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Figure 1: Halo3D shows the location of off-screen points of interest in mobile augmented reality. (a) 4 POIs on screen (b) 1 off-screen POI 

represented on screen as an arc (c) 4 aggregated off-screen POIs represented on screen as a single arc along with the number of 

aggregated POIs. 

ABSTRACT 

When working with mobile Augmented Reality (AR) 
applications, users need to be aware of relevant points of interest 
(POIs) that are located off-screen. These POIs belong to the 
context since they are not observable in the 3D first-person AR 
view on screen. The context in mobile AR can include a large 
number of POIs including locally dense clusters as in mobile AR 
applications for production plant machine maintenance. Existing 
solutions display 3D arrows or an area on the edges of the screen 
to represent the POIs of the context. These techniques display the 
direction but not the distance of each POI. We present Halo3D, a 
visualization technique that conveys the 3D direction and distance 
of off-screen POIs while avoiding overlap and clutter in a high-
POI-density AR environment.  

Keywords: Augmented reality, mobility, visualization, off-screen 
point of interest, Halo. 

Index Terms: • Human-centered computing → Mixed / 
augmented reality   • Human-centered computing → Interaction 
techniques 

1 INTRODUCTION 

Finding objects in the environment is a frequent need when 
using mobile Augmented Reality (AR) applications. The user’s 
field of view of the environment is defined by the mobile device’s 
camera (Fig. 1). The need is then to acquire information on digital 
objects anchored in the physical world (i.e. points of interest 
POIs) that are located outside of the current field of view (Fig. 1). 
We motivate this need by considering three use cases in the 

domain of industrial maintenance. 
 
Use case 1: Machines that perform wave soldering for 

electronic boards are very large (Fig. 2). The effective 
maintenance of such equipment requires a real-time monitoring of 
many technical variables related to energy consumption, to the 
speed of motors (e.g. rotation per minutes) or to alarms indicating 
a lack of raw materials. These points of interest (POIs) can be 
located along the entire length of the machine. 

 

 
(a)                                             (b) 

Figure 2: Welding furnace (a) closed (b) open. 

Use case 2: When managing the failure of an electrical cabinet 
(Fig. 3) the operator shuts off power at a precise location of the 
electrical installation (e.g. “lookout/tagout” procedure) to repair 
the equipment. Once the work is completed, power is restored. To 
do so the operator has to manually turn on the circuit breakers and 
this must be done in a specific order. Each of the circuit breakers 
is a point of interest (POI) to locate. 

The two use cases above illustrate two types of tasks that the 
operators can perform during maintenance:   

- Use case 1: obtain the overall machine’s state without having a 
specific target (e.g. obtain the values of variables linked to several 
POIs), called exploration task. [6]. 

- Use case 2: move towards a well-defined location of the 
equipment (e.g. head towards a specific circuit breaker), called 
navigation task [6]. 
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Use case 3: When performing a preventive maintenance, 

operators execute “maintenance campaigns”. A campaign consists 

of a single task repeated X times on a piece of equipment. For 

example, grease all the motors of a machine is a campaign. Each 

motor is a point of interest (POI). For campaigns, it is useful for 

the operator to know how far away the POIs are located in order 

to orientate himself towards the closest one from his position, and 

therefore to optimize his campaign task completion time. 

 

 

Figure 3: Screenshot of a Schneider Electric mobile AR application 

in front of an electrical cabinet. Global view of all the POIs (12 

POIs) while the machine operator is far from the cabinet. The 

operator gets closer and points his tablet towards the upper 

part of the cabinet. The black rectangle shows the resulting 

field of view on the mobile device’s screen. In this context, the 

challenge is to indicate the location and the distance of the 10 

off-screen POIs without overloading the graphical user’s 

interface. 

In this context of industrial maintenance, mobile AR applications 

provide additional information on the state of the equipment (Fig. 

