
Adrian Iftene, Jean Vanderdonckt (Eds.)

11

Automated Evaluation of Menu by Guidelines Review
Sara Bouzit1,2, Gaëlle Calvary2, Denis Chêne1, Jean Vanderdonckt3

1Orange Labs, 28 chemin du Vieux Chêne, F-38240 Meylan (France)
{sarah.bouzit, denis.chene}@orange.com

2Univ. Grenoble Alpes, LIG,
CNRS, LIG, F-38000 Grenoble (France) - {sara.bouzit, gaelle.calvary}@imag.fr

3Université catholique de Louvain, Louvain School of Management, Louvain Interaction Lab.
B-1348 Louvain-la-Neuve (Belgium) - jean.vanderdonckt@uclouvain.be

ABSTRACT
This paper presents ERGOSIM, a software that

automatically evaluate the design of menu bars, pull-down

menus, and sub-menus of a graphical user interface by

reviewing usability guidelines related to menu design. In

this method, a menu design is parsed against the definition

of usability guidelines in order to detect potential usability

problems manifested by any occurrence where a

guidelines is not respected. Four evaluation strategies are

enabled depending on the end user’s preferences: an active

strategy initiated by the system, a passive strategy initiated

by the designer, a mixed strategy collaboratively initiated

by both the designer and the system, and a strategy by

conceptual units based on the domain. From an initial

corpus of 312 usability guidelines compiled from different

sources on menu design, a final knowledge base of 58

implemented usability guidelines has been obtained for

automatic evaluation. By examining how each usability

guideline for menu design is expressed, we discuss to

what extent such guidelines could be automated in an

automated process by guidelines review.

Author Keywords
Automatic evaluation; computer-aided design; evaluation

strategy; heuristic evaluation; menu bar; pull-down

menus; sub-menus; usability guidelines.

ACM Classification Keywords
Human-centered computing, Graphical user
interfaces. Human-centered computing - Heuristic
evaluations. Human-centered computing - User interface

management systems

INTRODUCTION
In order to assess the usability of a User Interface (UI) and

therefore to improve it, the temptation has been followed

since years to replace a human (manual) evaluation of this

usability by a system (automatic or semi-automatic)

evaluation for several reasons [8,13,19,31]: to reduce

human resources (e.g., by being released from involving

usability experts), to reduce budget resources (e.g., by

reducing the time and the resources needed to conduct

such an evaluation), to guarantee the quality of the results

(e.g., to ensure consistency across several evaluations,

even if automated evaluation cannot cover all aspects, to

establish a systematic evaluation by reducing missing

spots, to minimize false positive and false negative), or to

give the label of a usability standard (e.g., by certifying

that a particular UI is compliant with a style guide, a

corporate design guide or an established standard).

These reasons are considered even more important when

the UI has some special status: a UI for a safety-critical

system [32] for which it is crucial not to miss any potential

defect, a very large UI for which there are so many

screens that evaluating them becomes too tedious and

repetitive [10], an adaptive UI for which adaptation could

give rise to many different configurations to evaluate [11].

Many variables need to be decided when automatically

evaluating a UI [8, 14, 19]:

� What type of method: several evaluation methods that

are good candidates for conducting an automated

evaluation, but they do not give all the same type of

results. For instance, heuristic inspection, standard

compliance, guideline review, cognitive walkthrough,

user testing.

� What type of software: on-line vs off-line software or

mixed solutions exist in order to capture UI data at run-

time as well as users or contextual data or not.

� What type of usability knowledge: usability guidelines

as well as accessibility guidelines are two representative

examples of usability knowledge used for guideline

review.

� What type of UI: as opposed to stand-alone UIs which

are more difficult to grasp regarding their code access,

web UIs are in principle easier for accessing the HTML

code, parsing it, and conducting evaluation. Stand-alone

UIs have other sources, like log files, resource files,

screen analysis, static analysis, dynamic analysis.

� What type of scope: the scope of the evaluation could be

also very different, ranging from local evaluation of

typed UI elements to global evaluation of all UI

elements, including their presentation, navigation, and

their contents.

What type of purpose: detecting usability problems or

certifying that there should not be such usability problems

are two inverse approaches. Between exists the wish to

have a simple diagnosis to assess the current usability of a

UI in order to locate its quality with respect to

competitors.

RoCHI 2016 proceedings

12

Figure 1. ERGOSIM main screen.

This paper presents ERGOSIM (Figure 1), a software for

automated usability evaluation of the menu of a Graphical

User Interface (GUI) with the following original aspects:

- Type of user interface: a GUI is the focus of the

application with standard menus, no adaptable or

adaptive menus are considered since they stem

for other evaluation methods. Although ERGOSIM

is developed on the MS Window platform, it is

expected that any IBM Common User Access

(CUA)-compliant menu is targeted by ERGOSIM,

therefore not assuming that a particular operating

system is required to design the menu.

- Type of method: guideline review has been

decided in order to confront the GUI against a set

of usability guidelines that belong to the

literature. It is expected that the menu is built at

design time (not at run-time) by a designer or a

developer. Guideline review [23] consists of

selecting a set of relevant guidelines and to

examine a UI against this set of guidelines [32].

Two models are prevalent [4]: a binary model

where a guideline is considered violated when

there is at least instance on the GUI where the

guideline is not respect or a linear model where

all occurrences of guideline violations count per

screen, along with a weight expressing the level

of importance of the guideline. The binary model

is mainly used here, but with different strategies

that will be detailed.

