
Mastering Model Driven Engineering
complexity by interactive visualization

Illustration in Human Computer Interaction

Mir’atul Khusna Mufida , Sophie Dupuy-Chessa , Gaëlle Calvary

Univ. Grenoble Alpes, Grenoble INP, CNRS, LIG
38000 Grenoble, France

Firstname.Lastname@imag.fr

ABSTRACT. Model Driven Engineering (MDE) can play an important role for the design of ap-
plications in many domains. Its principles that are separations of concerns, capitalisation of
knowledge thanks to models, meta models, and transformations, are well accepted today. Then
the approach becomes a good candidate for scaling up to more complex applications. However
the use of model driven engineering puts people in front of a new problem, which is mastering
the complexity of many and possibly big models. The paper presents MoVi (Model Visualiza-
tion) an interactive environment as a proof-of-concept that investigates model exploration by
processing models as data. It is illustrated with models taken from the Human Computer Inter-
action domain.

RÉSUMÉ. L’ingénierie dirigée par les modèles (IDM) peut jouer un rôle important pour le dévelop-
pement d’applications dans de nombreux domaines. Ses principes, qui sont la séparation des
préoccupations et la capitalisation du savoir et du savoir-faire sous la forme de modèles, méta-
modèles et transformations, sont aujourd’hui bien admis. L’approche devient alors un bon can-
didat pour un passage à l’échelle sur des applications complexes. Cependant, l’utilisation de
l’ingénierie dirigée par les modèles met les concepteurs face à de nouveaux problèmes comme
la gestion de la complexité de modèles de plus en plus nombreux et potentiellement grands. Cet
article prèsente MoVi (Model Visualization), un environnement interactif validant le concept de
l’exploration de modèles en considérant les modèles comme des données. Il est illustré par des
modèle du domaine de l’interaction Homme-Machine.

KEYWORDS: complexity, modeling, models exploration, visualization, HCI.

MOTS-CLÉS : complexité, modélisation, exploration de modèles, visualisation, IHM.

DOI:10.3166/TSI.35.175-202 c© 2016 Lavoisier

Technique et science informatiques – no 2/2016, 175-202

176 TSI. Volume 35 – no 2/2016

1. Introduction

Nowadays, Model Driven Engineering (MDE) is a well-known approach that aims
at simplifying application development by abstracting through design. Abstractions
are made by models and transformations. Each model represents one aspect of the
system (Schmidt, 2006). So system viewpoints are depicted by different models. For
example, in engineering of Human Computer Interaction (HCI), many languages have
been proposed to describe User Interface (UIs) from several viewpoints (static and
dynamic) with different concepts (tasks, users, widgets ...) and at several levels of
abstractions (task, Abstract User Interface, Concrete User Interface, Final User In-
terface). At EICS’2010, 68 model based languages were denominated. The variety
and the number of models and relationships between them cause a model complexity
problem.

Model complexity raises new challenges for designers. Among many heteroge-
neous application concepts, designers need to have a global understanding about their
model eco-system (Sottet et al., 2009). The model complexity factor does not only
come from understanding one concept with its syntax, semantics, and relationships
with other concepts, but it also comes from the holistic models perspective. By master-
ing the model complexity problem, designers should be able to understand the whole
design perspective and the role of each model in the whole design.

This paper focuses on the problem of model proliferation i.e. the management
of a lot of models and their relationships. Our approach considers model as data to
take advantage of the data visualization research for managing the problem of model
proliferation. The interactive visualization approach provides a large set of features
like filter, sort, detail on demand, history and extract to explore large dimensional
data. Applying such features to models can help to access and understand a large
set of models. The issue is how to design these adequate features to access models.
One well-known interactive visualization technique that could answer this question
is the seeking mantra (Shneiderman, 1996). The seeking mantra is an interesting ap-
proach, thanks to its holistic perspective to design visualization tools. It is an impor-
tant methodological contribution by providing visualization tools design guidelines
(Craft, Cairns, 2005). To show that it is able to master the model complexity problem,
we develop and experiment the MoVi (Model Visualization) environment following
its principles.

MoVi is a proof-of-concept that supports model exploration by applying the seek-
ing mantra to support multi models exploration. The mantra becomes our method-
ological approach that guides the design of the interactive visualization features. For
implementation, we use Data Driven Document (D3) (Bostock et al., 2011), a library
that provides an expressive and simple language and allows to generate interactive vi-
sualization tools based on data. In our case, models are considered as data, creating
then models networks, which can be manipulated thanks to the seeking mantra. Some
users’ feedbacks confirmed the interest of the mantra and of its application into the
MoVi environment for the management of model eco-systems.

Interactive visualization for model proliferation 177

The organisation of the paper is presented as follows: the background of this work
is discussed in Section 2. In Section 3 we explain the state of the art. Our contribu-
tion that convers up the conceptual and technical solutions is explained in Section 4.
Finally, Section 5 proposes a summary of our work and some perspectives.

2. Background

This section gives the background of this work: the illustration of the modelling
complexity in HCI and some visualization foundations which can be useful for mas-
tering model complexity.

2.1. Modelling complexity

To illustrate the problem of model proliferation, we consider models proposed in
the Human Computer Interaction (HCI) community. There is no standard method to
create good user interfaces (UIs). It depends on many aspects like the context of use,
the look and feel, and ability to accomplish user task efficiently. Thus, the user in-
terface modelling approach plays an important role to propose appropriate, accessible
and understandable abstractions, for instance using declarative user interface model
(UIMs) (Da Silva, 2001).

Every user interface modelling aspects such as domain, task, platform, presenta-
tion, and application have their own role in design processes. Some works aim at
helping designers to understand how using models in HCI. For example, one of the
well-known framework is CAMELEON (Calvary et al., 2003), which identifies and
structures a set of models for adaptable UIs. It supports building multi-target user
interfaces by presenting several levels of abstraction. It defines the structure of user
interface design with four levels (fig.1):

1. The highest layer of abstraction is represented by the domain and task models
that is related to the Computer and Platform Independent Model (CIM/ PIM) in MDE.
Domain model describes the application concepts and their relationships. It can be
represented by UML class diagrams. Task model considers the sequencing of tasks
realized by users, the system or in interaction between them. It can be represented as
CTT (Concur Task Tree) (Paterno et al., 1997), which associates tasks with temporal
operators.

2. The second layer is the Abstract User Interface (AUI), that is independent of
any implementation and interaction modality (i.e. voice, graphic, text, etc.).