3). However, it is not possible to simultaneously visualize all the 

POIs on screen. The narrow field of view of the camera limits the 

user’s spatial knowledge and implies frequent rotations and 

movements around the spot in order to explore the AR 

environment. This issue is even worst when using small-screen 

devices. Halo3D addresses this issue by visualizing the 3D 

location and distance of off-screen points of interests (POIs) on 

top of the 3D AR view. Halo3D avoids overloading the screen on 

which the main AR view is displayed. For the case of a high 

density of POIs (Fig. 3), Halo3D avoids overlap so that the 

display remains intelligible. The contributions of this paper are 

twofold: 

- A new visualization technique, namely Halo3D, for mobile 

augmented reality. Adapted from an existing 2D visualization 

technique (Halo) [1], the technique provides visual cues on the 3D 

location of the off-screen POIs that are displayed on top of the 3D 

AR view; 

- A new aggregation algorithm adapted to AR in order to avoid 

overlap and clutter (which is an issue identified for Halo [1]). 

In the following sections, we review related literature in 2D and 

3D off-screen object visualization. We then present the design of 

Halo3D by identifying and organizing its design elements.   

2 RELATED WORK IN OFF-SCREEN OBJECT VISUALIZATION  

2.1 2D off-screen object visualization 

Several visualization techniques exist to convey the location, the 
direction and the distance of off-screen objects in 2D.  
Halo [1] allows the user to determine the location of off-screen 
objects: the technique traces a circle whose center is the distant 
object and the radius is the distance between the POI and the 
border of the screen (Fig. 4). The circle makes a slight intrusion 
on the screen. It allows the user to mentally complete the shape 
from the visible arc in order to find the location of the distant POI. 
However, as acknowledged by the authors Baudisch and 
Rosenholtz [1], this technique reaches its limits for the case of a 
high number of off-screen objects: the numerous circles overlap 
and make the display hard to read. 
 
The Wedge system solves this issue by a triangle representation 
(Fig. 5) instead of a circle. The user extrapolates the triangle’s 
segments on screen to estimate where they intersect. This point of 
intersection indicates the location of the distant POI. The Wedge 
system has three degrees of freedom: rotation, aperture and 
intrusion into the visible space. The rotation is used to avoid 
overlaps with another wedge.  The aperture and the intrusion 
provide distance cues: the farther the object is, the greater the 
intrusion into visible space and the wider the aperture. Wedge 
resolves the overlapping problem of Halo. Its main drawback is 
the intrusion on screen, which reduces the readability of the 
display for the case of AR applications.  
  
EdgeRadar [8] is a visualization technique based on the 
Focus+Context principle [5]: the system uses a small portion on 
each edge of the screen to display non-visible areas of the 
environment (context) whereas the center area is the zoomed-in 
user’s work zone (focus) (Fig. 6). The distant POIs are displayed 
as in-context thumbnail icons. EdgeRadar displays all the POIs as 
well as their relative distance to one to another. The spatial 
relationship between POIs is not available with Halo or Wedge 
techniques. A comparison between Halo and EdgeRadar [8] 
shows better accuracy with the latter when tracking off-screen 
objects, and a users’ preference for EdgeRadar. However, this 
technique reaches its limits when the number of POIs is high: the 
small context area is overloaded and becomes illegible. 
 
 

 
 

Figure 4: Halo 2D visualization technique [1] for one off-screen POI 

(schema inspired by [1]). 



 

Figure 5: Wedge 2D visualization [9] technique for off-screen POIs 

(schema inspired by [9]). 

 

Figure 6: EdgeRadar focus+Context 2D visualization technique [8] 

(schema inspired by [8]). 

These visualization techniques consider a 2D environment. 

They have been implemented only with 2D maps. Thus, they have 

to be adapted to take into account a 3D environment in mobile 

AR. 3D visualization implies displaying additional information 

such as the POI’s height (y position) or the physical distance 

between the user and a POI as the crow flies. Our objective is to 

provide a 3D visualization of off-screen objects in mobile AR to 

enhance users’ navigation. 