- Type of software: a stand-alone application has

been decided to enable the designer to build the

menu bar, the pull-down menus and the sub-

menus during the development phase of detailed

design. In order to preserve continuity with the

rest of the development life cycle, ERGOSIM can

export a menu design as a resource file to be

included in a Windows application project. Other

export formats, like UsiXML, could be imagined

as well, but are not covered. Similarly, it could be

imagined that a resource file could be imported

for further evaluation.

- Type of scope: ERGOSIM focus on only one part

of the GUI: the menu bar with its pull-down

menus, cascading menus and sub-menus. Several

reasons motivate this choice: the menu has never

been covered per se by automated evaluation, the

menu is probably one of the most frequently used

interaction technique in many interactive

applications and systems [2], many different

types of menu exist [2] although this paper is not

aimed at evaluating them all, there is a significant

body of knowledge on menu [22], many usability

guidelines are widespread in the literature, menu

design is a familiar design activity and the menu

is an object that could be easily controlled.

- Type of purpose: the goal of ERGOSIM is to

support the designer while designing the menu,

not to conduct an evaluation afterwards when the

entire GUI is developed and to help novice

designers learning usability knowledge regarding

menu design in context [18, 26].

In order to introduce ERGOSIM and to explain how menu

usability guidelines are automatically evaluated, the

remainder of this paper is structured as follows: Section 2

will review some selected contributions in the area of UI

automatic evaluation without conducting a systematic

literature review, Section 3 will elaborate on the design

and the implementation of ERGOSIM, Section 4 will

discuss to what extent usability guidelines have been

Adrian Iftene, Jean Vanderdonckt (Eds.)

13

implemented in ERGOSIM, and Section 5 will conclude

the paper by discussing future avenues to this work.

RELATED WORK
There are many pieces of work related to automatic UI

evaluation in general, like Ivory’s state-of-the-art [19],

although it is no longer up-to-date. A good review is

provided in [8, 14]. In this section, we only review some

selected work with a focus on menus.

METROWEB [9] enables the designer to access to one or

many usability knowledge bases that are presented as

hypermedia with faceted search. A typical knowledge base

consists of guidelines of any type, along with its

ergonomic criteria [5], its linguistic level [30], its impact

factor, and positive/negative examples illustrating good

and bad practice related to the guideline. Multiple

knowledge bases could be accessed and a faceted search

could query these bases like “Give me all guidelines

related to menu design” by selecting appropriate values

for search criteria [30]. Selected guidelines could then be

exported in a special section, e.g., for producing an

evaluation report. Although METROWEB provides

adequate access to usability knowledge, it is the designer’s

responsibility to correctly apply them or evaluate them. It

has been demonstrated that designers relying on

METROWEB manipulate more usability guidelines than

without and that the UI resulting from this exercise satisfy

more guidelines than without [9].

ERGOVAL [17] is a pioneering attempt to automatically

evaluate GUIs against usability guidelines (by guideline

review) for stand-alone applications. The authors report in

their feasibility analysis that a ratio of 40% has been

reached between the guidelines candidates to automated

evaluation and their feasible final implementation. They

ask the question: what is the limit of automated

evaluation?

BOBBY [10] automatically evaluate accessibility guidelines

of web sites by guideline review of W3C accessibility

guidelines. A pilot study revealed that the ratio could

reach up to 50% for accessibility of web sites since the

HTML code of web pages is in principle easily accessible.

Nowadays, this ratio is no longer that high with dynamic

web pages and CSS3 style sheets [24]: it is around 30%
according to a qualitative estimation.

KWARESMI [4] also automatically evaluate usability and

accessibility guidelines of web pages, either on-line or off-

line, by guideline review. This process is structured as

follows: any candidate guideline is first encoded in GDL

(Guideline Definition Language), a XML-compliant

language for specifying a guideline based on first-order

predicate logic on HTML tags, then incorporated into an

evaluation base that is then parsed on-demand for a set of

web pages. The advantage is that the evaluation engine is

independent of the guidelines encoded in one or many

knowledge bases [29]. Although no empirical study has

been conducted yet on this software, it is also estimated

that a ratio of 30% of automatable guidelines could be

reached, but with different types of restrictions depending

on the tags involved in the GDL rule.

Several other software follow the same principle, such as

ErgoManager [1], ErgoCoIn [21], MAUVE [29], with a

higher degree of flexibility when it supports dynamic web

sites instead of a current version of a web page at run-

time.

RITA [6] provides a more comprehensive framework for

automatic GUI evaluation by considering not only a large

set of guidelines, but also by relating them to quantitative

data, such as task execution time, task completion rate,

error rate, and interaction traces. In this way, RITA

establishes a bridge between a qualitative evaluation based

on guidelines review and a quantitative evaluation based

on metrics.

EISEVAL [15] automatically evaluate usability guidelines

on the GUI of an interactive application implemented

according to the paradigm of a multi-agent software

architecture. In this way, the evaluation consists of a set of

autonomous agents which can query different parts of the

interactive application so as to gather date and establish a

diagnosis based on these data. Multiple agents could be

incorporated that conduct different types of evaluation

independently of each other, perhaps also with the same

guidelines or different ones. In [7], a system is presented

that hold the evaluation logic in the very right widgets

used by the end user, instead of other modules of the

interactive applications.