3. The third layer is the concrete user interface (CUI), that is independent of any
implementation but dependent of interaction modality. For instance, UIs as the graph-
ical widget representation (i.e. textfield, button, label, etc). It is Platform Specific
Model (PSM) and it can be expressed by XIML (Puerta, Eisenstein, 2002).

4. The lowest layer is the final user interface (FUI), that is dependent to both the
implementation and interaction modality. It represents concrete UIs that is imple-
mented using a specific technology (SwingX, AWT, HTML, etc).

178 TSI. Volume 35 – no 2/2016

Based on different contexts of use (user, platform or environment), models can be
adapted.

Figure 1. Cameleon Reference Framework (Calvary et al., 2003)

(X)

(Y)

(Z)
(Z)

(Z)

(Z)

(a)

(a)

(a)

(a)

(a)

(a)

(b) (b)(c)

(Z)

(Z)

(Z)Z

Z

Z

Z

Z

Z

X

Y

a

a

a

a

a

b b
a

c

Figure 2. Multi models of a single system (Sottet et al., 2007)

Figure 2 illustrates a system to manage home temperature. Several models rep-
resent different aspects. Firstly, a task model (fig-2-X) is expressed by CTT, which

Interactive visualization for model proliferation 179

represents the user’s and system task and their sequencing. Here there is a task "man-
age home temperature" which is decomposed into two subtasks "Select room" and
"Set room temperature". Secondly, the domain model (fig-2-Y) is expressed by a
UML class diagram, which represents all concepts and how they are connected to
each other. Here there are three classes "Home", "Room" and "Temperature". Some
links can be made between the task and the domain models: in b, the link expresses
that the task "Select room" (resp. "Select temperature") concerns the concept "Room"
(resp. "Temperature") ; in c, the instances of rooms are linked to the task that ma-
nipulates them. Thirdly (in links labeled a), several FUIs (fig-2 a/, b/, c/, d/, e/) are
proposed depending on the context of use i.e. the devices and their technologies.

Therefore, modelling UIs requires many models. We can see with a very simple
example the number of models created and imagine the models proliferation for more
realistic applications.

2.2. Overview of model editors

To manipulate models, designers generally use model editors. For instance, Eclipse
and EMF can be used to edit UML, BPMN and OWL based models. Typically, spe-
cific models editor or Integrated Development Environment (IDE) helps to create and
explore a single type of models. There is also research on UML analysis and design
based on different point of views (Nassar, 2003) that guides designers in developing
UML models. Openflexo (Guychard et al., 2013) provides some conceptual inter-
operability though model federation that captures model transformation and model
development based on its federation.

It is known that interactive visualization technique can simplify complex mod-
els (numerous models, with relationships) analysis (Bull, Favre, 2005). However, as
the classical editors, the existing visualization tools (Lanza, Ducasse, 2005), (Blouin,
Combemale et al., 2015), (Garcia et al., 2010), (Maletic et al., 2001) are designed for
representing models in a fine-grained approach: they mainly create models editor by
separating models.

However editing models in separated environments or panels is restrictive: for
instance, using the CTT editor to describe a task model and a UML editor to specify a
domain model does not allow designers to link a concept to the tasks that manipulate it
(e.g. linking Temperature to "Set Room Temperature"). This situation emphasizes the
need for an integrated environment that allows designers to create links and navigate
among models and get a holistic perspective of design.

2.3. Interactive visualization

2.3.1. Overview

Interactive visualization is a technique to visually represent data to amplify cogni-
tion thanks to user-system interaction (Card et al., 1999). It is supported by two main

180 TSI. Volume 35 – no 2/2016

components, visual representation and interactive aspect. Visualization is all about
representing data in a way that makes it simpler to understand and faster to grasp the
data set phenomenon (Bihanic, Polacsek, 2012). It can be applied to large set of data.
For instance, the InfoVis Toolkit (IVTK) (Telea, 2014) introduces visualisation analy-
sis framework like Gephi (Bastian et al., 2009) and Tulips (Auber, 2004) and provides
a set of features to examine big data.

Interactive visualization has been used in many domains like computer science
to help analysing data combined with statistic approach (Fayyad et al., 2002). The
medical domain uses it to simulate operation or visualise treatment for critical organ
(brain, heart) (Ropinski, Preim, 2008), geology to simulate earth-quake (Yu et al.,
2004), industry to help in the automotive development (Engel et al., 2000) and many
other domains.

Visualization types not only differ from their implementation, but also from the
visual design representations (fig-3). Figure 3 presents some examples of visualization
diagrams (a) Force-Directed Graph, (b) Sunburst, (c) Chord Diagram 1. Visualization
diagram usage depends on the data display format and on the visualization design
preferences.

Figure 3. Different types of visualization

One of the common visualization advantage is to support data analysis by present-
ing a set of methods that allow to represent, visualize, categorise, and group numerous
data based on their characteristics. It also provides fundamental techniques to make
tremendous data accessible for users. It is widely used to express large data sets
with high dimensional space and complex structure (Bull, Favre, 2005). For instance,
ManyEyes (Viegas et al., 2007) (fig-4)2 is a visualization web tool that enables the
creation of user based visualization and that fosters large collaborative development.
It allows visualization to be implemented in many domains.

2.3.2. From data to visual representation

The visual representation process is defined by a pipeline from raw data to the final

1. visualization diagram https://github.com/mbostock/d3/wiki/Gallery
2. http://www-01.ibm.com/software/analytics/many-eyes/

Interactive visualization for model proliferation 181

Figure 4. Manyeyes : web visualization examples from left to right tree-maps, bubble
chart, matrix bar chart, matrix pie chart, map, interactive scatter plot, word cloud,

word tree, matrix chart, block histogram, phrase net, interactive bar chart

presentation (Card et al., 1999; Chi, Riedl, 1998). (Santos, Brodlie, 2004) formalizes
this pipeline as (fig-5):

– Data Analysis: techniques such as smoothing filter, interpolating missing val-
ues, or correcting erroneous measurements are used to prepare for visualization.

– Filtering: users can select data portions to be visualized .
– Mapping: focus data are mapped to geometric primitives (e.g., points, lines) and

their attributes (e.g., color, position, size);
– Rendering: geometric data are transformed to image data.