2.2 3D off-screen object visualization 

The use of 3D arrows [4] indicates the 3D direction to follow in 
order to reach off-screen POIs. The arrows are displayed directly 
onto the egocentric AR view. The navigation towards a POI is 
improved because the user knows if a POI is located in front or 
behind him. However, when the number of off-screen objects is 
high, the occlusion between the arrows (Fig. 7) seriously reduces 
the users’ navigation performance.  
 
To handle a high density of POIs in AR environments, 
Aroundplot [11] defines a Focus+Context visualization. Like the 
2D EdgeRadar technique (Fig. 6), a small portion on each screen’s 
edges (context zone) is used to show the location of the distant 
POIs. For example, the region on the right side of the screen 
displays a thumbnail for each POI that is reachable if the user 
moves the tablet to the right. The small size of the context area 
makes it difficult to estimate the range of motion required to reach 
an off-screen POI. To address this issue, Aroundplot dynamically 

magnifies the context in the direction of the movement, to provide 
more details on this part of the environment. 
 

 

Figure 7: Occlusion between 3D arrows (schema inspired by [11]). 

An experimental study [11] that compared the three visualization 
techniques 2D radar, 3D arrows and Aroundplot showed that the 
participants tracked the off-screen objects with a much lower error 
rate and task completion time with Aroundplot. Indeed, the 
occlusion between the 3D arrows led many users to give up their 
current task, whereas the 2D radar view did not provide any 
information on the height (y position) of the POIs. Aroundplot 
allows the user to visualize a high density of off-screen objects in 
all directions. However, the distance between the POIs and the 
user is not displayed.  
 
The 3D Halo Circle technique [13] addresses this limitation by 
enabling the user to determine the direction and the distance of 
off-screen objects in a 3D virtual reality environment. Based on 
the Halo 2D visualization [1], the radius of the circle indicates the 
distance between the user and a POI as the crow flies. The 
visualization metaphor gives the feeling to the user to be inside 
the circle. However, the farther the POI is, the greater the 
intrusion into the visible space. Moreover when a POI is far away, 
it becomes difficult to estimate the radius of the circle and thus the 
location of the POI. Besides, the visualization of many POIs 
causes overlap: this leads to a high cognitive load, and the user is 
unable to mentally complete the circles in order to get the 
locations of the POIs.   

2.3 Synthesis and objective  

The existing off-screen POIs visualization only partially deals 
with the third dimension, the depth. 3D arrows are useful to point 
a direction in space but do not indicate whether the POI is far or 
close to the user. The Aroundplot technique displays POIs around 
the user but does not provide any distance cues. The 3D Halo 
Circle technique implements a solution that considers depth but 
whose intrusion into visible space is too important to be used in 
mobile augmented reality. Aroundplot is the only technique to be 
efficient when visualizing a high density of off-screen objects but 
does not consider the depth of POIs.  
Based on the current state of the art and the users’ need as 
illustrated with our three maintenance use cases, the objective is 
to design a visualization technique for mobile AR that shows 
direction and distance of off-screen POIs, while dealing with a 
high density of POIs. The Halo3D visualization technique 
presented in the following section meets this objective.  

3 HALO3D: DESIGN ELEMENTS 

The off-screen POIs visualization technique that we propose is 
based on the Halo 2D technique [1]. Halo (2D) has been shown to 
be easy to understand and minimizes the space used on screen [9]. 
The two key design issues related to the adaptation of Halo to 



mobile AR are: representation of depth (section 3.1) and 
management of a high density of POIs (section 3.2). 

