
[POSTER] Halo3D: a Technique for Visualizing Off-Screen

Points of Interest in Mobile Augmented Reality

(a) (b) (c)

Figure 1: Halo3D shows the location of off-screen points of interest in mobile augmented reality. (a) 4 POIs on screen (b) 1 off-screen POI

represented on screen as an arc (c) 4 aggregated off-screen POIs represented on screen as a single arc along with the number of

aggregated POIs.

ABSTRACT

When working with mobile Augmented Reality (AR)
applications, users need to be aware of relevant points of interest
(POIs) that are located off-screen. These POIs belong to the
context since they are not observable in the 3D first-person AR
view on screen. The context in mobile AR can include a large
number of POIs including locally dense clusters as in mobile AR
applications for production plant machine maintenance. Existing
solutions display 3D arrows or an area on the edges of the screen
to represent the POIs of the context. These techniques display the
direction but not the distance of each POI. We present Halo3D, a
visualization technique that conveys the 3D direction and distance
of off-screen POIs while avoiding overlap and clutter in a high-
POI-density AR environment.

Keywords: Augmented reality, mobility, visualization, off-screen
point of interest, Halo.

Index Terms: • Human-centered computing → Mixed /
augmented reality • Human-centered computing → Interaction
techniques

1 INTRODUCTION

Finding objects in the environment is a frequent need when
using mobile Augmented Reality (AR) applications. The user’s
field of view of the environment is defined by the mobile device’s
camera (Fig. 1). The need is then to acquire information on digital
objects anchored in the physical world (i.e. points of interest
POIs) that are located outside of the current field of view (Fig. 1).
We motivate this need by considering three use cases in the

domain of industrial maintenance.

Use case 1: Machines that perform wave soldering for

electronic boards are very large (Fig. 2). The effective
maintenance of such equipment requires a real-time monitoring of
many technical variables related to energy consumption, to the
speed of motors (e.g. rotation per minutes) or to alarms indicating
a lack of raw materials. These points of interest (POIs) can be
located along the entire length of the machine.

(a) (b)

Figure 2: Welding furnace (a) closed (b) open.

Use case 2: When managing the failure of an electrical cabinet
(Fig. 3) the operator shuts off power at a precise location of the
electrical installation (e.g. “lookout/tagout” procedure) to repair
the equipment. Once the work is completed, power is restored. To
do so the operator has to manually turn on the circuit breakers and
this must be done in a specific order. Each of the circuit breakers
is a point of interest (POI) to locate.

The two use cases above illustrate two types of tasks that the
operators can perform during maintenance:

- Use case 1: obtain the overall machine’s state without having a
specific target (e.g. obtain the values of variables linked to several
POIs), called exploration task. [6].

- Use case 2: move towards a well-defined location of the
equipment (e.g. head towards a specific circuit breaker), called
navigation task [6].

LEAVE 0.5 INCH SPACE AT BOTTOM OF LEFT

COLUMN ON FIRST PAGE FOR COPYRIGHT BLOCK

* email address

Use case 3: When performing a preventive maintenance,

operators execute “maintenance campaigns”. A campaign consists

of a single task repeated X times on a piece of equipment. For

example, grease all the motors of a machine is a campaign. Each

motor is a point of interest (POI). For campaigns, it is useful for

the operator to know how far away the POIs are located in order

to orientate himself towards the closest one from his position, and

therefore to optimize his campaign task completion time.

Figure 3: Screenshot of a Schneider Electric mobile AR application

in front of an electrical cabinet. Global view of all the POIs (12

POIs) while the machine operator is far from the cabinet. The

operator gets closer and points his tablet towards the upper

part of the cabinet. The black rectangle shows the resulting

field of view on the mobile device’s screen. In this context, the

challenge is to indicate the location and the distance of the 10

off-screen POIs without overloading the graphical user’s

interface.

In this context of industrial maintenance, mobile AR applications

provide additional information on the state of the equipment (Fig.

3). However, it is not possible to simultaneously visualize all the

POIs on screen. The narrow field of view of the camera limits the

user’s spatial knowledge and implies frequent rotations and

movements around the spot in order to explore the AR

environment. This issue is even worst when using small-screen

devices. Halo3D addresses this issue by visualizing the 3D

location and distance of off-screen points of interests (POIs) on

top of the 3D AR view. Halo3D avoids overloading the screen on

which the main AR view is displayed. For the case of a high

density of POIs (Fig. 3), Halo3D avoids overlap so that the

display remains intelligible. The contributions of this paper are

twofold:

- A new visualization technique, namely Halo3D, for mobile

augmented reality. Adapted from an existing 2D visualization

technique (Halo) [1], the technique provides visual cues on the 3D

location of the off-screen POIs that are displayed on top of the 3D

AR view;

- A new aggregation algorithm adapted to AR in order to avoid

overlap and clutter (which is an issue identified for Halo [1]).

In the following sections, we review related literature in 2D and

3D off-screen object visualization. We then present the design of

Halo3D by identifying and organizing its design elements.