Figure 5. Visualization pipeline (Santos, Brodlie, 2004)

2.4. Actions on visualization

More than representation, interactive visualization concerns interaction. One sem-
inal work in visualization is the information-seeking mantra (Shneiderman, 1996). It
gives a "design pattern" to develop visualization tools by applying information visu-
alization main tasks. The seeking mantra consists of some main functions:

182 TSI. Volume 35 – no 2/2016

– Overview: provides global context to understand dataset.
– Zoom and Filter: select and focus only on the interesting part by reducing the

complexity of data representation.
– Details on demand: enables information appearance only when it is needed.
– View Relationships: displays relationships between visualization data items.
– History: provides feature to restore the previous events.
– Extract: extracts important information for dataset featured visualization tools.

With such interactive visualization techniques, we expect to be able to master the
model proliferation problem. As the next section will show it, other works already
explored this solution.

3. State Of the Art

This section presents the state of the art of using visualization techniques for model
proliferation. We classified four majors related work categories including: (3.1) Vi-
sualization techniques for complex software code; (3.2) tools for managing very large
models; (3.3) applications to navigate between HCI models to support understanding
and (3.4) visualization approach that is used to help in modelling.

3.1. Visualization technique for application code

Visualization technique is well-known to handle complex data analysis problem.
Thus, several visualization based projects propose to visualize the implementation
code in order to support programming tasks (fig-6).

For instance, (Ball, Eick, 1996) (fig-6-a) augments software code by presenting
global to details views of software program with different colours based on the code
type and manipulation history. With this representation, programmers can easily ver-
ify which part of the code is recently modified. Besides, it provides three different
sizes of code windows that allow programmers to rapidly look at through the long line
codes considering different colours code notation.

CodeCrawler (Lanza, Ducasse, 2005) is a visualization tool which allows to vi-
sualise object-oriented software in the fine-grained poly-metric views. It is used to
visualize object-oriented code. It implements lightweight 2D-3D representation aug-
mented with semantic informations extracted from miscellaneous code analyzers. It
presents prominent class blueprint view as a hierarchical classes representations. It
also uses colours to determine class categories and bar sizes to determine number of
elements. Coloured ingoing and outgoing edges represent classes method invocations.
More ingoing and outgoing edges in a class determines the important role of the class
because it invokes several methods (outgoing links) and it is invoked by many methods
(ingoing links). Programmers are also able to interact with the environment by select-

Interactive visualization for model proliferation 183

ing (right click) a particular class to examine its detailed elements. The objective is to
help in the code maintenance.

The visualization techniques used to support programmers are interesting and
could contribute to model exploration, especially the way to provide details and crit-
ical informations. It gives basic idea to links different levels of abstraction without
sacrificing any data.

Figure 6. View of visualization code tools for (a) software visualization in the large
(Ball, Eick, 1996) and (b) CodeCrawler (Lanza, Ducasse, 2005)

Following the idea of visualization of using colours or more generally visual clues
to help in understanding one model, Moody proposes the physic of notation (Moody,
2009) which gathers principles to design the graphical notation of a language. From
these principles, some authors like (Le Pallec, Dupuy-Chessa, 2012) try to define
properties or metrics for the visual quality of models. If this approach is interesting, it
is restricted to one model and does not consider the model ecosystem.

3.2. Managing very large models

Very large models require specific tools to deal with model complexity. Some
researches about managing large models have been done like Map/Reduce on EMF
models (Scheidgen, Zubow, 2012) or No4EMF (Benelallam et al., 2014). (Scheidgen,
Zubow, 2012) enables the processing of complex data structure using EMF program-
ming modelling cloud computing. No4EMF (Benelallam et al., 2014) is a scalable
persistence layer for EMF models. It provides software development methods that
are able to handle large-size artefacts by adding a new scalable persistence layer that
exploits the efficiency of graph databases to store and access EMF models.

Nowadays, the cloud provides unlimited storage to support ubiquitous comput-
ing. Cloud computing is also used to facilitates very large model storage and model
transformation executions. For example, (Clasen et al., 2012) uses a cloud base ar-
chitecture, with parallel processing to couple model transformations and models that
are processed. They address two phases of model storage and model transformation
execution in the cloud. Another scenario to work with very large models is using map-
based transparent persistence (Gomez et al., 2015). It builds an additional transparent

184 TSI. Volume 35 – no 2/2016

persistence layer using map-based model or database engine for modelling tools like
Eclipse Modeling Framework (EMF).

Hence, solutions to deal with very large models is discussed and solved in many
ways. They can contribute to manage and describe solutions to transfer models prop-
erties in details using cloud based technology. They tend to solve model scalability
storage problem using cloud. However our problem is not limited to storage, it is also
related to the way of understanding the global structure of a model ecosystem.

3.3. Navigation between models in the HCI domain

Model proliferation issues have been studied by different approaches. The first
one is limited to models and does not consider meta-model and transformation like
IdealXML (Montero, Lopez-Jaquero, 2007), Mega-UI (Sottet et al., 2009), Genius
(Sottet, Vagner, 2013), AME (Garcia Frey et al., 2014), Model voyager and Quill
(Genaro Motti et al., 2013).

IdealXML is an model based application that allows to create fast prototypes that
can be modified easily at the abstract level. It focuses on a high level of abstraction
to reduce model complexity, so it considers only one level of abstraction of the HCI
design.

Mega-UI is an environment to manage MDE structures at various levels. It allows
to navigate between components in the same model and navigate from one model to
another model in the same system. It focusses on the usability aspect design instead
of functional factors adaptation. It introduces UI design from different point of views.
It demonstrates the importance of the possibility to navigate between models. How-
ever, it only considers different models in the same system and it does not present the
external related models from another system that can contribute to the whole design.

Model voyager allows users to navigate inside models at the different levels of ab-
straction of the CAMELEON reference framework. It presents the various UI models
using semantic tree representation. It supports users in understanding MDE approach
especially in HCI domain. Nevertheless, it currently does not present many applica-
tions designs at the same time. Additionally, it only considers models but it does not
consider meta-models and transformations.

Quill is a web based development environment that enables various stakehold-
ers to collaboratively adopt a HCI design using model-based approach. It generates
adaptable a user interface based on the input model. It compares visual representation
and textual description to ensure application interoperability. It presents very interest-
ing model design decision containing ten requirements namely flexibility, portability,
context awareness, usability, scalability, consistency, persistence, functionality, col-
laboration and efficiency. Quill focuses on providing several adaptive User Interfaces
depending on the given platform settings. Moreover, it does not consider meta-model
representation and existing models as a reusable resources.

Interactive visualization for model proliferation 185

Only Mega-UI considers all model perspectives (model, meta- model, transforma-
tion) in order to help designers to understand the whole design picture. Accordingly,
none of the studied approaches presents various model categories and several system
designs at one time to give holistic design perspective and to promote model reusabil-
ity.