3.1 Third dimension: depth 

In mobile augmented reality, two types of information are useful 
to enhance the user’s spatial knowledge of his environment:  
- The range of motion required to bring an off-screen POI on 
screen; 
- The physical distance between the user and a POI. 
In mobile AR, the user works on a 3D egocentric view. However, 
Halo (2D) displays the location and the distance of off-screen 
objects on a top-down 2D orthographic view (maps). To adapt 
Halo to a 3D environment, the technique consists in projecting the 
POI onto the screen’s plane of the mobile device. The distance of 
the projected POI from the border of the screen is called 2D 
Distance, as shown in Figure 8-a. To visualize the 2D distance, 
the technique draws a circle with a radius equal to the distance 
between the projected POI and the border of the screen plus an 
offset to make the circle partially visible on screen. For example, 
we consider one POI initially displayed on screen (Fig. 8-b). 
Moving the device to the right makes the POI disappear into off-
screen space, and an arc (a partial part of the computed circle) is 
displayed on the left edge of the screen (Fig. 8-c). The arc 
enlarges as the projected POI moves away from the screen’s 
border (Fig. 8-d). The 2D distance, represented as an arc, conveys 
the range of motion required to bring a distant POI into the user’s 
field of view: the larger the circle is, the wider is the movement 
required to bring the point of interest on screen. 
 
Let us now consider the case of two horizontally aligned POIs, 
one located behind the other: The orthographic top-down view of 
figure 9-a shows the user’s position and the 2 POIs’ locations 
above a machine. When the POIs are outside of the camera’s field 
of view, the visualization technique draws two circles of identical 
radius (Fig. 9-b). Indeed, the corresponding projected POIs are at 
the same distance from the border of the screen. In this situation 
there is no way to determine which POI is the closest one. This 
information is important for instance for maintenance operators 
when performing campaigns, as explained in use case 3. To 
improve user’s navigation performance, it is useful to indicate 
how far away from the user the POIs are located. We call this 
distance, 3D Distance. For the design of Halo3D we explore 3 
visual features for conveying the 3D distance: 
- the circle’s transparency, 
- the circle’s color, 
- the circle’s width. 
Using transparency for instance, the arc of the closest POI would 
be more opaque than the arc of the second POI as shown in Fig. 9-
c. Another design option is to use the color of the line: the arc of 
the closest POI would be red (color used in the Halo [1] study), 
whereas the arc of the farthest POI would have a neutral white 
color.  
For the design of Halo3D, other visual features have been 
explored: continuity of the line (dotted line, hatching) and 
multicolor line. For example, the closer the user is from a POI, the 
more the corresponding Halo would become 
hatched/multicolored. When getting farther from the POI, the user 
would obtain a continuous arc (without cuts)/a uniform color arc. 
These solutions increase the visual variability of the arc. 
However, the industrial environment is heavily loaded with 
machines, cables, sensors, etc. Adding visual variability for each 
arc to this already dense environment in colors and shapes 
increases the difficulty to perceive the locations of the off-screen 
POIs.  For the final design of Halo3D, we therefore consider three 
visual features, namely transparency, color and thickness, that 
preserve the visual uniformity of the arc displayed on screen.  

 

 
                                              (a) 

 

 
               (b)                                 (c)                                 (d) 

Figure 8: Halo3D and 2D distance (a) Schema explaining how to 

calculate the 2D distance for one off-screen POI. (b) 1 POI is 

visible in the user’s field of view. (c) The user moves from left 

to right: the POI is now off-screen and represented on screen 

as an arc. (d) The arc is enlarged because the 2D distance of 

the POI from the screen increases. 

 

Figure 9: Halo3D and 3D distance: (a) Initial configuration: top-

down orthographic view of 2 off-screen POIs horizontally 

aligned and located above a machine. (b) Visualization of 2 

off-screen POIs: the two corresponding arcs are identical and 

do not allow us to determine how far away from the user the 

POIs are located (c) Visualization of 2 POIs using the 

transparency of the arc to indicate how far away from the user 

the off-screen POIs are located. The opaque arc on the left 

indicates that the corresponding POI is close to the user.  

