplified Dodgson rule [20, pages 199-201]. Consider a profile
� ∈ Ln

C and a candidate x. If a candidate x is a Condorcet winner, then it has Extended
Tideman’s Simplified Dodgson (ETSD) score scTd′(x,�) = 0. Otherwise:

scTd′(x,�) = m · scTd(x,�) +m(logm+ 1), (1)

where scTd(x,�) is simplified Dodgson score of candidate x defined as:

scTd(x,�) =
∑

y∈A\{x}

max {0, n− 2 · |{i ∈ N : x �i y}|}. (2)

The candidate with the minimum score wins.

4 Visualizing the majority graph
In this section we describe how we graphically visualize weighted majority graphs. We con-
sider three types of visualization techniques: the Pairwise Comparison Matrix, the Weighted
Majority Graph and the Edge-Compressed Majority Graph. All of these techniques aim at
extracting a synthetic information from a voting situation in order to allow a decision maker
understand the structure of the voting profile. Clearly, the general purpose of our work is to
provide a set of visual representations of the voting data which are clearly understandable
without prior knowledge on any voting method. We also emphasize that all of our methods
can be employed for the visualization of any kind of weighted tournament graph, whether
they represent the weighted majority graph of a voting situation or not.

Before introducing our visualization techniques, we should note that ordering the can-
didates is a crucial aspect. This is inherent to graphical visualization, since most graphical
attributes naturally induce an ordering (e.g. left-to-right for abscissa, top-to-bottom for
ordinate, green-to-red for colors). To deal with this aspect, we had two obvious choices.
Either randomly map values of graphical attributes (x, y, color...) to candidates or choose a
specific ordering and use graphical attributes to convey it. We chose the second approach for
the sake of graphical clarity (randomness yield representations that are harder to read and
interpret). We have used a Condorcet-consistent aggregation method, more precisely ETSD
scores (scTd′) (because of its similarity to the Dodgson’s), as input order to the graphical
representations.2 We know that this is at the price of inducing a strong bias in the way
users perceive the visualization.

4.1 Pairwise Comparison Matrix
The first visualization technique is the Pairwise Comparison Matrix (PCM), which simply
displays the majority margin between each pair of candidates using a matrix of colors. Every
entry of the matrix ai,j represents the majority margin m(i, j), with i, j ∈ J1,mK, encoded

2Note that using Tideman’s would lead to the same ranking as the Td′. We prefer to use the latter rule
because it is a Dodgson-approximation and thus preserves the characteristics of Dodgson’s rule (e.g., the
proximity of candidates to becoming Condorcet winners). Td′ has the advantage over Dodgson’s that it is
polynomial and satisfies a lot of well-known social choice properties, like monotonicity and homogeneity.
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Candidates

Fight Club

The Matrix (Matrix)

Forrest Gump

Star Wars

Pulp Fiction

Schindler's List (La
Liste de Schindler)

The Lord of the Rings
(Le Seigneur des

anneaux)
The Dark Knight

(Le Chevalier
Noir)

The Godfather (Le Parrain)

The Shawshank
Redemption (Les

Evadés)

A. Pairwise Comparison Matrix
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B. Weighted Majority Graph
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C. Edge-Compressed Majority Graph

Figure 1: Different visualizations for the movie poll

using a green to red color scale. More precisely, we use the “diverging category with ten data
classes” (10-class RdYlGn) scale [6] and map the values (percentage) to these colors. When
m(i, j) > 0 (resp. < 0), ai,j is a variant of green (resp. red) color where the saturation level
is simply m(i, j)/n (resp. m(j, i)/n). If m(i, j) = 0 the ai,j cell is a yellowish color. The
rows and columns are ordered according to the ETSD score of the corresponding candidate.
An example of PCM is shown in Figure 1.A. The data set used in this figure is the movie
poll data set described in Section 5.1.

4.2 Weighted Majority Graph
The next visualization technique is the Weighted Majority Graph (WMG), which is a simple
node-link representation of the majority graph with directed arcs for the strict part of the
majority relation and undirected edges when two candidates tie. The weight of each arc
(x, y) equals to m(x, y) and thus the sum of weights of the incoming arcs for a node x
equals the simplified Dodgon score of candidate x. We use the width of each arc (x, y) as
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a graphical attribute encoding the weight of (x, y). Moreover, the graphical layout displays
the candidate(s) who have the minimum simplified Dodgson score at the top. An example
of the WMG for the aforementioned movie poll can be seen in Figure 1.B.