MENUSELECTOR [25] is a software for rapid prototyping

of menu designs by considering different physical

parameters like location, orientation, selection mechanism,

and group clustering. This approach is purely syntactical

since there is no automatic evaluation of the menu being

designed, but the automatically generated HTML code

could be subject to a further analysis conducted in another

software.

MENUDESIGNER [28] is aimed at automatically generating

a menu bar, associated cascading menus and menus items

based on an activity chaining graph representing possible

hierarchical navigation based on a task model. This

approach remains static (the menu structure is generated

once for all), without any adaptation and could lead to

inconsistent menus when items are arranged.

MENUOPTIMIZER [3] is aimed at helping designers and

developers to optimize the menu structure by maximizing

consistency vs performance based on ant colony

algorithm. While MENUOPTIMIZER reveals the popularity

of menu items by a color line under each menu item, thus

leaving the menu structure untouched, it does not provide

end users with an adaptive menu. Matsui & Yamada [20]

relied on a genetic algorithm to generate a menu structure

that is optimized for its usage.

Adaptivity Animated transitions [12] have also been

successfully used to explain to the end user how a UI has

been adapted, including for menus [12]: each adaptation

operation performed on a GUI is captured, scripted and

could be played or replayed at the end user’s pace, thus

providing some visual explanation of the adaptation. The

major drawback was the lack of animation control: not all

steps should be animated equally to understand.

RoCHI 2016 proceedings

14

Usability Category Guidelines
Optimizing the user experience 29

Hardware and software 4

The homepage 12

Page layout 9

Navigation 27

Scrolling and paging 3

Headlines, titles and labels 18

Links 21

Text appearance 18

Lists 13

Screen based controls (widgets) 27

Graphics, images and multimedia 17

Writing web content 18

Content organization 8

Search 16

Total Guidelines 240

Table 1. Guidelines implemented in USEFul.

The closest work to ErgoSIM is probably USEFul [13,

14], a complete framework for automatic evaluation of

web sites against usability guidelines, also by guideline

review. Table 1 summarizes the various categories of

guidelines implemented in USEFul. Each guideline cannot

be implemented with the same level of support. For this

purpose, USEful distinguishes three levels of

implementation [14]:

1. Green, when the guideline can be fully implemented:

the framework is able to automatically determine

whether this guideline applies to the web site being

evaluated and the results related to this guideline are

conclusive since these types of guidelines are

typically measurable, with clearly defined parameters.

2. Amber, when the guideline is harder to fully

implement in the USEFul framework: certain patterns

have been used in order to determine whether this

guideline may apply to the web site being evaluated

and then transformed into a corresponding code. This

guideline could be upgraded by augmenting the

guideline evaluation by other mechanisms than

guideline review, such as with machine learning

processes or artificial intelligence algorithms. The

results provided by USEFul for this guideline consist

of data that can assist the designer in checking

whether it applies to the web site being evaluated or

not and support the designer in conducting the

evaluation of this guideline which required human

interpretation.

3. Red, when the guideline is too abstract to warrant any

implementation and requires user intervention or too

advanced algorithms to make it possible for it to be

implemented in the framework. Through the use of

such sophisticated algorithms, a guideline could be

upgraded to “amber” or “green” levels. In its current

definition, USEFul lists this guideline so that the

designer can be manually checked if it applies to the

web site being evaluated.

In conclusion, one can observe that today there is no

software like ERGOSIM to perform automatic evaluation of

usability guidelines related to menus of GUIs of

interactive applications at design time. Some software

could be however tailored for this purpose, although they

mainly work over web applications for which the HTML

code is downloadable as opposed to a stand-alone

application.

DEVELOPMENT OF ERGOSIM

Design options
This section presents the major design options decided for

developing ERGOSIM and discusses the rationale behind.

Multi-view visualization. We hereby define a UI view as

any representation of a final UI involved in a development

life cycle. A UI view may be textual, graphical or both,

based on a data structure or not [12]. By observing

existing UI development methods and development life

cycles, UI views can be roughly classified into three

categories (Figure 2):

1. Conceptual View (CV): describes a conceptual

representation of a UI of interest based on semantics,

syntax, and stylistics. Typical examples include: UI

models for domain, functional core, resources, and

dynamic aspects. A conceptual view is the designer’s

view at early stage.

2. Internal View (IV): consists of the UI code in any

programming or markup language. An internal view

is the typical developer view for developing a

particular UI.

3. External view (EV): refers to the final UI that is

visible and executable by the end user.

Figure 2. Possible paths between UI views.

During the development life cycle, at design-time as well

as at run-time, various UI stakeholders can create, retrieve,

modify, delete, or simply execute any UI view or view

element: for instance, while a designer is responsible for

the conceptual view, the developer is responsible for the

internal view, and the end user accesses the external view

for comments, testing, and validation. A development path

may be initiated from any view and could proceed with

any other view, including itself, which are respectively

represented by arrows and loops in Figure 2. ERGOSIM

structures its environment similarly into three views

(Figure 1) [12]:

1. External view (EV): refers to the final representation

of the menu as it is visible and executable by the end

Adrian Iftene, Jean Vanderdonckt (Eds.)

15

user with the same Look & Feel as it should be in the

end.

2. Internal View (IV): consists of the menu structure

decomposed into levels of the menu hierarchy, as it is

stored for instance in a resource file.