Beyond the choice of the visual feature, a second design decision 
is related to how to apply it according to the evolving 3D distance. 
When considering transparency for instance, the choice consists 
of making the arcs of close POIs more opaque than the arcs of 



distant POIs or vice-versa. This design decision, namely visual 
transition decision, can be based on the relevance of close or far 
POIs according to the user’s task.   
To sum up two orthogonal design axes have to be considered to 
determine how to represent the 3D distance of a POI: (1) which 
visual feature to use (transparency, color or thickness) and (2) 
how to make the visual feature evolve with the 3D distance (e.g. 
visual transition). The couple (visual feature, visual transition) 
defines the visual technique. We are currently conducting a 
comparative experimental study to select the visual technique to 
represent 3D distance. Our assumption is that participants will 
prefer a visual feature that minimizes the visual overload on 
screen (transparency) and a visual transition that, as in real life, 
enhances the POI’s visibility when the user gets close to them. 

3.2 Aggregation 

Halo3D inherits the identified clutter problem of Halo [1] for the 
case of a high density of POIs: it leads to many overlapping arcs 
and a visual overload of the graphical user interface on screen. To 
avoid this problem, a solution is to aggregate the POIs when the 
number of overlaps reaches a fixed limit. The HaloDot technique 
[7] implements this solution for the Halo 2D visualization when 
applied to maps. The aggregation algorithm first considers a grid 
overlaid on the map that divides the space into cells. It then 
aggregates two off-screen POIs if they are located within the same 
cell, reducing the number of overlapping arcs on screen. Finally, 
HaloDot displays on the corresponding arc the number of POIs 
that have been aggregated. 
 
Let us consider a 2D map and two off-screen POIs close to the 
screen’s edge and close to each other, such as the distance 
between them is greater than the distance between a POI and the 
border of the screen (Fig. 10-a). The two POIs will be aggregated 
because they are located within the same cell, and a single arc will 
be displayed (Fig. 10-b). To obtain two arcs, the user would have 
to zoom in on screen. This would space out the two POIs so that 
they would belong to different cells. The aggregation is therefore 
based on the distance between the POIs in the physical world. 
Let us now consider the same example applied to mobile AR. The 
first difference is the camera’s point of view. With HaloDot the 
view is an orthographic top-down one whereas in AR the point of 
view is egocentric. When the user performs a downwards or 
upwards movement, the distance between the POIs projected onto 
the screen’s plane does not change. Only the distances between 
the projected POIs and the border of the screen are modified. 
Thus, the POIs would always be in the same cell. The aggregation 
would be constant as long as the user does not physically move 
towards the POIs. Indeed moving closer to POIs will then space 
out their locations. Applying the HaloDot algorithm would thus 
lead to an unsuitable behavior for mobile AR: POIs close to the 
screen’s edge and close to each other would be aggregated even if 
their respective circles do not overlap on screen (Fig. 10-b). 
 
The purpose of the proposed Halo3D aggregation is to reduce the 
overload of the graphical user interface when there are many 
overlapping arcs. It is a visual issue only. The Halo3D 
aggregation algorithm therefore examines the intersection of the 
circles rather than the distance between the corresponding POIs: 
let S be the set of circles at a given time. For each circle h, 
compute the set of circles that intersect h. If the set contains more 
than two circles, the algorithm aggregates all the corresponding 
POIs, and removes their halos from the initial set S of circles. 
 
 

 
                                             (a) 

 

 
                                             (b) 

 

 
                                             (c) 

 
                                             (d) 

Figure 10: (a) Initial configuration with two POIs close to 

each other and close to the edge of the screen such as d2<d1 

(b) Result with the HaloDot algorithm: the POIs have been 

aggregated (c) Result with the Halo3D aggregation algorithm: 

the POIs have not been aggregated because the resulting 

circles do not overlap (d) Aggregation of two POIs only when 

their respective circles overlap. 

