
Using Formal Models to Cross Check an Implementation

Raquel Oliveira, Sophie Dupuy-Chessa, Gaëlle Calvary
Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

CNRS, LIG, F-38000 Grenoble, France
FirstName.LastName@imag.fr

Daniele Dadolle
Atos Worldgrid, Grenoble, France

daniele.lanneau@atos.net

ABSTRACT
Interactive systems are developed according to requirements,
which may be, for instance, documentation, prototypes, dia-
grams, etc. The informal nature of system requirements may
be a source of problems: it may be the case that a system does
not implement the requirements as expected, thus, a way to
validate whether an implementation follows the requirements
is needed. We propose a novel approach to validating a system
using formal models of the system. In this approach, a set
of traces generated from the execution of the real interactive
system is searched over the state space of the formal model.
The scalability of the approach is demonstrated by an appli-
cation to an industrial system in the nuclear plant domain.
The combination of trace analysis and formal methods pro-
vides feedback that can bring improvements to both the real
interactive system and the formal model.

ACM Classification Keywords
D.2.1. Software Engineering: Requirements/Specifications;
D.2.4. Software Engineering: Software/Program Verification

Author Keywords
formal methods, traces, interactive systems, requirements

INTRODUCTION
An interactive system is expected to implement a set of re-
quirements, which are usually informal. According to [13],
informal models are genuinely ambiguous and heavily rely on
human intuition. They are expressed using natural language or
loose diagrams, charts, tables, etc. Requirements from which
interactive systems are implemented are usually informal, for
instance, documentation, prototypes, information gathered
through meetings, exchange of e-mails, etc. Such a lack of
formality in the requirements may be a source of problems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org. EICS’16, June 21-24,
2016, Brussels, Belgium©2016 ACM. ISBN 978-1-4503-4322-0/16/06... $15.00 DOI:
http://dx.doi.org/10.1145/2933242.2933257

A question that arises is whether a given interactive system
correctly implements its requirements or not.

We propose an approach to validating the implementation
with respect to its requirements. Validation can be defined
as “the process of providing evidence that the software and its
associated products satisfy system requirements allocated to
software at the end of each life cycle activity, solve the right
problem, and satisfy intended use and user needs” [1]. The
requirements of the system can be seen as a representation of
the user needs. In this paper, requirements are validated by
using formal methods in combination with system logs.

Formal models are system descriptions expressed in languages
which, unlike natural human languages, do not allow for any
double meanings. Such languages have a precisely defined
syntax and a formal semantics, such as algebraic data types,
input/output automata, etc [13]. Once one has framed a system
in a formal model, it can be deduced precisely what are the
consequences of the assumptions made. In this paper, formal
models are used as a support to cross check an implementation
with respect to the initial requirements.

The reminder of the paper starts by presenting the related work,
followed by a description of our approach to validating sys-
tems using formal models. Analysis of traces is then applied to
an industrial case study, in which a set of traces extracted from
a system is analyzed over the system formal model. Finally,
we discuss the advantages and drawbacks of the approach,
concluding with current results and perspectives.

RELATED WORK
The validation of interactive systems with respect to their re-
quirements can be ensured in different ways, such as through
property verification [21, 27, 19], testing [28, 11, 17], analysis
of traces [30, 4], or through comparison of models [5]. One
possible outcome of such validation is the improvement of
the requirements, which is the goal of requirement engineer-
ing [15, 2, 25, 16, 26, 3, 5].

The initial requirements of a system can be expressed as prop-
erties, and model checking can be used to verify the satisfiabil-
ity of such properties over a model of the system [21, 27, 19].
However, the real interactive system is not analyzed, since the

properties are extracted from the system requirements, instead
of from trace executions of the system.

Automatic test case generation have been widely discussed
in the literature, and test cases can be used to validate a sys-
tem with respect to its requirements. For instance, test cases
can be extracted from models representing the GUI naviga-
tion, such as the SNet [28], in which navigation paths are
extracted representing the possible test scenarios. However,
only GUI navigation is covered by the approach. Alternatively,
in [11] test cases are extracted from examples and counter ex-
amples resulted from the application of model checking over
Lustre models of interactive systems. The inconvenience
here is the expressiveness of Lustre models, in which inter-
active systems are described by Boolean data flows. In [17],
the specification language of the PVS (Prototype Verification
System) theorem prover is used. Such formal specification
is derived from the code source of the system, and used to
extract test cases. Although the use of the system code source
is convenient, it becomes a limitation once such code is not
available.

Analysis of traces was also used to verify an avionic sys-
tem [30], in which some properties are verified over a transla-
tion of traces. However, the focus here is not validation with
respect to the requirements. Alternatively, analysis of traces
can be used to support unit and system level testing [4], in a
“semi-formal” method. The combination with formal models
would bring to the approach a larger state space to explore.

Other approaches propose to improve specifically the require-
ments of systems. The requirement engineering process con-
sists of four key activities [15, 2]: requirements elicitation,
analysis, specification, and validation. Several approaches
exist to validate requirements. For instance, using personas to
support requirements engineering [25], or specifying require-
ments at different hierarchical levels of abstraction [16] and
using verification to ensure traceability between them [26],
or finally using formal notations such as Petri nets to support
validation [3]. However, the real interactive system is not the
focus of these approaches, rather improvements in the require-
ments are the main goal. We aim at validating the interactive
system with respect to the requirements, and improvements in
the requirements is one possible outcome of the analysis.

An alternative validation approach was proposed in [5], in
which formal specifications are used for validation purposes.
As an outcome of this work, several ambiguities and omissions
were discovered in the requirements, and several inadequa-
cies and errors were discovered in the formal specification,
which are some of the motivations of this paper (in addition
to bringing improvements to the real system). In the authors’
proposition, two formal specifications (one written in alge-
braic notation and another using a synchronized transition
system) describing the system are compared to each other,
to help to understand and debug the informal requirements.
Although divergences may emerge from such a comparison,
the approach does not focus on the real interactive system.