3. Conceptual View (CV): describes a conceptual

representation of a menu in terms of design options

and parameters for each menu item or menu group,

which includes:

a. The menu label, which contains the textual label of

the menu item, along with the “&” character

representing the mnemonic of the menu item. The

character after this delimiter is underlined.

b. The mnemonic of the menu item, which is the

character to be pressed by combining it with the

“Alt” key instead of selecting it by pointing, e.g.

“Alt + 3 for “Save”. The range of possible

mnemonics for a label is automatically generated

from the menu label (Figure 3) and the designer

can choose among them by moving a cursor on it.

This is important since a usability guideline states

that a mnemonic should always be chosen among

the real letters of the label, preferably those that are

pronounced.

c. The menu activation status, qui specifies whether

the item is by default activated or deactivated

(greyed).

d. The menu shortcut, qui defines the sequence of

keys to be pressed for directly accessing the menu

item, which consists of normal keys, i.e., A, B, C,

..., X, Y, Z, 1, 2, ...9, 0, F1, F2, ..., F11, F12, Del,

Ins, ... and control keys, i.e., « Crtl », « Alt »,

« Shift ».

e. The menu attachment type, which specifies whether

a menu item is related to displaying a sub-menu

(for instance, a pull-down menu or a cascading

menu), to opening a dialog box or a secondary

window, or to triggering directly a function of the

application.

f. The contextual help message, which specifies the

message to be displayed in the status bar when the

menu item is highlighted, but not yet selected.

The menu bar is consequently equipped with traditional

facilities for menu management, such as creating,

updating, deleting a menu item, a group of items, an entire

menu or a menu bar. Note that this conceptual view could

be expanded in the future with other parameters, such as

the associated earcon or the gesture to trigger the same

item, but these options are not covered yet by usability

guidelines.

Multi-strategy evaluation. The target users of ERGOSIM,

theoretically any stakeholder involved in the UI

development life cycle but practically the most often,

designers and developers, could exhibit very different

profiles in terms of background and level of experience

[26].

Figure 3. Conceptual view of a menu item.

In order to support this variation, the automatic evaluation

of the menu being designed could be achieved flexibly

according to parameters specified in the Evaluation
parametrization window (right part of Figure 1), which

offers four evaluation strategies:

1. An active evaluation strategy, where the end user

decides when and how the automatic evaluation will

take place. This strategy is qualified as “active”

because the stakeholder actively participates in the

evaluation.

2. A passive evaluation strategy, where the system

automatically evaluates the menu being designed

without any intervention of the end user. This strategy

is qualified as passive since the stakeholder has no

control on the evaluation process.

3. A mixed initiative strategy, which is located mid-way

between the active and the passive strategies, where

the end user can parametrize the evaluation based on

several parameters:

a. The amount of user actions: which captures the

amount of all elementary actions performed by the

user, such as menu item editing, pull-down menu

editing, etc. In this way, it is possible to trigger the

evaluation every 5 actions.

b. The type of user actions: which categorizes the

level of actions performed by the end user:

elementary, intermediate, or complete. In this way,

it is possible to trigger the evaluation when a

complete pull-down menu is finished, therefore not

interrupting the user in the design process. Task

switching between a design activity and an

evaluation activity should be minimized.

c. The amount of usability problems, which specifies

the amount of usability problems detected after

which the evaluation could be triggered. In this

way, it is possible to trigger an evaluation after a

certain amount of problems has been detected,

which is particularly useful when problems are

generated in cascade: one usability problem may

immediately induce some other related problems.

d. The type of usability problem, which specifies the

level of importance of a detected violation of a

usability problem, ranging from 1 (cosmetic) to 5

(critical). The level of importance of a guideline is

stored in its definition or automatically suggested

from the linguistic level: the higher the linguistic

level is, the higher becomes the level of

RoCHI 2016 proceedings

16

importance. In this way, it is possible to trigger an

evaluation when a problem with a given severity is

detected, and not just after any occurrence of a

detected violation.

4. A strategy based on conceptual units, where the end

user decides when the system should evaluate

significant parts of the menu being designed, based on

conceptual units. A conceptual unit is defined as a

non-elementary menu group unit, such as an entire

group of menu items delineated by separators in a

pull-down menu, an entire pull-down menu, a

cascading menu or the whole menu bar. In this way,

the evaluations could be triggered as soon as a

significant part of the menu has been completed, not

before. This strategy is qualified as “based on

conceptual units” since the evaluation scope is on a

menu part that has some semantic meaning, not an

elementary item.

Note that for the moment in the mixed-initiative strategy,

the evaluation is triggered only based on simple conditions

with a threshold, such as when the amount of problems >=

5 or when 2 important problems have been detected. A

cursor between these strategies (Figure 1) enables the end

user to gracefully evolve between strategies.

Parametrizable feedback. In addition to the evaluation

strategy, the end user may want to specify the level of
feedback detail that governs the way feedback messages

are presented to the end user after an evaluation has been

performed. This level of feedback could be stated to [16]:

� Elementary, when only the short title of the usability

guideline violated is presented for each occurrence of a

usability problem, along with its location (see the

message window at the bottom of Figure 1).

� Intermediate, when the complete title of the guideline

violated is presented for each occurrence of a usability

problem, along with its location and the level of

importance.

� Detailed, when the message contains the full set of

information on any detected usability problem: the

complete title, the ergonomic criteria from Bastien &

Scapin [], the linguistic level, positive and/or negative

examples, references where the guideline is

documented, along with information on the location and

a possible help on how to fix it.