4.3 Edge-Compressed Majority graph
The last visualization technique, which is the one we propose, is the Edge-Compressed
Majority Graph (ECMG). Our objective is to improve upon the WMG by providing a visu-
alization where the most valuable information —namely, comparisons between candidates
and voting cycles— can be easily extracted. Our method distinguishes the candidates that
can be linearly ordered from the ones that are involved in cycles. The novelty of our tech-
nique is that it only shows the edges between the candidates of the latter type. In order to
do that, we combine edge compression techniques in the visualization of dense graphs [10]
with the use of the axis y as a graphical attribute encoding a linear ordering. Moreover, we
rely on concepts specific to Voting Theory, and especially on the properties of the Smith
set [19], to perform the edge compression. The Smith set is the smallest non-empty set
of candidates in a particular election such that each member of this set beats every other
candidate outside the set in a pairwise comparison.

The edge compression algorithm works as follows. Starting from the whole set of candi-
dates C, we compute a Smith set, and append it to the list of clusters. Then we reapply the
same procedure iteratively on the remaining majority graph until no candidate remains. We
end up with a sequence of clusters formed by the successively computed Smith sets. These
clusters have the nice property that every node inside the same cluster have exactly the
same set of arcs with nodes outside the cluster. This set of arcs can thus be “compressed”
using arcs between clusters.

The algorithm we use for the computation of a Smith set is an adaptation from the
algorithm presented in the Wiki for Election Methods [11], that is an adjusted version of
the Floyd-Warshall algorithm. We can observe that we could have used a different graph-
theoretic perspective, because our technique can be seen equivalent to a decomposition into
the strongly connected components of a directed graph. This decomposition can produce the
same clusters of candidates and then we can apply a topological ordering on the components
to get the same results as in our technique. Note that the Smith sets found during our
technique are exactly the same as the strongly connected components of the graph given
the following condition about ties: when there is a tie between two candidates then the
undirected edge must be replaced by 2 directed edges heading towards both directions. The
difference in time complexity for both techniques is not remarkable, so we preferred the
Smith set decomposition because the implementation is simpler and relies also on notions
of voting theory. Note that the computation of the Smith set needs time O(m3) using the
adaptation of the Floyd-Warshall algorithm and thus globally runs in O(m4). We could
have used the Kosaraju algorithm for computing the Smith set and thus reducing the time
complexity of our technique to O(m3) but we preferred a simpler implementation and the
complexity does not really matter as the number of candidates (m) is in general low.

Graphical representation of the cluster graph At this point, we have to represent
graphically a sequence of clusters —each cluster being a subgraph of the majority graph.
The intuitive meaning of this sequence is that each candidate in a cluster is better than all
the other candidates in the subsequent clusters. A natural way of representing linear orders
is to use the abscissa or the ordinate as the graphical attribute encoding the rank of each
element in the order. In our visualization, we use the latter, and the clusters are displayed
on top of each other from the first to the last one. Doing this, we do not need to draw any
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arc between the clusters as the relation between two clusters can be naturally deduced from
their respective ordinates.

Each cluster is displayed as a circle (or rectangle) containing the subgraph of the majority
graph. If a cluster contains only one candidate we do not draw the border of this cluster
but directly draw the candidate itself.

Each candidate (inside a cluster) is drawn as a circle, whose size and color depend on
the candidate’s ETSD score. Note that we use the minimum and maximum scores of the
whole set of candidates and not only the ones belonging to the cluster. We do that in
order to have a global visual representation of the candidates, otherwise there might be a
case where a losing candidate that belongs to a lower ranked cluster has bigger size than
a candidate who beats her. We use the same voting rule as above because, as already
mentioned, it is easily computed and also produces less ties among the candidates compared
to other Condorcet-consistent rules, like the Copeland’s rule. Imagine the case where there
are multiple members of a Smith set, then the Copeland’s method often yields ties. For
example, if there is a three-candidates voting cycle, each candidate will have exactly one
loss, and there will be an unresolved tie between the three and there is no winner declared.
On the other hand ETSD procedure computes the score for each candidate by adding the
majority margins which is more unlikely to be the same for two candidates. Therefore,
this rule is important in order to rank the nodes inside the cluster (of nodes) composing
the Smith set and thus have a better visual appearance. In order to compute the circle’s
diameter for a node we use the following procedure: we assign maximum and minimum
values of diameter that correspond to the candidates having the minimum and maximum
scores accordingly, and then the node’s diameter is calculated proportionately according
to these values. The node’s color is computed from the score. First, we choose a palette
of 8 colors that extends from blue color to red (the palette used is the diverging 8-class
spectral [6]). Blue color is assigned to the candidate with the minimum score while red
color to the candidate with the maximum score. Then, we compute the difference between
the maximum and minimum scores of the candidates and divide this distance in 7 intervals
of equal size, where the endpoints of the intervals correspond to each one of the 8 colors.
Every candidate is assigned then to the appropriate interval according to her score. The
color of the candidate is computed by the linear interpolation in the RGB color space of the
endpoints of the interval she belongs to.