3.4. Visualization for models

The visualization approach also proposes good opportunities to support model un-
derstanding by providing adequate features to navigate inside an ecosystem of models.
Some visualization tools were designed to visualize some model complexity aspects
such as (Bihanic, Polacsek, 2012), UML tree-map visualization (Garcia et al., 2010),
"Moose" (Ducasse et al., 2000), "Imsovision" (Maletic et al., 2001) and "Explen"
(Blouin, Moha et al., 2015). The visualization techniques used are based on graphs.
There are three major visualizations in the graph representations (Bihanic, Polacsek,
2012): trees (fig-7-a), maps (fig-7-b), and landscapes (fig-7-c). Trees provide hier-
archical representation of the information (inheritance trees). Maps are appropriate
to illustrate complex data representation, for instance representing voronoi diagrams
or networks. Landscapes provide multi-scale representations of planar shape with
contextual and logical information flow. Each node represents a single data and a re-
lationship illustrates the link between two data. For example in an air traffic control
application, the nodes can represent airports and links plane routes.

Figure 7. Three visual representations for complex information system (a) trees (b)
maps (c) landscapes (Bihanic, Polacsek, 2012)

(Garcia et al., 2010) proposes a visualization tool that describes a large software
thanks to a treemap hierarchy and a table lens representation. It considers UML class
diagram models used for the reverse engineering of large scale softwares. As example,
many open source codes are available on internet in code repository sourceforges3. In
order to be able to modify these codes, it is necessary to understand the code structure.
Reverse engineering extracts source code to the more abstract perspectives (models).

3. An open source software repository available in site : http://sourceforge.net/

186 TSI. Volume 35 – no 2/2016

The tool allows users to have a hierarchical representation of the models. However, it
considers a single type of model (UML class diagram).

"Moose" (Ducasse et al., 2000) is an extensible language-independent environ-
ment that provides a meta-model system representation to support CodeCrawler. It
allows to explore the meta-models of the software models that are represented by
CodeCrawler. It aims to provide navigation and manipulation of models considering
their different versions in order to support system reengineering. Together with Code-
Crawler, they provide some interesting features such as model and meta model layers
focussing on detailed design representation.

"Explen" applies slice-based visualization to support meta-model exploration. Slic-
ing method mainly aims at providing an extraction feature to select only a subset of
a meta-model. The features of "Explen" are developed based on "Kompren" (Blouin,
Combemale et al., 2015), a domain specific language to define model slicers. Basi-
cally it provides a method to develop different kinds of filters to navigate and explore
large meta-models. So it supports large meta-model exploration and helps in their
understanding.

"Imsovision" builds task analysis based on the seeking mantra. It focuses on using
3D and Virtual Reality as the default technology to visualize UML models. It is an
interesting approach, although it only considers one level of abstraction. So it poten-
tially sacrifices many information like meta-models or models relationships especially
when dealing with very large software projects.

To summarize, the existing model editors and visualization tools mostly concern
a particular model type (e.g. UML, class diagram, meta-model) whereas having an
holistic view of the design is an important capability for designers. Accordingly, it
is important to create an integrated tool to support multi model exploration tasks that
allow to map different types of models (Kent, 2002). It can be realized by applying
visualization techniques. One seminal works that guides the design of visualization
features is the seeking mantra (Shneiderman, 1996). But, except "Imnovision", none
of the existing tools for model exploration fully supports the mantra and its main
features (overview, zoom and filter, details-on-demand, view relationship, extract).

4. From Interactive Visualization to MDE in MoVi

This section discusses our solution to solve the model proliferation problem. We
elicit model complexity factors like multi models, various types of model and dif-
ferent relationships and propose to overcome these factors by applying visualisation
techniques.

4.1. Overview

Our solution is composed of two complementary parts for users (fig-8):

Interactive visualization for model proliferation 187

– a (meta)model editor allows designers to create their models and links between
them (e.g. version, abstraction).

– a model visualization tool for the exploration and visualization of (meta)models

Both parts rely on common functionalities to store and access to models, metamodels
and transformations.

Model Exploration

Model Creation and Refinement

Figure 8. Overview of the solution

This paper focuses on model visualisation, which is the most original part of our
work. It presents MoVi (Model Visualization), an environment for models exploration.
In its current version, (meta)models are collected manually and entered in the system
as images that are referenced in JSON files; their links are declared as properties. From
this information, MoVi takes benefit from interactive visualization features inspired
from the seeking mantra to permit model navigation. The next subsections describe
the MoVi principles and implementation.

4.2. Unification principles

The key principle of our solution is to set higher level model exploration for sup-
porting holistic design. Interactive visualization provides major features that are re-
quired to explore models like provide model representation, search particular model,
filter only desired models, view only important model properties, or select related
models. According to the taxonomy of interactive dynamics for visual analysis (Heer,
Shneiderman, 2012), we map some visualization analysis features to model explo-
ration tasks (Table 1).

Based on this mapping, we propose the MoVi prototype to support the seeking
mantra.

4.3. Holistic design of MoVi

A model exploration scenario can follow a top-down approach by examining gen-
eral to detailed models. Accordingly, it gives a general perspective of all models from

188 TSI. Volume 35 – no 2/2016

Table 1. Mapping visualisation analysis to model exploration task

Visualization Analysis Model Exploration
Choose visual encoding Design model representation
Derived value or models from source data Implement model representation
Sort item to expose pattern Search particular model(s)
Filter out data to focus on relevant item Filter only desired models
Select important items View only important model properties
Navigate to examine related items nagivate among models

an abstract point of view. Additionally, relationships between models help to under-
stand the model position in the whole model ecosystem.

MoVi (Model Visualization) presents various kinds of models/metamodels from
the HCI domain. Of course other kinds of models can be considered, HCI models are
only illustrative. MoVi features also manage meta-models and relationships between
models and/or meta-models. In MoVi, a model is represented as a node (fig-9-a-1)
with a specific colour identifying a model type. This representation aims to handle
various model types. Model relationships are also presented as various coloured and
distance edges between nodes (fig-9-a-2). Colour represents the relationship type and
distances displays models similarity. Similarity is currently created manually by con-
sidering three types of model relationships (dissimilar, weakly similar and very simi-
lar). This encoding with colours and distances aims to tackle various types of model
relationships by showing relationship diversity in the design space. It also complies to
the "view relationship" of the mantra principle.

Displaying different kinds of models and metamodels gives an holistic perspective
about models and their relationships to improve model understanding. The "Overview"
feature (fig-9-a-8) also guides users while they are exploring models by providing a
selection feature. It determines which set of models are selected amongst the model
ecosystem. This feature mainly proposes a solution to present many models at the
same time.