Any occurrence of a detected usability problem is

displayed in the message window with or without a

timestamp. The message window could be purged at any

time via an appropriate push button. The amount of

information displayed in the message window can be

tailored (Figure 4).

Management of user profiles. A user profile could be

created and updated at any time that captures the

parameters:

The level of experience, which specifies the level of

usability experience in general and more specifically for

menu design: low experience, medium experience, or

high experience. Based on this value, ERGOSIM can

automatically assign predefined values to other

parameters, like the evaluation strategy so that the end

user should not necessarily fill in all the parameters

before starting. In this way, if the end user selected “low

experience”, ERGOSIM will pick the passive evaluation

strategy and the elementary feedback. It the end user

estimates herself as “moderately experienced”,

ERGOSIM will pick the mixed-initiative evaluation

strategy with a feedback every 5 significant actions. If

the end user estimates herself “highly experienced”,

ERGOSIM will pick the active strategy. The user can

change the values of these parameters at any time.

� The evaluation strategy that is preferred by the end user,

according to the aforementioned definition.

� The level of feedback detail that is preferred by the end

user, according to the aforementioned definition.

� The evaluation parametrization options (Figure 5).

Figure 4. Evaluation display options.

Figure 5. Evaluation parametrization options.

Adrian Iftene, Jean Vanderdonckt (Eds.)

17

Figure 6. Activation of selected guidelines.

Evaluation parametrization options (Figure 5) enable the

end user to tailor various options that drive the evaluation

of guidelines themselves:

� The list of possible guidelines: any guideline can be

activated or de-activated momentarily and this

configuration can be saved in a configuration file

(Figure 6).

� The list of inappropriate terms: since no natural

language understanding is incorporated, the end user

may want to specify a series of terms that hold a

negative connotation, whose usage is therefore

prohibited. For instance, “Abort” in English is

inappropriately translated into “avorter” in French,

which is irrelevant (Figure 7).

� The list of interdependent terms: for the sake of the

evaluation based on conceptual units, a series of

constraints could be imposed to establish and maintain

semantic relationships between terms that have some

interdependency. For instance, “Save” and “Save as”

should be located one after another, “Open” and

“Close” or synonyms should be grouped in a same

group of menu items to convey disclosure.

� The list of computer-based terms: this includes terms

that are considered as jargon terms belonging to the area

of computer science, such as “bandwidth”, “baud rate”,

“bitmap”, “memory dump”. These terms should be

avoided.

� The list of abstract terms: in order to evaluate the

general guideline stating that a menu item should be

ideally structured in a simple sentence composed of an

action verb followed by an object on which the action is

executed (action-object paradigm) or vice-versa (object-

action paradigm), this list contains verbs that are

considered too abstract or generic to be used in

appropriate menu design.

� The definition of standard menu items: standardized

menus as found in standards like IBM Common User

Access (CUA), in software vendors or operating

systems style guides (e.g., MacOs, Ubuntu, MS

Windows) can be defined once for all in a profile so as

to be compliant with these sources (Figure 7).

Figure 7. Definition of inappropriate labels.

Figure 8. Definition of standard items.

Development of ErgoSim
ERGOSIM has been developed in Borland Pascal for

Windows 7.0 because of the object-oriented facilities

offered by the procedural language and its corresponding

environment, but also for the object-oriented database in

which each usability guideline will be stored as a record.

The software architecture of ERGOSIM is composed of

three modules:

1. The evaluation triggerer: this module receives as input

any action executed by the end user performed on the

internal or the conceptual view of the menu and the

values of options contained in the user profile, the

most important being the evaluation strategy with its

parameters. This module then triggers an evaluation of

the menu being designed based on the evaluation

strategy and other parameters on the end users actions

performed since the last evaluation. These actions

include, but are not limited to: modifying the label of a

menu item, inserting a pull-down menu, inserting a

new menu item, modifying the menu bar, defining the

shortcut of a menu item, moving a group of items from

one sub-menu to another menu, moving a group of

items to a sub-menu, using standard menu items in

their standard format.

RoCHI 2016 proceedings

18

2. The evaluation engine: this module receives as input a

knowledge base of usability guidelines and the internal

representation of the menu from the triggerer and

performs the evaluation according to parameters set by

the triggered to return the results of the evaluation.

After an evaluation has been performed, all parameters

regarding the amount of actions, problems, etc. is

reinitialized. The system does not keep trace of

usability problems that are not solved: it simply re-

checks them at any evaluation. The evaluation engine

is independent of the knowledge base containing the

evaluation logic.

3. The evaluation presenter: this module receives from

the evaluation engine the results of a performed

evaluation and produces the output according to the

evaluation display options (Figure 4) and user profile.

The results are displayed in the message window

(bottom right of Figure 1).

AUTOMATIC EVALUATION OF USABILITY
GUIDELINES
Although ERGOSIM could accommodate one or several

different knowledge bases, it was decided to compose one

comprehensive knowledge base containing all the possible

guidelines on menu design. For this purpose, we compiled

usability guidelines from two major sources: Scapin’s

guide ergonomique [23] and Vanderdonckt’s ergonomic
guide [27], which is itself a compilation of usability

guidelines coming from more than 300 sources delivering

usability guidelines. This compilation resulted into a base

of 362 unique usability guidelines (without double

entries), which is considered as the set of initial guidelines

subject to automatic evaluation.