After computing all nodes’ attributes, our algorithm checks the size of the Smith set.
When the set is a singleton then the node corresponding to the sole candidate of the Smith
set is drawn with the computed diameter and color. Otherwise, the members of the Smith
set form a cluster of nodes. When there is a total (linear) order on the members of the Smith
set3 then the nodes are drawn inside a rectangle in a vertical arrangement. The candidate of
the set with the minimum score is ranked on top of the rectangle and the other candidates
follow her according to their score.4 If two or more candidates have the same score, then
they are drawn at the same ordinate. Now, when there is not a total order on the members
of the Smith set then voting cycles between candidates occur and the nodes are drawn inside
a circle. The nodes inside the circle are drawn according to their candidate’s score, where
a candidate is drawn on a higher vertical position compared to another candidate if the
former has score less or equal to the latter one.

The final step of our technique is edge drawing. Any edge of the graph represents the
result of the pairwise comparison between two candidates. A directed edge is drawn as an
arrow from candidate x to candidate y if and only if x beats y. If the result of the pairwise
comparison between two candidates is a tie then an undirected edge is drawn as a dotted
curve (or line). The edges (directed or undirected) are drawn using cubic Bézier curves,

3Recall that the order of the members in the Smith set is done according to their score.
4We use ETSD rule to compute the score.
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circular arcs or straight lines. The edge type depends on the position of the nodes as we
try to find the best visual way to represent them. Specifically, the type of an edge is drawn
according to the following guidelines, depending on whether the encompassing cluster is
circular (i) or rectangular (ii). Case (i): If the nodes in the graph are close to each other
then the edge is a circular arc that follows the perimeter of the cluster’s circle, otherwise it
is a cubic Bézier curve. Case (ii): If the nodes in the graph are close to each other then the
edge is a straight line, otherwise it is a cubic Bézier curve.

The algorithm for the computation of the ECMG visualization is presented in Appendix
(Algorithm 1). This algorithm resorts to procedure ComputeSmithSet for computing
the Smith set on a given set of candidates, and to Algorithm 2 to draw the clusters of
nodes (successive Smith sets). This latter algorithm in turn resorts to two procedures
DrawNode and SortNode which are respectively in charge of drawing a circular node of
a given diameter and color at a given position, and to sort a list of candidates in descending
order according to the ETSD score. An example of the ECMG for the aforementioned movie
poll can be seen in Figure 1.C.

5 Experimental Evaluation
So as to perform the evaluation we have conducted an experiment comparing the afore-
mentioned three visualization techniques. During the experiment different datasets were
shown to the users using our visualization techniques. The users were then asked to make
observations about the information they could extract. These observations have then been
quantified using an insight-based method [18, 17]. We have used this method because a
classical task-based evaluation methodology did not comply with the nature of the voting
problem, and thus would have not properly evaluated the relevance of our technique.

5.1 Data Sets and Visualizations
In order to evaluate our technique we used data from three different voting polls. The data
sets are the preference profiles for specific elections. The first data set was about a movie
poll, where we asked people (voters) to rank their favorite movies (candidates) from the
70s and later. The preference profile can be seen in the appendix (Figure 2). The value
(number) in the entry ai,j of the matrix gives the ranking of candidate j in the preference
of voter i, e.g., voter "#2" ranks "The Shawshank Redemption" as her 8th choice while
"Forrest Gump" as her first choice.

The two other data sets are synthetic preference profiles: we chose a number of m can-
didates, assigned to them a probability distribution of being chosen, and then built N votes
by sampling the candidates without replacement according to the probability distribution.
This gives us random preferences, but with a bias that makes some candidates most likely
to be at the beginning of the preferences, and thus most likely to be a Condorcet winner.

The results of the elections for the aforementioned polls were displayed using the pro-
posed techniques, i.e, the Pairwise Comparison Matrix (Section 4.1), the Weighted Majority
Graph (Section 4.2) and the Edge-Compressed Majority Graph (Section 4.3).