FORMAL MODELS TO VALIDATE AN IMPLEMENTATION
We aim at validating an interactive systems with respect to
its requirements using formal support. An interactive sys-
tem and its requirements are fundamentally different: while
requirements express the user needs in an informal way, the ac-
tual interactive system formalizes solutions for the user needs.
Given this fundamental difference, both the requirements and
the implementation can not be directly compared to each other,
and a gap between them will always exist.

Furthermore, a formal model describing the behavior of an
interactive system also has a formal nature, and can not be
directly compared to the informal system requirements either.
However, given the formal nature of both the implementation
and the formal model of the system, they can be compared to
each other (Figure 1).

Formal
model

Implementation
compatibility?

Requirements

Figure 1. Formal models to validate an implementation

Although both an implementation and a formal model have
the same formal nature, they are not at the same level of
abstraction. Formal models describe some aspects of the im-
plementation, and what will be included in the model depends
entirely on the validation goals: only aspects of the system we
want to validate are included in the formal specification. In
our approach, we do not take into account mode changes or
the relation between state attributes that are internal to visible
attributes, for instance. In this paper, we propose to derive
such a formal specification from the initial requirements.

We suggest using formal models to cross check the interactive
system with respect to its requirements, by validating whether
the formal model and the implementation are compatible. The
requirements here can be any system requirement, including
but not limited to UI requirements. This covers UI naviga-
tion, graphical aspects of UIs, UI interaction capabilities, and
functional requirements as well. Such requirements can come
from the documentation, prototypes, etc. The ultimate goal
is to give clues about whether the real system implements
the requirements as expected. If the system formal model
and the real system are inter-operable, then it is probable that
both the formal model and the implementation interpreted the
requirements in the same way.

Since the formal model is a representation of the real system,
as for all model-based approaches, there is no guarantee that
the model is correct. It may contain faults, therefore, may not
be a correct representation of the system. To mitigate this issue,
the formal model can be assessed by a domain expert. Such
an evaluation brings a certain confidence about the realism of
the model. This is the standard problem of assessing whether
a model is adequate.

Since our approach relies on models, it cannot fully determine
whether the real system implements the requirements as ex-
pected. Yet, it can give directions. The key of the approach
rationale is redundancy: when two groups of people develop
in parallel different artifacts based on the same source, if both
interpret the requirements in the same way, there is a high
probability that they are both correct (not neglecting the pos-
sibility that both interpret the requirements equally wrongly,
if the requirements are ambiguous). If the formal model and
the implementation diverge, then at least one of both groups
of people misunderstood the requirements. The fact that these
two views are taken may result in ambiguities in the require-
ments being detected. Indeed, divergence and disagreement
between models from different viewpoints can be exploited
to actually enhance our understanding of design issues [12].
Arnold et al. [5] describe how an informal comparison of
two formal models allowed them to detect ambiguities in a
requirements document and to correct mistakes in each model.

We propose three different ways to use formal models to vali-
date interactive systems. For instance, the formal model can
be used as a basis to derive test suites, which can be executed
on the interactive system, which provides the real inputs. A
test execution engine is required to execute the test cases on
the interactive system and to implement the test oracles that
output the test verdicts. The ultimate goal is to generate test
cases that are feasible, meaning that they can be executed over
the interactive system. Once a feasible test is executed over
the interactive system and does not pass, it can indicate a flaw
either in the interactive system or in the formal model.

Alternatively, both the formal model and the interactive system
can be executed in parallel in co-simulation. The outputs of
one are connected to the inputs of the other and vice versa. In
this case, a conversion in two directions is needed (i.e., from
the interactive system to the formal model and vice versa), or
the formalization of a language common to both the interactive
system and the formal model. If the interactive system and
the formal model can execute in parallel in co-simulation, it
means that both are aligned in the way they implement the
requirements.

Finally, formal models can be integrated to analysis of traces to
validate interactive systems. In this case, log files generated by
the implementation are interpreted and used to check whether
the formal model can simulate the same sequence of traces
or not (Figure 2). With this purpose, a translation of the log
files into a format that can be treated by the formal model is
required. Once the log files are transformed into this format,
one can check if a given trace is included in the set of traces
described in the formal model, meaning that the formal model
simulates the scenario described in the log file in the same way
as the interactive system.

In this paper, we detail how analysis of traces can be used
to validate interactive systems, mainly because it does not
require major changes in the development methodology of
the analyzed interactive system, and most interactive systems
already include logging mechanisms.

Formal
model Implementation

generation

Log files

generation

translation

LTS

sequence
Inclusion

verification

Requirements

Figure 2. Analysis of traces

ANALYSIS OF TRACES IN DETAILS
This section presents the languages and tools used to imple-
ment our approach, how they are instantiated, and the parser
that we developed to translate log files.

Languages and Tool Support
The choice of the toolbox was mainly motivated by its matu-
rity, continuous evolution, support, and the numerous tools
it includes [21]. CADP [14] is a toolbox for verifying asyn-
chronous concurrent systems: systems whose components
may operate at different speeds, without a global clock to
synchronize them. Such components are described by mod-
ules, and they communicate and exchange information from
time to time by channels. In our approach, we mainly used
EVALUATOR[14], the model checker of CADP.

In model checking, a system is represented as a finite-state
machine, which is subject to exhaustive analysis of its entire
state space to determine whether a set of properties holds or
not. The analysis feedback is mainly supported by the gen-
eration of counter-examples when a property is not satisfied.
Counter-examples furnish a precise way to identify potential
problems in the modeled system. The results of the analysis
permit the modeled system to be improved.

One of the input languages of CADP is LNT [8]. The LNT
specification language proposes a modular-based program-
ming style, which suits well the modeling of interactive sys-
tems by composition. LNT has a syntax close to the imperative
programming style (easier to learn and to read). We use LNT
to write the formal models of the interactive system.

CADP can generate graph-based models called LTSs (Labeled
Transition Systems) from the LNT model. An LTS is a graph
composed of states and transitions between states. Transi-
tions are triggered by actions, which are attached to the LTS
transitions as labels. LTSs are suitable to describe systems

whose status change through actions of some kind. Intuitively,
an LTS represents all possible evolutions of a system formal
model.