From this initial set, only 58 usability guidelines out of

362, have been finally implemented, which represents a

ratio of 16%. If we count usability guidelines that are

intrinsically respected by the operating system, the

software environment of ERGOSIM or ERGOSIM itself due

to its implementation (e.g., some guidelines are

intrinsically respected when displayed in the external

view), this ratio reaches to 36.5%.

Candidate guidelines (362 UG = 100%)

Irrelevant guidelines or
guidelines not applicable

(51 UG = 14%)

Applicable and relevant
guidelines

(311 UG = 86%)

Implementable guidelines
(132 UG = 36.5%)

Non-implementable guidelines
(179 RE = 49.5%)

Intrinsically respected
guidelines

(74 UG = 20.5%)

Implemented guidelines
(58 UG = 16%)

Guidelines respected
by MS Windows

Guidelines respected
by Borland Pascal

Guidelines respected
By ErgoSim

Easy guidelines
(17 RE = 5%)

Very difficult
guidelines
(18 RE = 5%)

Difficult
guidelines
(23 RE = 6%)

Too high abstraction level

Missing contextual information

Missing information related to
the guideline application

Requires natural language
understanding and/or semantic
interpretation

Negative cost/benefit

Figure 9. Distribution of implemented usability guidelines.

The full distribution of usability guidelines is graphically

depicted in Figure 9. Usability guidelines fall into 4

categories depending the level with which they could be

implemented, similarly to the USEFul’s level of

implementation [14]:

1. Irrelevant or not applicable guidelines: this category

contains guidelines whose application is probably

relevant to menu design in general, but not for menu

bar, pull-down menus, and cascading menus or

guidelines that cannot be applied practically. Table 2

reveals some significant examples of such guidelines

along with a comment explaining why they cannot be

applied.

2. Non-implementable guidelines: this category contains

guidelines whose interpretation and/or application is

impossible to replicate by a software for different

reasons (Figure 9): guidelines are expressed at a too

high level of abstraction that prevent them to be

interpreted by an automaton, guidelines that require

additional information related to the user, the platform,

the environment or the whole context of use that is

unknown at design time, guidelines that require

additional information that cannot be obtained by any

means, guidelines that require understanding of the

natural language in which the guideline is expressed,

and guidelines whose development would be so

complicated that they would require a significant

amount of time for a small benefit. Note that these

reasons are independent of the environment in which

ERGOSIM is implemented. Table 3 reveals some

significant examples of such guidelines.

3. Intrinsically respected guidelines: this category

contains guidelines that are intrinsically respected

either by the operating system (here, MS Windows),

the development platform (here, Borland Pascal) or the

environment of ERGOSIM itself. For instance, the

guideline “every menu item should be either activated

or deactivated” is automatically ensured by the

conceptual view of ERGOSIM. Similarly, the guideline

“Shortcuts should always be visible” is

straightforwardly ensured by MS Windows. The

guideline “A main menu should always exist” is also

intrinsically established by MS Windows since a menu

bar is always created, even if minimal. The guideline

“Shortcuts should always made visible” is ensured by

ERGOSIM itself since the conceptual view

automatically propagates this design choice on the

external view, thus making them visible automatically.

The guideline “Menu items should be perceptually

distinct from each other” is ensure by both MS

Windows and Borland Delphi since menu items in the

external view always presented with the same space

between and separators defined by the end user in the

group.

4. Implemented guidelines: this category contains

guidelines implemented in some way in ERGOSIM,

which are further refined into three sub-categories

depending on their complexity and the level with

which the scope of the guidelines could have been

addressed (Figure 9):

Adrian Iftene, Jean Vanderdonckt (Eds.)

19

a. Easy guidelines: guidelines that are

straightforwardly implemented. For instance, “The

menu breadth should not exceed 8 items” required

17 Lines of Code (LOC) in Borland Pascal, “The

menu items should have unique labels” required 28

LOC.

b. Difficult guidelines: guidelines that are

implemented but with some restrictions in their

interpretation [30]. For instance, “The numbering

of menu items should continuous” required 60

LOC, “Menu mnemonics should be phonetically

distinct” required 43 LOC, based on an existing

SOUNDEX algorithm testing whether two strings are

phonetically close or not.

c. Very difficult guidelines: guidelines that are

implemented with advanced techniques or

significant restrictions. For instance, “Mutually

exclusive items or interdependent items should be

grouped together” required 76 LOC, “Menu items

should avoid abstract terms and prefer action

verbs” is only 26 LOC because it merely tests that

all items do not belong to a list of predefined terms

considered abstract or not.

Guideline statement Reason
Menu items should be

consistent from one

application to another

ERGOSIM evaluates

one menu design at a

time and cannot

compare with other

menu design for other

case studies.

Full screen menus should be

displayed at once, with one

item per line

ERGOSIM does not

cover full screen

menus

Linear menus should match

user’s expectations

There are no linear

menus in ERGOSIM

Network menus should

follow a natural flow

There are no network

menus in ERGOSIM

Contextual menus should be

displayed at their right

location (top, bottom, left,

right) depending on the task

ERGOSIM is focusing on

menu bars, pull-down

menus and cannot

relocate such menus at

different locations

Items of pull-down menus

attached to a label of the

menu bar could be colored in

the same way

This guideline is

mostly applicable to

web sites and item

coloring is an

unsupported feature

Table 2. Examples of irrelevant guidelines.