5.2 Participants and Protocol
In order to evaluate the visualization techniques we designed the following protocol for our
experiment. It was conducted with six participants. None of them had any background
in Social Choice nor in Voting Theory. The protocol consisted of three phases. In the
first phase, a short tutorial of 15 minutes was given to the participants explaining all the
necessary information in order for them to get familiar with the experimental setting. We
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started off with the analysis of the key aspects of Voting Theory, i.e., the voting problem and
the Condorcet criterion, and then we presented a brief introduction of the three visualization
techniques. In the second phase of our experiment, that lasted about 30 minutes, each user
was given a specific poll from the data sets described above. The results of the poll were
shown to the user with each of the three techniques one at a time in a random order. When
the synthetic data sets were used, we changed the labels of the candidates when the new
technique was shown so that the participants would not be biased about the data set that
they had just previously seen. The users were instructed to look carefully at the techniques
and report their observations (insights) with all the information they could extract out of the
polls. When the users felt they could not gain any other information out of one technique we
proceeded to the next one. We took notes during the session but also videotaped the whole
procedure for later identification and analysis of all individual occurrences of insights. In
the third and final phase of the experiment, the users were asked to make general comments
about the techniques and to express their personal preference regarding the technique they
found the most appropriate one for the data sets.

5.3 Results
In order to analyze the results of our experiment we have studied the insights gathered by the
participants. We present our findings about the insight characteristics and the participants’
general comments.

5.3.1 Evaluation on Insight Metrics

During our analysis we used various insight metrics which are summarized in Table 1 and
are thoroughly analyzed in the following paragraphs.

PCM WMG ECMG
Insights (total) 304 218 315

Insight Categories
Ranking 35 37 39

Comparisons 203 131 302
Margins 42 38

Hypotheses/Remarks 7 5 16
Inaccurate 3 4 0

Domain Value 950 604 1310
Avg. time of 1st insight (sec) 13 10 5

Total time 6 : 51 6 : 43 5 : 58
Participant’s evaluation (out of 10) 7.16 4.83 8.83

Table 1: Overview of the Results.

Insights We measured the total number of insights, i.e., the total number of observations
about the information a user could extract. We used the following 4 categories (ranking,
margin, comparisons, hypotheses) in order to categorize the insights and assigned specific
domain value points for each category reflecting the importance of the information extracted.
The insights regarding information about the ranking of the candidates, as well as the
insights about the difference in the margin of victory/loss in terms of voters for a given
pairwise comparison were given 1-2 points. The insights regarding information about the
results of pairwise comparisons between candidates were given 3-4 points. More specifically,
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we gave 3 points if a single pairwise comparison was detected while 4 points were given
for each pairwise comparison if multiple comparisons were spotted at a glance. Last, the
insights regarding hypotheses and more critical remarks were given 5 points. For example,
the most observed critical remark by the participants was the identification of Condorcet
Paradox. Recall that the participants didn’t have any background on voting theory but
identified the cycle(s) between the candidates and speculated that there is no winner in
this(ese) case. In conclusion, we noticed that the total number of insights is slightly greater
in the ECMG compared to the PCM and both of these techniques have a huge difference
with the WMG.

Categories of Insights Given that the number of insights is fairly equal for the ECMG
and the PCM techniques, a clearer conclusion can be made by looking at the insights per cat-
egory. We can see that the number of insights for the ranking of candidates is approximately
the same for all the techniques, as well as the number of insights regarding the margins. We
see that the ECMG has a strong lead when compared to the other two techniques in the
number of insights concerning the information about the pairwise comparisons. We can see
that ECMG has 302 insights while PCM has 203 and WMG has 131. A similar pattern is
also seen if we categorize the observations of pairwise comparisons into single or not. The
276 out of 302 comparisons observed with the ECMG were about multiple comparisons spot-
ted at a glance while PCM had 189 and WMG 110. Regarding the number of hypotheses
and the critical remarks, we notice that ECMG is much superior compared to the two other
techniques (16 versus 7 and 5). Given the importance of the pairwise comparisons in the
Voting Theory and the qualitative nature of the insight method it is clear that the ECMG
technique outperforms the other two techniques when taking into account the categorization
of the insights.