Regarding to the model levels of abstraction, we adapt seeking mantra "zoom and
filter" feature. MoVi provides geometric zoom (fig-9-b) as well as filtering features
to concentrate on some models and to exclude uninteresting ones. There are two
main filter types: a) generic filters that allow designers to filter models based on their
relationships (i.e. abstraction, generalization, composition, instantiation, and associ-
ation) (fig-9-a-4), applicable to both the model and metamodel (fig-9-a-5) levels, and
b) domain-dependent filters (e.g. domain, task model, Abstract UI, Concrete UI, Final
UI in HCI) (fig-9-a-6).

Considering model exploration point of view, it is important to navigate inside
models and to focus only on one part of the model subset. The mantra presents the
"extract" principle that we use to extract important information from models. So there
is a search based on the model name and category (fig-9-a-3) and a selection (fig-9-

Interactive visualization for model proliferation 189

Figure 9. Holistic view of MoVi features from left to right (a) Main page of MoVi, (b)
Zoom in feature, (c) Selection feature

c) for choosing target models. It is based on model neighbourhood (models that are
directly related to the target model). It helps designers in examining a set of desired
nodes that represent model mapping.

Moreover, MoVi provides details on demand to show models label (fig-9-c) and
properties (fig-9-a-7) only when it is needed otherwise it is hidden. This feature is
directly referring to the mantra "details-on-demand" principle.

4.3.1. Model, meta-model and relationship visual encoding

In this section, we describe each solution by explaining model exploration tasks
using MoVi. MoVi propose to manage models, metamodels and relationships be-
tween models and between models and metmodels. Model relationship expresses link
between a model to another model. There are many types of model relationships.
For instance, a model must be an instance of a metamodel or in HCI models, there
is abstraction relationship between a task model and its corresponding abstract user
interfaces.

In MoVi, model inputs are an image of the model and some properties like its
type or its metamodel. As mentioned in Section 4.2, in this environment, models are
represented as a node and relationship as an edge. Every node contains an image to de-
termine original model-like views and colour to determine its types (fig-10-a). Links
also have different colours to represent different relationship types (fig-10-b). Rela-
tionship types that are currently considered in MoVi are abstraction, generalisation,
instantiation, composition, and association.

– Abstraction (fig-10-b.1) represents a relationship between different level
of models, for instance relationship between abstract user interface (AUI) and
task/domain model.

– Generalisation (fig-10-b.2) expresses generalisation-specialisation between
models. In such manner, it uses to relate "manage digital home" task model as a
generalisation of "manage home temperature" task model.

190 TSI. Volume 35 – no 2/2016

– Instantiation indicates that one model is an instance of another model. This
relationship is mostly used to express that a model is conform to a meta-model. For
instance, there is an "instantitation" relationship between the CTT meta model and a
task model.

– Composition indicates that one model is composed of other models. For exam-
ple "manage home temperature" AUI is made of two AUIs: one for "select room" and
one for "set temperature"

– Association (fig-10-b.3) represents a link between models. For instance there
is an association between the task model of "manage identity" and the domain model
where the identity is defined.

Figure 10. Visual encoding

In addition to models and relationships, one of the model exploration parameter
is the distance between models. It applies different links length considering differ-
ent similarity model distances. Similarity could be computed by machine learning,
graph matching (graph theory), etc , but this is out of scope of this paper. In MoVi,
model similarity is created manually by considering three types of model relation-
ships (fig-10-c)(dissimilar (fig-10-c.1), weakly similar (fig-10-c.3), and very similar
(fig-10-c.2)).

We also provide a legend (fig-11) to help designers in understanding the visual
encoding in MoVi.

4.3.2. Overview

The concept of overview (Craft, Cairns, 2005) aims at giving a general context for
understanding the whole model ecosystem. It presents an holistic view of all exist-
ing models (fig-12) with feedback to the user. It uses different opacity and sizes to
highlight the model subset that was selected by the user in the model space.

Interactive visualization for model proliferation 191

Figure 11. MoVi legend

Figure 12. Overview

4.3.3. Details-on-demand

The details-on-demand feature (fig-13) helps users focusing on the particular part
of the models or items. It displays a model label (fig-13-1), a relationship label (fig-13-
2), and model properties (fig-13-3). These details appear only on demand. Model and
relationship labels appear when user hovers the model of interest. Model properties
are activated by clicking on the properties tab.

Figure 13. Details on demand

192 TSI. Volume 35 – no 2/2016

4.3.4. Extract

Model extraction is an important feature. It also helps users finding an interesting
set of models. User double clicks on the model of interest and MoVi removes all the
models that are not related to this model (fig-14-a). Overview is updated accordingly:
it highlights the selected models by displaying them differently (fig-14-b). The se-
lected model properties tab shows the selected model, its properties, and its related
models (fig-14-c).

Figure 14. Extraction

4.3.5. Zoom

Zoom is a crucial feature to examine models into details. There are some types
of zoom like the semantic and geometric zooms. In MoVi we only use the geometric
zoom as a proof-of-concept. It shows the image at a bigger scale (fig-15). This func-
tion is activated by scrolling up or double clicking on the model of interest. Zoom out
is activated by scrolling down.

Figure 15. Zoom

Interactive visualization for model proliferation 193

4.3.6. Filter

As we mentionned in the holistic view of MoVi (section 4.3), there are two types
of filters:

– Generic filters (i.e. abstraction, generalization, composition, instantiation, and
association) for filtering models based on their relationships (fig-16-1). For instance,
fig-16-1-a highlights a filter on the instantitation relationship. This means that only
these relationships will be displayed in the MoVi main page. The filters are applicable
to both models and metamodels (fig-16-2).

– Specific filters that are domain dependent. For instance, in our case, filters are
specific to the HCI domain; so designers can filter models related to the domain, the
tasks, the Abstract UIs, the Concrete UIs, Final UIs (fig-16-3). Here MoVi will display
only the domain models in the main page.

Figure 16. Filter parameter

One possible scenario is to filter models by combining instantiation, metamodels,
and domain models (fig-16-a). The specification of the filter is done with checkboxes
for supporting multiple choices. (fig-17) is the result of the filters specified in fig-
16 i.e. the selection of domain models and meta-models that are linked through an
instantiation relationships.

4.3.7. Search

Search is done by entering a text in an input field (fig-18-a). Search can be per-
formed on the model name (fig-18-d) or on category (fig-18-c). For preventing users
from errors, MoVi supports autocompletion (fig-18-b).