Guideline statement Reason
The menu design should be

based on a metaphor of a

mini-world, based on real

task options

Impossible to interpret

unless a model of the

mini-world is

available along with a

task model

Use menu selection technique

that is precise enough

This implies to rely on

a menu performance

model, which exists,

but is another input.

The complexity of menus

should reflect the end user’s

experience

This requires to access

a user model

Only action verbs of natural

language should be used

This requires a

thesaurus of action

verbs for the natural

language used

Menu items should have

unique meanings

This requires a module

for natural language

processing based on a

semantic network

Menu items should avoid any

humor

This requires an

interpreter of natural

language

Table 3. Examples of non-implementable guidelines.

CONCLUSION
This paper presents ERGOSIM, a software that

automatically evaluate the design of menu bars, pull-down

menus, and sub-menus of a graphical user interface by

reviewing usability guidelines related to menu design in a

design-time environment, thus preserving the continuity

between design activities and evaluation activities.

ERGOSIM automatically evaluate 16% of usability

guidelines for menu, or 36% if we count intrinsically

respected guidelines. This is rather different from

ERGOVAL [17], whose authors argue that the ratio should

be between 44% and 78% or from BOBBY [10], whose

authors argue that a ratio of 50% was reached. In the last

case, web sites were automatically evaluated against

usability and accessibility guidelines, which is considered

as an easier case since the HTML code is accessible,

perhaps also with the Document Object Model (DOM)

containing the structure of the web page and the CSS. A

closer observation of guidelines that are finally supported

by the whole environment could be classified as follows

by linguistic level:

- Guidelines belonging to the physical and alphabetical

levels are almost always established by construction of

the menu bar, the pull-down menus and the cascading

menus. Changing the alphabet is also possible, but in

another environment.

- Guidelines belonging to the lexical level are almost all

supported since they are all easy to implement.

- Guidelines belonging to the syntactical level are often

supported, sometime with a more advanced technique.

- Guidelines belonging to the semantic level could be

sometimes implemented provided that some

restriction, e.g. by replacing the full scope by a list of

admissible values, is adopted.

- Guidelines belonging to the pragmatic and the goal

levels are almost never possible to implement, unless

additional models are made accessible, thus required

artificial intelligence techniques, such as intelligent

model-checking techniques, machine learning

techniques, relevance feedback or reinforcement

learning.

RoCHI 2016 proceedings

20

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers

for their constructive feedback on an earlier version of this

paper and Grenoble INP for supporting this collaboration.

REFERENCES
1. de Abreu Cybis, W., Scapin, D.L., Morandini, M.

ErgoManager: A UIMS for monitoring and revising

user interfaces for Web sites. In Proc. of the 1st Int.
Conf. on Web Information Systems and Technologies
(WEBIST’2005, Miami, 26-28 May 2005). SciTe

Press, (2005), 281–286.

2. Bailly, G., Lecolinet, E., Nigay, L. MenUA: A Design

Space of Menu Techniques (2009). Retrieved from

http://www.gillesbailly.fr/menua/ on May 27th, 2016.

3. Bailly, G., Oulasvirta, A., Kötzing, T., and Hoppe, S.

MenuOptimizer: interactive optimization of menu

systems. In Proc. of the 26th ACM Symposium on User
interface software and technology (UIST’2013). ACM

Press, New York, (2013), 331–342.

4. Beirekdar, A., Vanderdonckt, J., Noirhomme-Fraiture,

M. A Framework and a Language for Usability

Automatic Evaluation of Web Sites by Static Analysis

of HTML Source Code. In Proc. of 4th Int. Conf. on
Computer-Aided Design of User Interfaces
(CADUI'2002, Valenciennes, 15-17 May 2002).

Kluwer Academics Pub., Dordrecht, (2002), 337–348.

5. Bastien, Ch. And Scapin, D.L. Evaluating a User

Interface with Ergonomic Criteria, International
Journal of Human-Computer Interaction 7, (1995),

105–121.

6. Charfi, S., Ezzedine, H., and Kolski, Ch. RITA: a useR

Interface evaluaTion frAmework. Journal of Universal
Computer Science 21, 4, (2015), 526–560.

7. Charfi, S., Trabelsi, A., Ezzedine, H., and Kolski, Ch.

Widgets Dedicated to User Interface Evaluation. Int. J.
Hum. Comput. Interaction 30, 5, (2014), 408–421.

8. Charfi, S. and Ezzedine, H. Evaluation tools through

user participation techniques: Features, limitations, and

new perspectives. In Proc. of Int. Conf. on Advanced
Logistics and Transport (ICALT’2014, Hammamet, 1-

3 May 2014). IEEE Press, (2014), 13–18.

9. Chevalier, A., Fouquereau, N., and Vanderdonckt, J.

The influence of a knowledge-based system on

designers' cognitive activities: a study involving

professional web designers. Behaviour and
Information Technology 28, 1, (2009), 45–62.

10.Cooper, M., Limbourg, Q., Mariage, C., and

Vanderdonckt, J. Integrating Universal Design into a

Global Approach for Managing Very Large Web Sites.

In Proc. of the 5th ERCIM Workshop on User
Interfaces for All (UI4All’99, Dagstuhl, 28 November-

1 December 1999). A. Kobsa, C. Stephanidis (Eds.).

GMD Report 74, GMD - Forschungszentrum

Informationstechnik GmbH, Sankt Augustin, (1999),

131–150.