We use MCL (Model Checking Language) [18] to formal-
ize the expected properties of the interactive system. MCL
is an enhancement of the modal µ-calculus, a fixed point-
based logic that subsumes many other temporal logics, aim-
ing at improving the expressiveness and conciseness of for-
mulas. Specifically, MCL adds data-handling mechanisms,
a fairness operator, and constructors inspired from func-
tional programming (e.g., let, if-else, case, while,
repeat, etc.) [18]. For instance, in MCL it can be expressed
that: “The UI will potentially respond (meaning provide a feed-
back) after at most three user interactions (requests) occurring
in any order”. This is stated as follows in MCL:

νY(c : nat := 0) .

〈not(req1∨ req2∨ req3)∗ . resp〉 true
or

((c < 3) and [req1∨ req2∨ req3] Y(c+1))

(1)

and read as follows: “Starting from the initial state, there exists
a path leading to a UI response (i.e., resp) before the user has
interacted three times with the UI (i.e., req1, req2, and req3)”.
The support to data-handling mechanisms is illustrated in this
formula by the declaration and initialization of the variable c.

Instantiation using the Tools
The entry points of the approach are both the formal model and
the real interactive system (Figure 3). On the left of the figure,
the formal model of the interactive system is specified [21]
in LNT, and it is then automatically transformed into an LTS
using the CADP toolbox.

generation

LNT
Formal model

LTS
Sequences

Inclusion
Verification

by CADP

ParserLTS

generation

LOG
files

Requirements

Implementation

Figure 3. Analysis of Traces in details

The right part of Figure 3 consists of the execution of several
scenarios in the real system, and subsequently generation of
the log files.

The horizontal part of the figure, which links the formal model
and the implementation, consists of a translation of the log
files into a sequence that can be searched in the LTS of the
formal model. We developed a Parser in Java to automate this
translation. The output of this translation is a set of properties
in MCL containing the scenarios included in the initial logs.
The approach is fully tool supported. The Parser is in dark
green in Figure 3 to indicate that we developed this tool. The
other tools in light-green ellipses are either provided by the
CADP toolbox or by the environment of the real system.

Finally, the EVALUATOR model checker of CADP is used to
check whether the LTS sequences are included in the LTS of
the formal model. The results of the analysis permit the for-
mal model and/or implementation to be improved. However,
the approach does not allow refinement (moving in meaning-
preserving and property-preserving steps from abstract to more
concrete models). Formal specification and refinement require
a knowledge that not all developers have.

Parsing the Trace Files
The Parser takes as input a log file, extracts the lines contain-
ing the executed scenario, and translates them into a sequence
of transition labels of the LTS. The Parser then encloses such
sequence of labels into a temporal formula in MCL, concate-
nating the sequence of transition labels. The MCL formula
has the following format:

〈 true∗ . L1 . L2 Ln 〉 true∗ (2)

This formula expresses that, starting from the initial state of
the LTS, there is an arbitrary path (matched by the regular
expression “true∗” in the possibility modality 〈〉) leading to
the sequence of transitions labeled with L1 Ln, which is
the sequence of transition labels initially generated. Intuitively,
this MCL formula makes it possible to check whether the
sequence of steps representing the scenario can be found in
the LTS (the state space) of the formal model or not (Figure 4).
If the trace is found, it means that the formal model simulates
the scenario in the same way as the real system. Knowledge
of MCL is necessary to apply our approach. Readers can find
more details about this language in [18] and in the on-line
manual of the language1. The inclusion checking of the MCL
property is done using the EVALUATOR tool.

Figure 4. Example of trace inclusion checking

1http://cadp.inria.fr/man/mcl.html

http://cadp.inria.fr/man/mcl.html

CASE STUDY
The proposed approach was developed considering an indus-
trial power plant case study. Our research laboratory and Atos
Worldgrid2 investigated a prototype of a control room system
developed by EDF3 (Électricité de France). A formal model
of the system was developed, aiming at performing formal ver-
ification of properties [21], and Atos Worldgrid implemented
some user interfaces of the system on their industrial product
called ADACS-NTM (Advanced Data Acquisition and Control
System for Nuclear power). In this context, a question that
arises is whether ADACS-NTM correctly implements the EDF
prototype or not. The requirements here consist of informal
requirements given by EDF during project meetings, exchange
of e-mails with questions/answers, some documentation, print
screens of the EDF prototype, and a video illustrating some
functionalities of the EDF prototype. This forms the basis from
which ADACS-NTM implements the EDF prototype. However,
a chance exists that the ADACS-NTM part implementing the
EDF prototype could be improved, by making requirements
more precise. Since both ADACS-NTM and the formal model
implement some functionalities of the EDF prototype, we
propose to use the formal model describing part of the EDF
prototype to validate part of the implementation.

The EDF Prototype
The EDF prototype implements several control room activities.
The main goal of the system is to provide a general overview
of the plant status, and to inform the operator about faults,
disturbances and unexpected events in the plant leading to a
status change in the plant systems [9].

The main UI of the system is called Global Synthesis (Figure 5,
in French). At the top, six tabs indicate the current status of
the plant, ranging from RP (working at full capacity) to RCD
(completely stopped), with intermediate status between them.

Figure 5. A monitoring system of nuclear-plant control rooms

Depending on the plant status, different reactor parameters
are displayed in the middle part of the UI (for instance, the
average thermal power of the reactor, “Pth moy”). The Global
Synthesis UI groups the reactor parameters that must be con-
stantly monitored. Other parameters are dispersed in other
UIs. Each parameter is represented by a widget (Figure 6)
containing: the parameter name at the top, a curve with the

2http://fr.atos.net
3https://www.edf.fr/

current and past values of the parameter, minimum and max-
imum thresholds for the parameter value, and at the bottom,
the parameter sensor and its measurement unit.