4.4. Implementation

MoVi (fig-19) processes models in three steps:
– Model collection (left part of the figure). It is the result of an initial activity that

collects the models,
– Pre-processing formats raw models to make them compatible with the next step.

It consists of registering model properties (e.g. name, description, image, type, etc),

194 TSI. Volume 35 – no 2/2016

Figure 17. Filter result

Figure 18. Search

grouping models, and generating JSON (JavaScript Object Notation) file. When JSON
file changes, the visualisation is updated accordingly.

– Visualization covers the generation of the appropriate visualization and the fea-
tures described before (overview, zoom and filter, search, extract).

To make easily accessible, MoVi is implemented as a web based application. It
uses the data driven document (D3) library (Bostock et al., 2011) which provides
features for generating visualization for data. D3 combines DOM (document object
model) as document structuration, HTML5 for markup language, CSS for aesthetic,
JQuery for controling menu effect, JavaScript for performing interactions, JSON for
format data input, and SVG for having data as a graphic representation. The visual
appearance depends on the json files which contains a link to the model images. There

Interactive visualization for model proliferation 195

Figure 19. MoVi processing steps

are several possible layouts in D3 like divergent forces, multiple foci, graph construc-
tor, force-directed tree, force-directed symbols, force-directed, images and labels.

4.5. Users’ Feedbacks

In order to help us in the design of MoVi, we realized a formative experiment. It
means that it is not a final evaluation of the prototype. This evaluation aims at getting
users’ feedback about two asumptions concerning the prototype features and usability.
The results will be used to improve MoVi according to users’ requirements.

4.5.1. System setup and Participants

We started with providing many and various models with heterogeneous types
of relationships shown in (fig-9-a). The models consist of 44 HCI models and 48
relationships. The 44 models are categorised as model or meta-model and as domain
model, task model, abstract user interface, concrete user interface, final user interface,
platform and other type of models. The 48 relationships are categorised as abstraction,
generalization, instantiation, composition and association.

Twelve persons with various profiles (age, occupation, and working experience)
gave their feedbacks about MoVi. The participants are between 21 and 32 years old.
They are students and researchers with various domain of expertise: MDE and HCI,
HCI, formal methods, Architecture, system, compilation, and visualization.

Table 2. Subject profile

Number Subject profile
3 Subject who is not familiar either with MDE neither HCI.
1 Subject who is familiar with MDE but not familiar with HCI.
3 Subject who is familiar with HCI but not familiar with MDE.
5 Subject who is familiar with both MDE and HCI.

196 TSI. Volume 35 – no 2/2016

4.5.2. Asumption 1 (A1)

The first asumption that we want to explore is that MoVi helps designers to find a
subset of models from a large set of models. MoVi masters model complexity (multi
models, relationship, multi levels of abstraction) by providing visualization features
to explore models. So each subject was asked to perform three model exploration
tasks using MoVi, and to give comment about MoVi. Tasks had different levels of
difficulties. But they did not aim at figuring out the subject model understanding.
Participants had to answer questions about their opinions. We also measured how long
they need to accomplish task (timer), calculated the number of errors that are made
to find a particular model (wrong response), calculated the number of terminated and
non terminated tasks.

4.5.3. Asumption 2 (A2)

The second asumption concerns MoVi support for models exploration and model
understanding. Designers could explore the existing models using MoVi to support
them learn about model and design new model. Participants used MoVi features to ac-
complish model exploration tasks and to have an idea of how to reuse existing models.
The tasks aimed at figuring out participants’ understanding of models. So participants
were asked to create a new model using existing related models. They had to explore
the model ecosystem to get knowledge about HCI models. Then they had to note their
experience using MoVi and to give strength and weakness points.

4.5.4. Results

Even if the number of participants was limited, we got several feedbacks that are
useful to improve the MoVi prototype. First of all, all tasks were terminated with
only few errors (only 5% of errors). The duration lasted from 5 to 20 minutes for an
average of 13 minutes. This difference cannot be fully explained. It may be due to the
variable task difficulties, to the sequencing of tasks or to their formulation.

From the users’ point of view, participants perceived that MoVi helps in models
exploration by using features like filter, search and extract. It is consistent with the first
asumption which states MoVi can support model exploration tasks by implementing
features to navigate between multimodels and their relationships. However, partici-
pants using MoVi to explore models, did not use all the proposed features (table 3).
The most useful features were search, extract, zoom, and filter. Overview and legend
were only cited once. Details on demand did not seem to be important. But this might
be due to the fact that required tasks do not focus enough on details.

For the second asumption, results also relate to the information that users need to
accomplish tasks (table 4)). Here we can note the importance of legends and examples.

We also categorised users’ comments based on the application aspects in tables 5
and 6. From these preliminary results, we can notice that the prototype is perceived
as usable (model navigation and model properties features) and useful (model repre-
sentation and model examples). However some improvements were suggested about

Interactive visualization for model proliferation 197

Table 3. Helpful features to accomplish the tasks

Number of citations Helpful features
7 Search
5 Extract
4 Zoom
4 Filter
1 Overview
1 Legend

Table 4. Necesary information

Number of citations Important information
9 Model and relationship names and their category (Legend)
5 Examples of models of the same type
3 Information that provides similar model

usability (e.g. for menu and model label setting) and usefulness (addition of models
version, search of a group ...).

4.6. Discussion

Even if the first users’ feedbacks are encouraging, MoVi still suffers from limits
that we have to consider.

Firstly, MoVi inputs are model images and properties that are collected manually
from many sources. Different sources and model formats require preprocessing to
unify models and properties to make them compatible with the format required for
data manipulation, JSON. Unfortanetely JSON is not compatible with model editors.
So there are some drawbacks regarding the input format. We recognise that this kind
of input lacks of compatibility and of dynamicity for direct model modification. But
it is possible to connect the MoVi environment to various model editors.

Secondly, MoVi presents model visualisation in graph representation. This kind of
representation has some drawbacks. We need layouts that can manage more models
while preserving the ability to show overviews of model details without zooming the
nodes. Graph representation also has a simple concept of relationship between nodes.
This simple representation decreases designers’ effort to remember a lot of visual
variables in MoVi. But a limitation is that we need to consider map organisation
which calculates node position while preserving edges between nodes.

Finally, MoVi can also facilitate model creation by providing model examples and
counterexamples. Nevertheless, it is only a first step in studying model reuse and some
improvements must be made to improve MoVi in this way.