2 RELATED WORK IN OFF-SCREEN OBJECT VISUALIZATION

2.1 2D off-screen object visualization

Several visualization techniques exist to convey the location, the
direction and the distance of off-screen objects in 2D.
Halo [1] allows the user to determine the location of off-screen
objects: the technique traces a circle whose center is the distant
object and the radius is the distance between the POI and the
border of the screen (Fig. 4). The circle makes a slight intrusion
on the screen. It allows the user to mentally complete the shape
from the visible arc in order to find the location of the distant POI.
However, as acknowledged by the authors Baudisch and
Rosenholtz [1], this technique reaches its limits for the case of a
high number of off-screen objects: the numerous circles overlap
and make the display hard to read.

The Wedge system solves this issue by a triangle representation
(Fig. 5) instead of a circle. The user extrapolates the triangle’s
segments on screen to estimate where they intersect. This point of
intersection indicates the location of the distant POI. The Wedge
system has three degrees of freedom: rotation, aperture and
intrusion into the visible space. The rotation is used to avoid
overlaps with another wedge. The aperture and the intrusion
provide distance cues: the farther the object is, the greater the
intrusion into visible space and the wider the aperture. Wedge
resolves the overlapping problem of Halo. Its main drawback is
the intrusion on screen, which reduces the readability of the
display for the case of AR applications.

EdgeRadar [8] is a visualization technique based on the
Focus+Context principle [5]: the system uses a small portion on
each edge of the screen to display non-visible areas of the
environment (context) whereas the center area is the zoomed-in
user’s work zone (focus) (Fig. 6). The distant POIs are displayed
as in-context thumbnail icons. EdgeRadar displays all the POIs as
well as their relative distance to one to another. The spatial
relationship between POIs is not available with Halo or Wedge
techniques. A comparison between Halo and EdgeRadar [8]
shows better accuracy with the latter when tracking off-screen
objects, and a users’ preference for EdgeRadar. However, this
technique reaches its limits when the number of POIs is high: the
small context area is overloaded and becomes illegible.

Figure 4: Halo 2D visualization technique [1] for one off-screen POI

(schema inspired by [1]).

Figure 5: Wedge 2D visualization [9] technique for off-screen POIs

(schema inspired by [9]).

Figure 6: EdgeRadar focus+Context 2D visualization technique [8]

(schema inspired by [8]).

These visualization techniques consider a 2D environment.

They have been implemented only with 2D maps. Thus, they have

to be adapted to take into account a 3D environment in mobile

AR. 3D visualization implies displaying additional information

such as the POI’s height (y position) or the physical distance

between the user and a POI as the crow flies. Our objective is to

provide a 3D visualization of off-screen objects in mobile AR to

enhance users’ navigation.

2.2 3D off-screen object visualization

The use of 3D arrows [4] indicates the 3D direction to follow in
order to reach off-screen POIs. The arrows are displayed directly
onto the egocentric AR view. The navigation towards a POI is
improved because the user knows if a POI is located in front or
behind him. However, when the number of off-screen objects is
high, the occlusion between the arrows (Fig. 7) seriously reduces
the users’ navigation performance.

To handle a high density of POIs in AR environments,
Aroundplot [11] defines a Focus+Context visualization. Like the
2D EdgeRadar technique (Fig. 6), a small portion on each screen’s
edges (context zone) is used to show the location of the distant
POIs. For example, the region on the right side of the screen
displays a thumbnail for each POI that is reachable if the user
moves the tablet to the right. The small size of the context area
makes it difficult to estimate the range of motion required to reach
an off-screen POI. To address this issue, Aroundplot dynamically

magnifies the context in the direction of the movement, to provide
more details on this part of the environment.

Figure 7: Occlusion between 3D arrows (schema inspired by [11]).

An experimental study [11] that compared the three visualization
techniques 2D radar, 3D arrows and Aroundplot showed that the
participants tracked the off-screen objects with a much lower error
rate and task completion time with Aroundplot. Indeed, the
occlusion between the 3D arrows led many users to give up their
current task, whereas the 2D radar view did not provide any
information on the height (y position) of the POIs. Aroundplot
allows the user to visualize a high density of off-screen objects in
all directions. However, the distance between the POIs and the
user is not displayed.

The 3D Halo Circle technique [13] addresses this limitation by
enabling the user to determine the direction and the distance of
off-screen objects in a 3D virtual reality environment. Based on
the Halo 2D visualization [1], the radius of the circle indicates the
distance between the user and a POI as the crow flies. The
visualization metaphor gives the feeling to the user to be inside
the circle. However, the farther the POI is, the greater the
intrusion into the visible space. Moreover when a POI is far away,
it becomes difficult to estimate the radius of the circle and thus the
location of the POI. Besides, the visualization of many POIs
causes overlap: this leads to a high cognitive load, and the user is
unable to mentally complete the circles in order to get the
locations of the POIs.