Figure 6. One reactor parameter zoomed out

The system monitors the evolution of the reactor parameters
over time. If an error occurs in some of them, the parameter
is highlighted (with a colored frame around it, for instance).
According to [6], an error is “in the total system state, a part
of states that may lead to its subsequent failure.”. In this
context, an error would be a given reactor parameter whose
value increases more that expected (for instance, the average
thermal power of the reactor). A failure is “an event that
occurs when the perceived behavior of system deviates from its
correct behavior.”. In the case of the EDF prototype, a failure
would happen if some part of the plant equipment does not
behave correctly because the reactor average thermal power is
too high. Finally, in [6] a fault is defined as “the adjudged or
hypothesized cause of an error”, which in our example would
be the original cause that makes the average thermal power
increase. In this paper, we refer to all unexpected events of the
reactor that are monitored by the EDF prototype as errors.

If an error occurs in a reactor parameter, the parameter is high-
lighted somehow on the user interface, and a signal (e.g., an
alert or an alarm condition) is triggered in the left zone of the
UI on the corresponding function (e.g., under the “réactivité”
function in Figure 5). The system monitors 38 functions, 50
reactor parameters, and 5 kinds of signals, triggered by param-
eters errors: threshold overflow, threshold underflow, gradient
excess, loss of redundancy, and invalid measurement.

The ADACS-NTM System
Atos Worldgrid implemented part of the EDF prototype in
their own product called ADACS-NTM, a commercial product
that is deployed in actual nuclear plants. ADACS-NTM is a
real-time system designed to completely monitor and control a
nuclear power plant. It aims at assisting users (i.e., operators)
in their daily tasks in a control room [29].

Particularly relevant to our study are the UIs that implement
the EDF prototype, such as the UI illustrated in Figure 7. This
type of UI presents in curves the evolution of a group of reactor
parameters over time, displaying their current and past values,
and potential unexpected events in the nuclear unit.

ADACS-NTM structures data by means of objects, a config-
urable component that has inputs, a processing unit, and out-
puts. Objects can be plugged to each other. An input can
be either an acquired value (measurements, signals, etc., ac-
companied by complementary information such as validity,
and time stamps) or an output computed by another object.

http://fr.atos.net
https://www.edf.fr/

Figure 7. Surveillance display

The input data undergo several calculations in the processing
unit, generating the object outputs. In this case study, objects
implement the evolution of reactor parameter values in time.

ADACS-NTM can be connected to a stimulator that generates
input data (Figure 8). The results of object calculations can be
displayed on the ADACS-NTM user interfaces, allowing users
to be aware of the current status of the nuclear unit and to take
actions correspondingly. ADACS-NTM includes a logging
mechanism that records the executions in trace files.

ADACS-NTM

User
interfacesObjects display

interaction

input
data

log
files

stimulator

Figure 8. ADACS-NTM: simulation mode and data logging

As the EDF prototype, ADACS-NTM also monitors 38 func-
tions and 50 reactor parameters. However, it can trigger 4
kinds of signals: super threshold overflow and super threshold
underflow, in addition to threshold overflow and threshold
underflow that are implemented by the EDF prototype.

ADACS-NTM also has a simulation mode, which is used ei-
ther for training sessions to nuclear-plant users, or for data
engineering and software testing. Simulation can be used for
disproving certain properties by showing examples of incorrect
behaviors. Even though this mode provides an environment
for preparing the staff before starting their daily activities,
simulation explores a part of the system state space. On the
contrary, the use of formal models to support validation would
consider the entire state space and can thus prove or disprove
properties for all possible behaviors [13].

APPLICATION OF ANALYSIS OF TRACES
Analysis of traces (Figure 2) is used to cross check part of the
ADACS-NTM implementation.

Formal Model of the EDF Prototype
Following the separation of concerns proposed by the ARCH
architecture [7], the formal model of the control room system

contains modules describing part of the system functional core,
the user interfaces (UIs) and the dialog controller (Figure 9).

Figure 9. Formal model structure of the EDF prototype

In order to describe part of the functional core, the reactor and
generate signals modules simulate the evolution of several
reactor parameters and signals over time. The selection mod-
ule mediates the calculations in the functional core and the
interactions on the UIs. Two modules are created to describe
the user interfaces, namely plant status and menu. Beyond
ARCH, a special module called user is included in the formal
model, in order to describe part of the user’s behavior.

These modules are coupled as follows: the user sets the current
plant status, which determines the signals that are simulated
by the generate signals module. This module also receives
from the reactor module a list of reactor parameters with their
current value and status, to simulate signals accordingly. A list
of reactor parameters and signals are then sent to the selection
module from the reactor and the generate signals modules.
Selection also receives from the menu module the last menu
option selected by the user, and filters the parameters and
signals for the UI accessible by the menu option. These filtered
parameters and signals are then sent to the user, representing
the display of such information on the UIs. Thus, we cover UI
navigation, UI interaction capabilities, and UI appearance.

Each one of these modules are specified in LNT. In total, the
formal model contains 13 modules describing: some activities
of the functional core, seven user interfaces and two main
activities of the users, within 4444 lines of LNT code (Table 1).
The formal model so described can be used to perform formal
verification. With this aim, we use CADP to generate an LTS
representing the state space of formal model.

Instantiation of the Approach
Figure 10 illustrates how analysis of traces is applied to the
case study. The right part of the figure consists in stimulat-
ing ADACS-NTM. With this goal, a simulation mode allows
ADACS-NTM to be connected to a stimulator from which
ADACS-NTM receives input data. These input files contain
scenarios that change the parameter values of the nuclear
unit. ADACS-NTM reacts to such stimulation following sev-
eral physics laws. The results of such calculations are dis-
played on ADACS-NTM user interfaces, allowing users to be
aware of the current status of the nuclear unit and to take
actions correspondingly, by interacting with the UIs.