198 TSI. Volume 35 – no 2/2016

Table 5. User experience to use MoVi - Strengthes

Strong Analysis Eval.
points group

Search is good Usable to explore models A1
Extraction quite helpful Usable to explore models A1
Filtering is good Usable to explore models A1
Overview feature is helpful Usable to explore models A1
Filter and search feature Usable to explore models A1
We can see inside the nodes Usable to explore models A1
Very easy to group and Usable to explore models A1
visualize the relationships
Different colour impact was Visual encoding design A2
very good to distinguish models supports model exploration
The interface is pretty Visual encoding design A2
(colours to distinguish supports model exploration
the type of model and
relationships between them)
The way models are displayed Visual encoding design A2
is really nice supports model exploration
Good representation of model Visual encoding design A2
and their link supports model exploration
Having finished example which Functionality support to learn A2
guide new designs models by example
Learn models by example Functionality support to learn A2

models by example
Keeping meta-model Support multi model exploration A2

5. Conclusion and Future work

This paper presents MoVi, a proof-of-concept tool for supporting models explo-
ration by applying interactive visualization features. MoVi presents a novel way of
working with MDE models, employing a network structure. It presents various kinds
of models, metamodels and relationships used in the HCI field. MoVi supports the
mantra principles: overview, zoom and filter, details-on-demand, view relationship,
extract and search for extending visualization feature design in order to support multi
model exploration. The first users’ feedbacks show that MoVi is useful even if it needs
to be improved in terms of usability and exploration features.

Moreover, exploring models is complementary to other actions such as modify-
ing or adding models directly in the MoVi environment. So we would like to inte-
grate some model editors into MoVi. Models could be processed for MoVi (semi)
automatically. Currently, we mostly use pre-defined model collection and preprocess
them manually. Therefore, automated model collection could help in providing ready-
state model instants. Moreover such automation could permit to realize some quality

Interactive visualization for model proliferation 199

Table 6. User experience to use MoVi - Weaknesses

Weak Analysis Eval.
points group

Filtering is a bit messy Usable to explore models A1
Abbreviation in search Usable to explore models A1
(Task Model = TM)
Do not use same colour Usable to explore models A1
for node and link
Add select all button in filter Usable to explore models A1
The label of the models Usable to explore models A1
are not well positioned
Menu could be fixed Usable to explore models A1
Difficulty to search model Usable to explore models A1
Based on the model group
Change icon refresh Usable to explore models A1
Overview is not clear Usable to explore models A1
to distinguish selected
models
There is colour but no shape Visual encoding design A2
as a visual variable supports model exploration
Tree exploration with Functionality support A2
"contextual" node with low opacity to learn models
Add matrix displays for Functionality support A2
bigger number of models to learn models
Add version relationship to Functionality support A2
know different model versions to learn models

measurements and controls. A seminal work related to this approach is using Model
Driven Engineering metrics for real time system (Monperrus et al., 2008).

In the future, MoVi can also be improved in several other directions. We could
incorporate algorithms from data mining and machine learning for model clustering.
It would provide more possibilities to group models depending on different categories
(functionality, model pattern, etc). We expect that in this way, users will get more
knowledge from existing models. We would also like investigating 3D rendering in
order to provide better model understanding (Pilgrim, Duske, 2008). An history fea-
ture could be interesting to log user activity when exploring models.

Even if it remains a lot of work to finalize MoVi, it seems to be a good solution
to explore model ecosystems thanks to interactive visualization features, particularly
thanks to the seeking mantra. We hope that this idea can be a first step in a new way
of managing models.

200 TSI. Volume 35 – no 2/2016

Acknowledgements
Les auteur remercient le cluster Connexion (Programme d’Investissements d’avenir
/ Fonds national pour la société numérique / Usages, services et contenus innovants)
pour son soutien financier.

References

Auber D. (2004). Tulips a huge graph visualization framework. In Graph drawing software,
pp. 105–126. Springer.

Ball T., Eick S. G. (1996). Software visualization in the large. Computer, Vol. 29, No. 4,
pp. 33–43.

Bastian M., Heymann S., Jacomy M. et al. (2009). Gephi: an open source software for exploring
and manipulating networks. ICWSM, Vol. 8, pp. 361–362.

Benelallam A., Gomez A., Sunye G., Tisi M., Launay D. (2014). Neo4EMF, a scalable per-
sistence layer for EMF models. In Modelling foundations and applications, pp. 230–241.
Springer.

Bihanic D., Polacsek T. (2012). Models for visualisation of complex information systems. In
16th international conference on information visualisation (IV’ 2012), pp. 130–135. Mont-
pellier, France.

Blouin A., Combemale B., Baudry B., Beaudoux O. (2015). Kompren: modeling and gener-
ating model slicers. Software & Systems Modeling, Vol. 14, No. 1, pp. 321-337. Retrieved
from http://dx.doi.org/10.1007/s10270-012-0300-x

Blouin A., Moha N., Baudry B., Sahraoui H., Jézéquel J.-M. (2015). Assessing the use
of slicing-based visualizing techniques on the understanding of large metamodels. In-
formation and Software Technology, Vol. 62, No. 0, pp. 124 - 142. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0950584915000373

Bostock M., Ogievetsky V., Heer J. (2011). D3 data-driven documents. IEEE Transactions on
Visualization and Computer Graphics, Vol. 17, No. 12, pp. 2301–2309.

Bull R. I., Favre J.-M. (2005). Visualization in the context of model driven engineering. MD-
DAUI, Vol. 159.

Calvary G., Coutaz J., Thevenin D., Limbourg Q., Bouillon L., Vanderdonckt J. (2003). A
unifying reference framework for multi-target user-interfaces. Interacting with Computers,
Vol. 15, No. 3, pp. 289-308.

Card S. K., Mackinlay J. D., Shneiderman B. (1999). Readings in information visualization:
using vision to think. Morgan Kaufmann.

Chi E. H.-h., Riedl J. T. (1998). An operator interaction framework for visualization systems.
In Proceedings of the ieee symposium on information visualization, pp. 63–70.

Clasen C., Del Fabro M. D., Tisi M. (2012). Transforming very large models in the cloud: a
research roadmap. In First international workshop on model-driven engineering on and for
the cloud.

Craft B., Cairns P. (2005). Beyond guidelines: what can we learn from the visual information
seeking mantra? In Proceedings. ninth international conference on information visualisa-
tion, pp. 110–118.

Interactive visualization for model proliferation 201

Da Silva P. P. (2001). User interface declarative models and development environments: A sur-
vey. In Interactive systems design, specification, and verification, pp. 207–226. Springer.