Domain Value The domain value is critical in evaluating the techniques as it reflects (in
a quantitative way) the quality of the observations. We use the aforementioned category-
based point system for measuring the quality of each insight, and sum up all the points in
order to compute the total domain value. This quantification of the information extracted
by the participants allows to take into account the significance of the pairwise comparisons
and other principal elements of the Voting Theory. The ECMG technique achieved the
highest score among all three techniques, i.e., 1310 points. The PCM comes second with a
score of 950 points and the WMG technique performs the lowest score, reaching a total of
604 points. We can remark here that the differences between the scores of the techniques
are significant and thus ECMG outperforms the other two techniques in terms of the total
domain value.

Average Time of First Insight This metric measures the time that passes from the
beginning of the session until the occurrence of the first insight made by the user. A shortest
time on observing the first insight implies that participants are able to grab information
quicker and thus have a shorter learning time. In 85% of the cases, the first insight that
was made by the users was about the candidate who is the winner of the election. The
participants needed half the time to observe the first insight when the ECMG technique was
used in comparison with the WMG and almost a third of the time compared to the PCM.
Given that a high percentage of the first insight is referring to a crucial information about
the elections, we can imply that the ECMG technique is dominant over the other techniques
regarding the time needed for the first data extraction.
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Total Time and Insights per Minute When measuring time it is also important to
measure the total time and the insights observed per minute. The total time measures the
time needed for the participants to feel that they could not gain any further information out
of the graph. Having the total time lower for one technique has two interpretations. The
first is that the technique is more efficient because users needed less time to complete the
extraction of information. The second is that users gave up because of lack of interest as they
felt they could not gain any more information. The results reveal that the ECMG technique
was faster and also produced more insights giving an average 52.8 insights per minute, while
PCM had 44.4 and WMG had 32.5. After analyzing the results we conclude that ECMG is
the most efficient technique from time perspective because time was less and despite that,
more insights were found giving the technique the highest ratio of insights/minute.

5.3.2 Participant Comments on Visualization Techniques

In order to complete the evaluation of the visualization techniques we asked users to com-
ment and express their opinion (positive or negative) according to the difficulties they en-
countered. At the end, the participants were asked to perform an evaluation on the tech-
niques by ranking them and assigning a score according to their level of satisfaction. The
findings for each technique are the following.

Pairwise Comparison Matrix The PCM technique achieved a mean rating of 7.16/10
according to the preferences of the users, which ranks the technique second. The technique
was the most preferable one according to one user, i.e., 16.7% of the users. A general
comment made by most of the participants was that it is a good technique to show the
results of single pairwise comparisons and the margins of difference but it is not good
to see the Condorcet cycles. Most users said that it is a good way to visualize ranking.
Generally most participants agreed that you can extract the same amount of information
as in ECMG but you need longer time. There were some rare comments about the color
degradation which caused difficulty in identifying the results of the pairwise comparisons
when the margins of differences between the candidates were narrow. Lastly, one user did
not find this technique as visually attractive as the other ones.

Weighted Majority Graph The WMG technique was the least preferable one as it was
ranked third by all participants and scored a rating of 4.83/10. Most of the participants
(83%) noticed that the presentation is unclear. They commented that it was complex to see
the edges as they were crossing each other and it was also hard to distinguish the arrows on
the candidates. Therefore they said that they needed time and concentration to figure out
the pairwise comparisons. Another major criticism was about the ranking according to the
extended Tideman’s simplified Dodgson rule, which they found difficult to see.

Edge-Compressed Majority Graph The ECMG technique was the best one according
to all participants but one and acquired a mean score of 8.83/10. Regarding the ranking of
the candidates according to extended Tideman’s simplified Dodgson rule most users (83%)
agreed that it was easy to detect, apart from one user who found it difficult to distinguish
the ties in ranking. The great majority of the users (83%) found the technique as a natural
and straightforward method for displaying the results of the pairwise comparisons between
the candidates. In particular, they said that it is really clear to follow the fewer edges and
the "up to down" layout of the graph. Also half of the users added that it was a nice
technique for representing the voting cycles and the Condorcet paradox.
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5.3.3 Discussion of Results

Overall, the results showed the superiority of the ECMG over the other techniques. The
ECMG technique produced a slightly higher number of insights compared to the PCM but
the insights were of higher value because they were mostly referring to pairwise comparisons
and new hypotheses. ECMG had a mean domain value of 4.16 per insight while PCM had
3.13 and WMG had 2.77. This finding was also confirmed by the participants’ comments
about the visualization of comparisons in all three techniques.