ARCH component File # loc

user interface plant status 19
user interface menu 234
functional core reactor 404
functional core generate signals 178
functional core scenarios 451
dialog controller selection 90
(user) user 211
(auxiliary file) scheduler 93
(auxiliary file) main 111
(auxiliary file) library 2191
(auxiliary file) library.tnt 433
(auxiliary file) reactor.tnt 3
(auxiliary file) reactor.fnt 26

TOTAL 4444
Table 1. Summary of the formal model

generation

LNT
Formal model

LTS
Sequences

Inclusion
Verification

by CADP

ParserLTS

generation

LOG
files

ADACS-NTM

Requirements

Figure 10. The approach applied to ADACS-NTM validation

The horizontal part of the Figure 10, which links the LNT
formal model and ADACS-NTM, consists of a translation of
ADACS-NTM log files into a trace that can be searched in the
LTS of the formal model. The Parser is used to automate this
translation. The information extracted from the trace files are
translated into a sequence of transition labels enclosed by a
property, such as the one illustrated in Figure 11. Between “<”
and “>” (lines 5 and 32), each line corresponds to a labeled
transition in an LTS, and should be enclosed by “”. Figure 11
identifies the three kinds of actions that are simulated in the
scenarios, as they are encoded in the LNT formal model: lines
6 and 7, in red, represent calculations resulting from the stimu-
lation, i.e., the evolution of reactor parameter values over time;
lines 12 and 13, in blue, represent the display of such informa-
tion on the user interfaces; and line 17, in green, represents
the menu option the user selected. For legibility reasons, only
the beginning of the transition labels are illustrated.

The last step of the approach consists in checking whether the
sequence of labels extracted from ADACS-NTM log file is in-
cluded in the LTS of the formal model, using the EVALUATOR
tool. If the trace is found, it means that the formal model
simulates the scenario in the same way as ADACS-NTM.

Simulated Scenarios
In order to stimulate ADACS-NTM objects, input files contain-
ing 38 scenarios are manually created, containing scenarios
that will change an object value. In this study, four kinds of
scenarios are analyzed: threshold overflow, threshold under-
flow, super threshold overflow, and super threshold underflow.
Figure 12 illustrates one of those scenarios: super threshold
underflow on the RPN010MA reactor parameter. The scenario
has 11 instances: it initializes the parameter with its mean
value, decreasing it progressively according to internal formu-
las for each instance. At the instance n.4, the parameter value
exceeds its first inferior threshold. At this point, a threshold
underflow is triggered on the reactor parameter, and an alert
signal is generated. The parameter value continues to decrease,
until it exceeds its second inferior threshold at instance n.6,
triggering a super threshold underflow and an alarm condition
signal. The parameter value then progressively increases until
it reaches its mean value again.

The stimulator executes the scenario step by step. The results
of the calculations are displayed on the user interfaces, in
the visual component representing the object. Once an error

Figure 11. An example of property

Figure 12. Super threshold underflow scenario on a parameter

occurs in some of them, the parameter is highlighted with
a colored frame around it, for instance. The user, in turn,
interacts with the system by navigating through the UIs in
order to have more details about the error. The entire sequence
is logged in trace files: the ADACS-NTM object calculations
resulted from the stimulation, the display of these information
on the user interfaces and the user interactions. Such trace files
are then translated into an LTS sequence that can be searched
in the LTS of the formal model.

Coverage of the Validation
The LNT model from the case study simulates errors over 50
reactor parameters. In ADACS-NTM, 20 of such parameters
have acquired data as input, and can be stimulated with input
values (the other 30 parameters are calculated according to the
values of the acquired parameters). In this validation, we cover
all these 20 parameters at least once. In terms of number of
parameters, this validation covers 40% (20/50) of the reactor
parameters of the formal model.

The LNT model simulates seven errors over the reactor param-
eters (i.e., (1) threshold overflow, (2) threshold underflow, (3)
super threshold overflow, (4) super threshold underflow, (5)
gradient excess, (6) loss of redundancy, and (7) invalid mea-
surement). ADACS-NTM simulates four of them: (1)-(4). In
this case study, 38 ADACS-NTM log files were analyzed, each
one containing an error scenario in one parameter. The formal
model simulates the seven kinds of errors over 50 parameters,
making a total of 350 scenarios. In terms of simulated sce-
narios, this validation covers 10% (38/350) of the simulated
scenarios of the formal model. Restricting the scope to the
20 parameters and four scenarios that can be simulated in
ADACS-NTM, this validation covers 38 scenarios over the 80
(20 parameters * 4 scenarios) possible ones in ADACS-NTM,
covering 47% of the scenarios that can be simulated in this
part of ADACS-NTM.

The connection of the LNT formal model to ADACS-NTM

permitted the analysis of an intersection “zone” (Figure 13).
For the part of ADACS-NTM implementing the EDF prototype,
it is a significant coverage: all the four scenarios currently
implemented in this part of ADACS-NTM are covered, and
all the 20 reactor parameters which can be stimulated in the
systems are covered at least once. It is not exhaustive, though.
To be exhaustive, input files containing all the four scenarios

for all the 20 parameters would be necessary. As a proof of
concept of the approach, the current coverage was sufficient.

Figure 13. Analyzed part of the system and the formal model

Results of the Validation
The 38 log files containing the scenarios have in total 1710
lines. The Parser was used to generate properties aiming at
checking the inclusion of the scenarios in the LTS (the state
space) of the formal model. The translation of the scenar-
ios into these properties took around three seconds, and the
generated file contained 1700 lines.

Inclusion Checking
We applied model checking to check the satisfiability of the 38
properties describing the scenarios. Preliminary analysis have
shown that the traces are not included in the LTS. A deeper
analysis showed that ADACS-NTM and the formal model are
divergent in the way errors in reactor parameters are synthe-
sized in the signals, under the corresponding reactor function
on the left of the UI (cf. Figure 5). This is due to a lack of
alignment in the way the requirements were communicated to
Atos Worldgrid and our laboratory, making both implementa-
tions diverge.

Once this first divergence was observed, the formal model was
modified to synthesize errors in the signals in the same way
as ADACS-NTM. In this new version of the formal model, all
the 38 scenarios are found in the LTS of the formal model, the
total time of the inclusion checking is around four minutes.