Ducasse S., Lanza M., Tichelaar S. (2000). Moose: an extensible language-independent envi-
ronment for reengineering object-oriented systems. In Proceedings of the second interna-
tional symposium on constructing software engineering tools (CoSET 2000), Vol. 4.

Engel K., Sommer O., Ertl T. (2000). A framework for interactive hardware accelerated remote
3d-visualization. Springer.

Fayyad U. M., Wierse A., Grinstein G. G. (2002). Information visualization in data mining and
knowledge discovery. Morgan Kaufmann.

Garcia J., Theron R., Garcia F. (2010). Innovations and advances in computer sciences and
engineering. In T. Sobh (Ed.),, pp. 325–330. Dordrecht, Springer Netherlands. Retrieved
from http://dx.doi.org/10.1007/978-90-481-3658-2_56

Garcia Frey A., Sottet J.-S., Vagner A. (2014). Ame: an adaptive modelling environment as
a collaborative modelling tool. In Proceedings of the 2014 ACM SIGCHI symposium on
engineering interactive computing systems, pp. 189–192.

Genaro Motti V., Raggett D., Van Cauwelaert S., Vanderdonckt J. (2013). Simplifying the
development of cross-platform web user interfaces by collaborative model-based design. In
Proc. of the 31st ACM int. conf. on design of communication, pp. 55–64. New York, NY,
USA, ACM. Retrieved from http://doi.acm.org/10.1145/2507065.2507067

Gomez A., Tisi M., Sunye G., Cabot J. (2015). Map-based transparent persistence for very
large models. In Fundamental approaches to software engineering, pp. 19–34. Springer.

Guychard C., Guerin S., Koudri A., Beugnard A., Dagnat F. (2013). Conceptual interoperability
through models federation. In Semantic information federation community workshop.

Heer J., Shneiderman B. (2012). Interactive dynamics for visual analysis. Queue, Vol. 10,
No. 2, pp. 30.

Kent S. (2002). Model driven engineering. In Integrated formal methods, pp. 286–298.

Lanza M., Ducasse S. (2005). Codecrawler-an extensible and language independent 2d
and 3d software visualization tool. Tools for Software Maintenance and Reengineering,
RCOST/Software Technology Series, pp. 74–94.

Le Pallec X., Dupuy-Chessa S. (2012). Intégration de métriques de qualité des diagrammes et
des langages dans l’outil ModX. In Conférence en ingénieriE du logiciel (CIEL), pp. 1–6.
Rennes, France.

Maletic J. I., Leigh J., Marcus A. (2001). Visualizing software in an immersive virtual reality
environment. In Proceedings of ICSE, Vol. 1, pp. 12–13.

Monperrus M., Jézéquel J.-M., Champeau J., Hoeltzener B. (2008). Model-driven engineering
metrics for real time systems. In 4th european congress ERTS embedded real-time software.

Montero F., Lopez-Jaquero V. (2007). IdealXML: An interaction design tool. In G. Calvary,
C. Pribeanu, G. Santucci, J. Vanderdonckt (Eds.), Computer-aided design of user interfaces
V , p. 245-252. Springer Netherlands. Retrieved from http://dx.doi.org/10.1007/978-1-4020
-5820-2_20

202 TSI. Volume 35 – no 2/2016

Moody D. (2009, November). The physics of notations: Toward a scientific basis for con-
structing visual notations in software engineering. IEEE Trans. Softw. Eng., Vol. 35, No. 6,
pp. 756–779.

Nassar M. (2003). Vuml: a viewpoint oriented uml extension. In Proceedings of the 18th ieee
international conference on automated software engineering, pp. 373–376.

Paterno F., Mancini C., Meniconi S. (1997). Concurtasktrees: A diagrammatic notation for
specifying task models. In Human-computer interaction INTERACT’97, pp. 362–369.

Pilgrim J. von, Duske K. (2008). Gef3d: a framework for two-, two-and-a-half-, and three-
dimensional graphical editors. In Proceedings of the 4th ACM symposium on software
visualization, pp. 95–104.

Puerta A., Eisenstein J. (2002). Ximl: a common representation for interaction data. In
Proceedings of the 7th international conference on intelligent user interfaces, pp. 214–215.

Ropinski T., Preim B. (2008). Taxonomy and usage guidelines for glyph-based medical visual-
ization. In Simvis, pp. 121–138.

Santos S. dos, Brodlie K. (2004, June). Gaining understanding of multivariate and multidimen-
sional data through visualization. Computers and Graphics, Vol. 28, No. 3, pp. 311–325.

Scheidgen M., Zubow A. (2012). Map/reduce on EMF models. In Proc. of the 1st int. workshop
on model-driven engineering for high performance and cloud computing, p. 7.

Schmidt D. C. (2006, February). Model-driven engineering. IEEE Computer, Vol. 39, No. 2.
Retrieved from http://www.truststc.org/pubs/30.html

Shneiderman B. (1996). The eyes have it: A task by data type taxonomy for information
visualizations. In Proceedings of the 1996 IEEE symposium on visual languages, pp. 336–.
Washington, DC, USA, IEEE Computer Society.

Sottet J.-S., Calvary G., Favre J.-M., Coutaz J. (2009). Megamodeling and metamodel-driven
engineering for plastic user interfaces: MEGA-UI. In A. Seffah, J. Vanderdonckt, M. Des-
marais (Eds.), Human-centered software engineering, p. 173-200. Springer London. Re-
trieved from http://dx.doi.org/10.1007/978-1-84800-907-3_8

Sottet J.-S., Ganneau V., Calvary G., Coutaz J., Demeure A., Favre J.-M. et al. (2007). Model-
driven adaptation for plastic user interfaces. In Human-computer interaction–INTERACT
2007, pp. 397–410. Springer.

Sottet J.-S., Vagner A. (2013). Genius: Generating usable user interfaces. arXiv preprint
arXiv:1310.1758.

Telea A. C. (2014). Data visualization: principles and practice. CRC Press.

Viegas F. B., Wattenberg M., Van Ham F., Kriss J., McKeon M. (2007). Manyeyes: a site
for visualization at internet scale. Transactions on Visualization and Computer Graphics,
Vol. 13, No. 6, pp. 1121–1128.

Yu H., Ma K.-L., Welling J. (2004). A parallel visualization pipeline for terascale earthquake
simulations. In Proceedings of the 2004 ACM/IEEE conference on supercomputing, p. 49.

Article soumis le 5/06/2015

Accepté le 15/02/2016