Finally, the technique displays the number of POIs that have been 
aggregated (Fig. 10-c et 10-d). The aggregation algorithm is 
recursive to ensure no overlap on screen. It iterates as long as 
there are overlapping arcs.  The order between the POIs is 
therefore not relevant. A test with 8 POIs clustered in several 
groups illustrates the algorithm efficiency that progressively 
aggregates the POIs (Fig 11) to avoid overlapping arcs.  
 

                       (a)                               (b)                              (c)  

Figure 11: (a) 8 POIs on screen. (b) The user moves from 

left to right: 3 POIs are now aggregated. (c) All the POIs are 

aggregated. 



To define the circle of aggregated POIs, the algorithm calculates 

the centroid of the POIs. The halo circle of this centroid is 

displayed. The calculated 3D distance is the physical distance 

between this centroid and the user. However, this distance alone is 

not enough to represent a set of POIs. It would be relevant to also 

consider the closest and farthest POIs of the set: the interior 

border (resp. exterior) of the halo circle could be used to represent 

the 3D distance of the closest POI (resp. farthest one). In between, 

the halo circle would represent the 3D distance of the centroid. 

4 CONCLUSION AND FUTURE WORK 

We proposed Halo3D, a new visualization technique for mobile 
augmented reality. Halo3D provides 3D navigation cues on the 
location of off-screen points of interest, and works on a 3D 
egocentric view. We also proposed a new aggregation algorithm 
adapted to AR, in order to avoid overlapping halos on screen. 
Beyond augmented reality applications, the design principles 
described in this paper could also be applied to virtual reality 
applications. For instance the distance between the user and points 
of interest placed around him as well as the spatial knowledge of 
an environment are often needed in VR games. 
 
One identified limitation of Halo3D is related to the display of 
POIs located in front or on the back of the user. As future work 
we plan to study how to enhance the visual representation of the 
3D distances between the user and POIs in order to allow the 
users to distinguish the POIs in front from the ones on the back.  
 
The experimental study we are currently conducting compares the 
designed visual techniques to display the distances (as the crow 
flies) between the user and the POIs. The first collected feedback 
of 4 participants suggests that they prefer the transparency as a 
visual feature to indicate how far from the user the POIs are 
located. One explanation given by a participant is that the visual 
features “transparency” and “thickness” provide different levels of 
visual intrusion on screen according to the distance between the 
user and a POI. For example, the halo could be nearly invisible 
(transparency) or very thin (thickness) if the user gets close to the 
POI. On the contrary when using the color, the circle is always 
visible on the screen. Only the color changes. This first feedback 
verifies our hypothesis that the users prefer a visual feature that 
minimizes the visual intrusion on screen. Completing the study 
will allow us to confirm or reject our hypothesis that users prefer a 
visual transition that increases the POI’s visibility when the user 
gets close to it, as in the real world. 
 
After the on-going experimental study in order to define the 
design parameters of Halo3D, we plan to compare Halo3D to 
other off-screen visual techniques like 2D/3D arrows, Aroundplot 
or an Overview+Detail visualization system (2D radar views or 
mini map) [3]. Previous studies have already evaluated different 
visualization techniques of off-screen POIs in the context of 
augmented reality [2, 11,12]. 
In particular we plan an experimental study to compare Halo3D to 
an arrow-based technique that we will conduct with maintenance 
operators. Halo3D is currently implemented in a Schneider 
Electric mobile AR application (Fig. 3). To reproduce an 
industrial environment, large posters representing the four sides of 
an electrical cabinet will be printed. The aim is to simulate a 
realistic and heavy loaded environment with several colors and 
shapes. The study will focus on user’s navigation performance 
and will compare Halo3D to the current Schneider Electric’s 
navigation technique, a 2D arrow-based visualization technique 
without aggregation. This study is planned with machine 
operators in several countries (in particular Japan and France). 
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