Our approach demonstrated that several aspects of the EDF
prototype are implemented in the same way in both ADACS-
NTM and the formal model, which may indicate that the real
system implements these aspects of the system according to
the requirements, considering the redundancy aspect of the
approach (i.e., two groups of people interpreting the same set
of requirements, to create a formal model and to implement
the real system). The following information is present in
ADACS-NTM and in the LNT formal model:

1. the name of the 20 reactor parameters that are stimulated;

2. the value a reactor parameter is assigned to at each instance
of the four analyzed scenarios (i.e., threshold overflow,
threshold underflow, super threshold overflow, and super
threshold underflow);

3. the occurrence of an error once a given reactor achieves a
value which is higher than its first superior threshold;

4. the occurrence of an error once a given reactor achieves a
value which is lower than its first inferior threshold;

5. the occurrence of an error once a given reactor achieves
a value which is higher than its second superior threshold,
and this error accumulates with the error # 3;

6. the occurrence of an error once a given reactor achieves a
value which is lower than its second inferior threshold, and
this error accumulates with the error # 4;

7. the display of such errors on the user interface, in the corre-
sponding signal (among all signals present on the left of the
UIs, cf. Figure 5);

8. the list of signals on the left of each user interface;

9. the user interactions, by accessing the menu options;

10. the transmission of the signals between the user interfaces,
once the user navigates through them;

11. the update of the user interfaces once a reactor parameter is
not in an error state anymore.

Improvements on the Formal Model and Implementation
An advantage of connecting the formal model to a real system
is that it brings improvements to both the formal model and
the implementation. The following modifications are imple-
mented in the formal model:

1. Alignment of the list of reactor parameters: 27 new parame-
ters are added.

2. Adjustment in the parameter names: some parameters have
different names in the requirements and in ADACS-NTM.
The formal model now references both terminologies.

3. Definition of the minimum and maximum values of the
reactor parameters according to ADACS-NTM thresholds.

4. Addition of four new thresholds to each parameter: two
superior and two inferior thresholds, increasing the number
of thresholds from 1 to 3 at each extremity (Figure 14).
When the value of the parameter cross these thresholds,
alerts and/or alarm conditions are triggered on the system.

Superior threshold 1 (new)

Superior threshold 2 (new)

Maximum

Inferior threshold 1 (new)

Inferior threshold 2 (new)

Minimum

Figure 14. New thresholds in the reactor parameters

5. Addition of two new scenarios, super threshold overflow
and super threshold underflow, increasing the number of
scenarios from five to seven. Such errors are triggered
in a reactor parameter when its value exceeds its supe-
rior/inferior thresholds n.2 (Figure 14), in contrast to the
threshold overflow and threshold underflow errors, already

present in the model, and triggered when a reactor parame-
ter value exceeds its superior/inferior thresholds n.1. The
maximum and minimum thresholds in Figure 14 are not
expected to be exceeded.

On the other hand, our approach allowed ADACS-NTM system
to be improved in several directions. Some corrections were
made in the system, and the following improvements were
implemented:

1. generation of signals once a reactor parameter receives val-
ues that are beyond its thresholds;

2. enhancement of the log with traces of the control-room pro-
cess, i.e., the acquired values of parameters, the thresholds
overflow and underflow, and the generation of alerts and
alarm conditions;

3. addition in the log: user interactions with the user interfaces;

4. addition in the log: all UI status changes for inputs, thresh-
old overshooting, triggered alerts;

5. generation of a unique log file, including all logged events,
sorted by timestamps.

Limitations of the Validation
Some information is not covered by the validation (e.g., the
gradient excess, loss of redundancy, and invalid measurement
scenarios; 30 reactor parameters; the name of the user interface
displayed once the user accesses a menu option, etc.). Even
though they are represented in the formal model, they are
not present in the trace files generated by the ADACS-NTM

portion implementing the EDF prototype.

Several modules of the ADACS-NTM system were not covered
by the formal model, and were not subject to validation by this
approach.

Currently, the Parser accepts only ADACS-NTM log files, and
generates LTS sequences for this case study. An effort would
be necessary to generalize the Parser so that it could be appli-
cable to other case studies.

DISCUSSION
Formal methods have been largely used for improving systems
under design, and to enhance requirements before developing
the system. Alternatively, we propose to use formal methods
to improve existing systems too. Clearly, an advantage is that
the approach can be integrated to the V&V environment of
already implemented and still evolving systems, which justi-
fies the creation of formal specifications (by experts in formal
methods) of systems that have already been implemented.

Checking whether an interactive system implements its re-
quirement as expected is a classic activity of validation, which
has been largely done in system design. The novelty of our
proposition is the integration of log files with formal methods
to perform such validation.

Besides the validation of the real interactive system with re-
spect to its requirements using formal models, the connection
of a formal model to a real system is a fruitful source of

improvements to both the formal model and the implemen-
tation. It improves both the real interactive system and the
formal model: the results of the analysis are used to polish the
real system, and to increase the realism of the formal model.
Preliminary analyses improve the formal model in several
directions and approximates it to the real interactive system.

A positive effect of the approach is that it allows the for-
mal model to be cross checked too. One of the challenges
in model-based approaches is to ensure the reliability of the
model. Since these approaches highly rely on the models,
models are expected to be as representative as possible. Hand-
written models have the advantage of being subject to human
analysis and reasoning. Depending on the designer expertise, a
good understanding of the system may result in a good model.
However, even good designers may have a misunderstanding
of the system, and consequently model it incorrectly, not to
mention that hand-written models are error-prone. The ap-
proach proposed in this paper provides a means to mitigate
such difficulties. The application of such techniques aiming
at connecting the formal model to a real system mitigates the
fidelity issue (i.e., there is no guarantee that the models re-
ally correspond to the system), one of the reasons why there
are few case studies of formal methods applied to industrial
systems [10]. The connection of the formal model to the
implementation brings fidelity to the formal model.