11.Dessart, C.-E., Genaro Motti, V., and Vanderdonckt, J.

Showing user interface adaptivity by animated

transitions. In Proc. of ACM Conf. on Engineering

Interactive Computing Systems (EICS’2011). ACM

Press, New York, (2011), 95–104.

12.Dessart, C.-E., Genaro Motti, V., and Vanderdonckt, J.

Animated transitions between user interface views. In

Proc. of ACM Working Conf. on Advanced Visual
Interfaces (AVI’2012). ACM Press, (2012), 341–348.

13.Dingli, A. and Cassar, S. An Intelligent Framework for

Website Usability, 2014. Advances in Human-
Computer Interaction 2014. DOI :

http://dx.doi.org/10.1155/ 2014/479286

14.Dingli, A. and Mifsud, J. USEFul: A Framework to

Mainstream Web Site Usability through Automated

Evaluation. International Journal of Human Computer
Interaction 2, 1, (2011), 10–30.

15.Dung Tran, Ch., Ezzedine, H., and Kolski, Ch.

EISEval, a generic reconfigurable environment for

evaluating agent-based interactive systems. Int.
Journal Human-Computer Studies 71, 6, (2013), 725–

761.

16.Ericsson, M., Baurén, M., Löwgren, J., and Y. Wærn.

A study of commenting agents as design support. In

Proc. of ACM SIGCHI Conference on Human Factors
in Computing Systems (CHI’1998). ACM Press, New

York, (1998), 225–226.

17.Farenc, Ch., Liberati, V., Barthet, M.-F. Automatic

Ergonomic Evaluation: What are the limits? In

Proceedings of 2nd International Workshop on
Computer-Aided Design of User Interfaces

(CADUI’96). Presses Universitaires de Namur, Namur,

(1996), 159–170.

18.Fischer, G., Lemke, A.C., Mastaglio, T.W., and

Mørch, A.I. The Role of Critiquing in Cooperative

Problem Solving. ACM Trans. Inf. Syst. 9, 2, (1991),

123–151.

19.Ivory, M.Y. and Hearst, M.A. The state of the art in

automating usability evaluation of user interface. ACM
Computing Surveys, (2001), 470-516.

20.Matsui, S. and Yamada, S. Genetic algorithm can

optimize hierarchical menus. In Proc. of the ACM
SIGCHI Conference on Human Factors in Computing
Systems (CHI’2008). ACM Press, NY, (2008), 1385–

1388.

21.Morandini, M., de Abreu Cybis, W., and Scapin, D.L.

A Prototype to Validate ErgoCoIn: A Web Site

Ergonomic Inspection Technique. In Proc. of HCI
International’2009, (2009), 339–348.

22.Norman, K.L. The Psychology of Menu Selection,

Designing Cognitive Control at the Human/Computer

Interface. Ablex Publishing Corporation, Norwood,

New Jersey, 1991.

23.Scapin, D.L. Guide ergonomique de conception des
interfaces homme-ordinateur. Research report INRIA

n°77. Institut National de Recherche en Informatique et

en Automatique, Le Chesnay, 1986.

24.Schiavone, A.G. and Paternò, F. An extensible

environment for guideline-based accessibility

evaluation of dynamic Web applications. Universal

Adrian Iftene, Jean Vanderdonckt (Eds.)

21

Access in the Information Society 14, 1, (2015), 111–

132.

25.Spoidenne, J., Vanderdonckt, J. MenuSelector:

Automated Generation of Dynamic Menus with

Guidelines Support. In Proc. of 10th Int. Conf. on
Human-Computer Interaction (HCI

International'2003). Vol. 1, J. Jacko, C. Stephanidis

(Eds.). Lawrence Erlbaum Associates, Mahwah,

(2003), 233–237.

26.Sumner, T., Bonnardel, N., and Kallak, B.H. The

Cognitive Ergonomics of Knowledge-Based Design

Support Systems. In Proc. of ACM SIGCHI Conf. on
Human Factors in Computing Systems (CHI’1997).

ACM Press, New York, (1987), 83–90.

27.Vanderdonckt, J. Guide ergonomique des interfaces
homme-machine. Presses Universitaires de Namur,

Namur, 1994.

28.Vanderdonckt, J. Computer-Aided Design of Menu

Bar and Pull-Down Menus for Business Oriented

Applications. In Proc. of 6th Int. Workshop on Design,
Specification, Verification of Interactive Systems
(DSV-IS’99). Springer, Vienna, (1999), 73–88.

29.Vanderdonckt, J. and Beirekdar, A. Automated Web

Evaluation by Guideline Review. Journal of Web
Engineering 4, 2, (2005), 102–117.

30.Vanderdonckt, J. Development Milestones towards a

Tool for Working with Guidelines. Interacting with
Computers 12, 2, (1999), 81–118.

31.Xiong, J., Diouf, M., Farenc, Ch., and Winckler, M.

Automating Guidelines Inspection: From Web site

Specification to Deployment. In Proc. of CADUI’2006,

273–286.

32.Xu, J., Ding, X., Huang, K., and Chen, G. A Pilot

Study of an Inspection Framework for Automated

Usability Guideline Reviews of Mobile Health

Applications. In Proceedings of Wireless Health 2014
on National Institutes of Health (WH’2014). ACM

Press, New York, (2014), 1–8.