We found very promising that the hypotheses made by the users confirmed our initial
expectations that the ECMG can provide an alternative method for interpreting the ranking,
given the various discrepancies in voting rules. The experimental results revealed that the
participants had the tendency to give their own rankings which sometimes were different
from the extended Tideman’s simplified Dodgson’s rule ranking. Therefore, we think that,
from a social point of view, someone can use our technique to obtain the ranking according
to her assumptions and priorities given that voting rules can produce various rankings for
the same poll. In this way we can confirm the expectation imposed at the beginning of our
research that the ECMG is the intermediate step between the individual preferences and
the collective ranking.

Furthermore ECMG was the only technique without any incorrect insights. It also had
more than twice as many critical remarks and hypotheses than both PCM and WMG.
Concerning time, the ECMG surpassed the other two techniques because it required less
time for the first insight to be observed, and also less time in total while more insights
were found. The time perspective is also widely acknowledged by the participants, who
found ECMG the fastest way of observing the results. Finally, the participants’ personal
evaluation and ranking of all three techniques revealed the dominance of ECMG.

6 Conclusion and Future Work
In this paper, we have proposed three techniques for graphically representing the weighted
majority graph of an election. Two of them, PCM andWMG, are classical visualization tech-
niques for directed graphs. The last one, ECMG is original and based on edge-compression
techniques. Experiments carried out with non specialist users show that the ECMG yields
a lot more insights than the two other techniques, and hence that it is more efficient in
providing information about the structure of the collective preference.

As future work, we plan to integrate the ECMG to the set of visualization proposed on
the Whale3 web application [5], so as to make it directly available to the users of this system.
We also plan to investigate visualization techniques for other families of voting rules that
are not based on pairwise comparisons. Another important challenge is to find interesting
techniques that represent basic theorems and notions of Social Choice e.g., visualizing the
discrepancies that occur for the same preference profile among different voting rules.
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Appendix
The preference profile for the movie poll The data set used in the following figures
is the movie poll data set described in Section 5.1 and depicted in the following figure 2. In
this election setting we have 22 voters with each one having a numerical id and 10 candidates
corresponding to the movies.

Figure 2: Preference Profile for the Movie poll.

Algorithms The pseudocode below for Algorithm 1 describes our main technique used
for the computation of the ECMG visualization. Algorithm 2 is the main drawing procedure
and is called by Algorithm 1 in order to draw the Majority Graphs computed in each step
of the while loop.

Algorithm 1 Edge-Compressed Majority Graph Visualization Technique
1: procedure Circular Smith Set
2: C ← the set of candidates
3: i← 0
4: while C 6= ∅ do
5: Si ← ComputeSmithSet(C)
6: if the graphical layout is empty then . Algorithm 2
7: draw the MG(Si) on the top of the graphical layout
8: else
9: draw the MG(Si) on the graphical layout under MG(Si−1)

10: end if
11: Let C = C \ Si

12: i← i+ 1
13: end while
14: end procedure
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Algorithm 2 Majority graph visualization
1: procedure DrawMG(S)
2: Node’s attributes: . Depend on candidate’s ranking
3: c← candidate
4: D ← node’s diameter
5: color ← node’s color
6: positionx,y ← node’s position in x,y axis
7: if size (S) = 1 then . Smith Set has a single member
8: DrawNode(c,D,color,positionx,positiony)
9: else . Smith Set consisting of a cluster of candidates

10: offset← spatial distance between 2 consecutive nodes S
11: N ← number of candidates in S
12: Sortedi ← SortNodes(V otingRule)
13: if nodes ∈ S have linear (total) order then
14: w, h← rectangle’s dimensions
15: Draw a rectangle with dimensions w, h
16: for i← 1, N do . Draws S nodes inside rectangle
17: if score(Sortedi = Sortedi−1) then . 2 or more candidates have the

same score
18: positionx ← positionx + offset
19: DrawNode(Sortedi,D,color,positionx,y) . nodes are drawn parallel
20: else
21: positiony ← positiony + offset
22: DrawNode(Sortedi,D,color,positionx,y). the node with higher score

is drawn lower
23: end if
24: end for
25: else . voting cycles between candidates occur
26: D ← Circle’s diameter
27: Draw a circle with diameter D
28: for i← 1, N do . Draws S nodes inside circle
29: positionx,y ← positionx,y + offset
30: DrawNode(Sortedi,D,color,positionx,y) . when scorei ≥ scorei−1, i is

drawn lower
31: end for
32: end if
33: Draw the edges between the nodes of S
34: end if
35: end procedure
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