However, analysis of traces relies on the quality of the traces.
It is not possible to completely re-construct a model of the
system from the system logs, and this is not the goal of the
approach. The approach is rather meant to validate certain
system functionality with respect to the requirements. In other
words, to check whether certain scenarios executed on the
real system can be found in the state space of the formal
model, which may indicate that the system implements the
requirements as expected. This does not call for exhaustive
analysis, and it does not mean that the checking coverage
relies on the testing coverage. The checking rather relies on
the quality of such log files: the more the system logs cover
aspects of the system, the larger the coverage of the system
validation will be. Rather than propose techniques that rely on
all parts of a system being covered, a more piecemeal approach
allows progress to be made and useful results determined,
when the focus of the modeling activity is narrowly directed
at only certain parts of a system [12].

In order to check a given functionality, the functionality should
be included in the logging mechanism of the system, and with
a certain level of details so that the analysis is useful. In order
to automate the execution of the system, and subsequently
generation of log files, testing tools such as Selenium4 can be
used, which allows the execution of systems to be automated.

Once a certain number of log files are available, the usage
of a formal model to validate the interactive system through
the inclusion checking provided by the analysis of traces is
beneficial to the real system. Not to mention that the formal
model itself can be used in other ways to improve quality of

4http://www.seleniumhq.org/

the analyzed interactive system [20], such as the verification
of properties [27, 19, 23, 24].

Finally, the approach can be applied to more general cases,
for instance, to compare two formal descriptions (regardless
whether formal specifications or implementations) that are
independently derived from informally stated requirements.
Going further, bisimulation equivalence can be verified be-
tween them [22], for instance.

CONCLUSION
This paper presents our investigations of using formal mod-
els to validate interactive systems with respect to the initial
requirements. A trace-based approach is described in detail.
The novelty of this work is the coupling of formal techniques
and analysis of traces, by checking system traces over the
state space of the formal model. Besides validating the initial
requirements of the system, such analysis can bring improve-
ments to both the real interactive system and its formal model.

The approach was applied to analyze part of an industrial
system in the nuclear plant domain called ADACS-NTM. Af-
ter an initial alignment, several correspondences were shown
between ADACS-NTM and the formal model, which may in-
dicate that the real system implemented the requirements cor-
rectly, given the redundancy aspect of the approach. More
importantly, one major mismatch was found in the way both
ADACS-NTM and the formal model synthesize signals once a
reactor parameter has an error.

The application of our approach to the analysis of an industrial
system indicates that the approach scales well to real-life ap-
plication. A Parser was implemented to translate logs into LTS
sequences, of which the main ideas can be re-used to further
connect other formal models to interactive systems. Further
work is needed, though, to make the Parser more generic and
applicable to any case study. In the future, further investigation
could be conducted on the two alternative propositions: test
case generation and co-simulation, as well as a study about
the rationale of using each one of them. In addition, we also
aim at using log file analysis in combination with other testing
techniques, such as mutation testing, in an integrated V&V
environment for interactive systems.

ACKNOWLEDGMENTS
This work is funded by the French Connexion Cluster (Pro-
gramme d’Investissements d’avenir / Fonds national pour la
société numérique / Usages, services et contenus innovants).
We thank Frédéric Lang and Hubert Garavel, researchers at IN-
RIA Rhône-Alpes, and Franck Etienne and Olivier Deschamps,
from Atos Worldgrid, for their collaboration to this work.

REFERENCES
1. IEEE Std 1012-2004. 2005. IEEE Std 1012 - 2004 IEEE

Standard for Software Verification and Validation. (2005).

2. Hanan Al-Zawahreh and Khaled Almakadmeh. 2015.
Procedural Model of Requirements Elicitation
Techniques. In Proceedings of the International
Conference on Intelligent Information Processing,
Security and Advanced Communication (IPAC ’15).
ACM, New York, NY, USA, Article 65, 6 pages.

http://www.seleniumhq.org/

3. Ermeson Andrade, Paulo Maciel, Gustavo Callou, and
Bruno Nogueira. 2009. A methodology for mapping
sysml activity diagram to time petri net for requirement
validation of embedded real-time systems with energy
constraints. In Digital Society, 2009. ICDS’09. Third
International Conference on. IEEE, 266–271.

4. James H. Andrews and Yingjun Zhang. 2000.
Broad-spectrum Studies of Log File Analysis. In
Proceedings of the 22Nd International Conference on
Software Engineering (ICSE ’00). ACM, New York, NY,
USA, 105–114.

5. A Arnold, MC Gaudel, and B Marre. 1998. An
Experiment on the Validation of a Specification by
Heterogenous Formal Means: The Transit Node.
DEPENDABLE COMPUTING AND FAULT TOLERANT
SYSTEMS 10 (1998), 37–56.

6. Algirdas Avizienis, Jean-Claude Laprie, Brian Randell,
and Carl Landwehr. 2004. Basic Concepts and Taxonomy
of Dependable and Secure Computing. IEEE Trans.
Dependable Secur. Comput. 1, 1 (Jan. 2004), 11–33.

7. Len Bass, Reed Little, Robert Pellegrino, Scott Reed,
Robert Seacord, Sylvia Sheppard, and Martha R Szezur.
1991. The ARCH model: Seeheim Revisited. In User
Interface Developpers’ Workshop.

8. David Champelovier, Xavier Clerc, Hubert Garavel, Yves
Guerte, Christine McKinty, Vincent Powazny, Frédéric
Lang, Wendelin Serwe, and Gideon Smeding. 2014.
Reference Manual of the LNT to LOTOS Translator
(Version 6.1). (Aug. 2014). INRIA/VASY and
INRIA/CONVECS, 131 pages.

9. François Chériaux, Dominique Galara, and Marion Viel.
2012. Interfaces for Nuclear Power Plant Overview. In
8th International Topical Meeting on Nuclear Plant
Instrumentation, Control, and Human-Machine Interface
Technologies 2012 (NPIC & HMIT 2012). Curran
Associates, Inc., San Diego, 1002–1012.

10. Darren Cofer. 2012. Formal Methods in the Aerospace
Industry: Follow the Money. In Proceedings of the 14th
International Conference on Formal Engineering
Methods: Formal Methods and Software Engineering
(ICFEM’12). Springer-Verlag, Berlin, Heidelberg, 2–3.

11. Bruno d’ Ausbourg. 1998. Using Model Checking for the
Automatic Validation of User Interfaces Systems. In
Design, Specification and Verification of Interactive
Systems ’98, Panos Markopoulos and Peter Johnson
(Eds.). Springer Vienna, 242–260.

12. Bob Fields, Nick Merriam, and Andy Dearden. 1997.
Design, Specification and Verification of Interactive
Systems ’97: Proceedings of the Eurographics Workshop
in Granada, Spain, June 4–6, 1997. Springer Vienna,
Vienna, Chapter DMVIS: Design, Modelling and
Validation of Interactive Systems, 29–44.

13. H Garavel and S Graf. 2013. Formal Methods for Safe
and Secure Computer Systems. Federal Office for
Information Security (2013).

14. Hubert Garavel, Frédéric Lang, Radu Mateescu, and
Wendelin Serwe. 2013. CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes.
International Journal on Software Tools for Technology
Transfer 15, 2 (2013), 89–107.

15. Colin Hood, Simon Wiedemann, Stefan Fichtinger, and
Urte Pautz. 2007. Requirements management: The
interface between requirements development and all
other systems engineering processes. Springer Science &
Business Media.

16. Lester O. Lobo and James D. Arthur. 2005. Local and
Global Analysis: Complementary Activities for
Increasing the Effectiveness of Requirements Verification
and Validation. In Proceedings of the 43rd Annual
Southeast Regional Conference - Volume 2 (ACM-SE 43).
ACM, New York, NY, USA, 256–261.

17. Paolo Masci, Yi Zhang, Paul Jones, Paul Curzon, and
Harold Thimbleby. 2014. Fundamental Approaches to
Software Engineering: 17th International Conference,
FASE 2014, Grenoble, France, April 5-13, 2014. Springer
Berlin Heidelberg, Berlin, Heidelberg, Chapter Formal
Verification of Medical Device User Interfaces Using
PVS, 200–214.

18. Radu Mateescu and Damien Thivolle. 2008. A Model
Checking Language for Concurrent Value-Passing
Systems. In FM 2008 (Lecture Notes in Computer
Science), Jorge Cuellar and Tom Maibaum (Eds.), Vol.
5014. Springer Verlag, Turku, Finlande, 148–164.

19. David Navarre, Philippe A. Palanque, Jean-François
Ladry, and Eric Barboni. 2009. ICOs: A model-based
user interface description technique dedicated to
interactive systems addressing usability, reliability and
scalability. ACM TOCHI (2009), 18:1–18:56.

20. Chris Newcombe, Tim Rath, Fan Zhang, Bogdan
Munteanu, Marc Brooker, and Michael Deardeuff. 2015.
How Amazon Web Services Uses Formal Methods.
Commun. ACM 58, 4 (March 2015), 66–73.

21. Raquel Oliveira, Sophie Dupuy-Chessa, and Gaelle
Calvary. 2014. Formal Verification of UI Using the Power
of a Recent Tool Suite. In Proceedings of the 2014 ACM
SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS ’14). ACM, New York, NY,
USA, 235–240.

22. Raquel Oliveira, Sophie Dupuy-Chessa, and Gaëlle
Calvary. 2015a. Equivalence Checking for Comparing
User Interfaces. In Proceedings of the 7th ACM SIGCHI
Symposium on Engineering Interactive Computing
Systems (EICS ’15). ACM, New York, NY, USA,
266–275.

23. Raquel Oliveira, Sophie Dupuy-Chessa, and Gaëlle
Calvary. 2015b. Plasticity of User Interfaces: Formal
Verification of Consistency. In Proceedings of the 7th
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS ’15). ACM, New York, NY,
USA, 260–265.

24. Raquel Oliveira, Sophie Dupuy-Chessa, and Gaëlle
Calvary. 2015c. Verification of Plastic Interactive
Systems. De Gruyter publication Journal of Interactive
Media (i-com) 14(3) (2015), 192–204.

25. Lydia Schneidewind, Stephan Hörold, Cindy Mayas,
Heidi Krömker, Sascha Falke, and Tony Pucklitsch. 2012.
How Personas Support Requirements Engineering. In
Proceedings of the First International Workshop on
Usability and Accessibility Focused Requirements
Engineering (UsARE ’12). IEEE Press, Piscataway, NJ,
USA, 1–5.

26. Souvik Sengupta and Ranjan Dasgupta. 2015. Use of
Semi-Formal and Formal Methods in Requirement
Engineering of ILMS. SIGSOFT Softw. Eng. Notes 40, 1
(Feb. 2015), 1–13.

27. M. Sousa, J.C. Campos, M. Alves, and M.D. Harrison.
2014. Formal Verification of Safety-Critical User

Interfaces: a space system case study. In Formal
Verification and Modeling in Human Machine Systems:
AAAI Spring Symposium. AAAI Press, 62–67.

28. WT Tsai, X Bai, B Huang, G Devaraj, and R Paul. 2000.
Automatic Test Case Generation for GUI Navigation. In
Quality Week, Vol. 2000.

29. Atos Worldgrid. 2011. Modernizing Data Processing for
EDF Energy at Dungeness – Improving Performance and
Standardizing Technology for EDF Energy. (2011).

30. Ayesha Yasmeen, Karen M. Feigh, Gabriel Gelman, and
Elsa L. Gunter. 2012. Formal Analysis of Safety-critical
System Simulations. In Proceedings of the 2Nd
International Conference on Application and Theory of
Automation in Command and Control Systems (ATACCS
’12). IRIT Press, Toulouse, France, France, 71–81.

	Introduction
	Related Work
	Formal Models to Validate an Implementation
	Analysis of Traces in Details
	Languages and Tool Support
	Instantiation using the Tools
	Parsing the Trace Files

	Case Study
	The EDF Prototype
	The ADACS-NTM System

	Application of Analysis of Traces
	Formal Model of the EDF Prototype
	Instantiation of the Approach
	Simulated Scenarios
	Coverage of the Validation
	Results of the Validation
	Inclusion Checking
	Improvements on the Formal Model and Implementation
	Limitations of the Validation

	Discussion
	Conclusion
	Acknowledgments
	References