2.3 Synthesis and objective

The existing off-screen POIs visualization only partially deals
with the third dimension, the depth. 3D arrows are useful to point
a direction in space but do not indicate whether the POI is far or
close to the user. The Aroundplot technique displays POIs around
the user but does not provide any distance cues. The 3D Halo
Circle technique implements a solution that considers depth but
whose intrusion into visible space is too important to be used in
mobile augmented reality. Aroundplot is the only technique to be
efficient when visualizing a high density of off-screen objects but
does not consider the depth of POIs.
Based on the current state of the art and the users’ need as
illustrated with our three maintenance use cases, the objective is
to design a visualization technique for mobile AR that shows
direction and distance of off-screen POIs, while dealing with a
high density of POIs. The Halo3D visualization technique
presented in the following section meets this objective.

3 HALO3D: DESIGN ELEMENTS

The off-screen POIs visualization technique that we propose is
based on the Halo 2D technique [1]. Halo (2D) has been shown to
be easy to understand and minimizes the space used on screen [9].
The two key design issues related to the adaptation of Halo to

mobile AR are: representation of depth (section 3.1) and
management of a high density of POIs (section 3.2).

3.1 Third dimension: depth

In mobile augmented reality, two types of information are useful
to enhance the user’s spatial knowledge of his environment:
- The range of motion required to bring an off-screen POI on
screen;
- The physical distance between the user and a POI.
In mobile AR, the user works on a 3D egocentric view. However,
Halo (2D) displays the location and the distance of off-screen
objects on a top-down 2D orthographic view (maps). To adapt
Halo to a 3D environment, the technique consists in projecting the
POI onto the screen’s plane of the mobile device. The distance of
the projected POI from the border of the screen is called 2D
Distance, as shown in Figure 8-a. To visualize the 2D distance,
the technique draws a circle with a radius equal to the distance
between the projected POI and the border of the screen plus an
offset to make the circle partially visible on screen. For example,
we consider one POI initially displayed on screen (Fig. 8-b).
Moving the device to the right makes the POI disappear into off-
screen space, and an arc (a partial part of the computed circle) is
displayed on the left edge of the screen (Fig. 8-c). The arc
enlarges as the projected POI moves away from the screen’s
border (Fig. 8-d). The 2D distance, represented as an arc, conveys
the range of motion required to bring a distant POI into the user’s
field of view: the larger the circle is, the wider is the movement
required to bring the point of interest on screen.

Let us now consider the case of two horizontally aligned POIs,
one located behind the other: The orthographic top-down view of
figure 9-a shows the user’s position and the 2 POIs’ locations
above a machine. When the POIs are outside of the camera’s field
of view, the visualization technique draws two circles of identical
radius (Fig. 9-b). Indeed, the corresponding projected POIs are at
the same distance from the border of the screen. In this situation
there is no way to determine which POI is the closest one. This
information is important for instance for maintenance operators
when performing campaigns, as explained in use case 3. To
improve user’s navigation performance, it is useful to indicate
how far away from the user the POIs are located. We call this
distance, 3D Distance. For the design of Halo3D we explore 3
visual features for conveying the 3D distance:
- the circle’s transparency,
- the circle’s color,
- the circle’s width.
Using transparency for instance, the arc of the closest POI would
be more opaque than the arc of the second POI as shown in Fig. 9-
c. Another design option is to use the color of the line: the arc of
the closest POI would be red (color used in the Halo [1] study),
whereas the arc of the farthest POI would have a neutral white
color.
For the design of Halo3D, other visual features have been
explored: continuity of the line (dotted line, hatching) and
multicolor line. For example, the closer the user is from a POI, the
more the corresponding Halo would become
hatched/multicolored. When getting farther from the POI, the user
would obtain a continuous arc (without cuts)/a uniform color arc.
These solutions increase the visual variability of the arc.
However, the industrial environment is heavily loaded with
machines, cables, sensors, etc. Adding visual variability for each
arc to this already dense environment in colors and shapes
increases the difficulty to perceive the locations of the off-screen
POIs. For the final design of Halo3D, we therefore consider three
visual features, namely transparency, color and thickness, that
preserve the visual uniformity of the arc displayed on screen.

 (a)

 (b) (c) (d)

Figure 8: Halo3D and 2D distance (a) Schema explaining how to

calculate the 2D distance for one off-screen POI. (b) 1 POI is

visible in the user’s field of view. (c) The user moves from left

to right: the POI is now off-screen and represented on screen

as an arc. (d) The arc is enlarged because the 2D distance of

the POI from the screen increases.

Figure 9: Halo3D and 3D distance: (a) Initial configuration: top-

down orthographic view of 2 off-screen POIs horizontally

aligned and located above a machine. (b) Visualization of 2

off-screen POIs: the two corresponding arcs are identical and

do not allow us to determine how far away from the user the

POIs are located (c) Visualization of 2 POIs using the

transparency of the arc to indicate how far away from the user

the off-screen POIs are located. The opaque arc on the left

indicates that the corresponding POI is close to the user.

Beyond the choice of the visual feature, a second design decision
is related to how to apply it according to the evolving 3D distance.
When considering transparency for instance, the choice consists
of making the arcs of close POIs more opaque than the arcs of

distant POIs or vice-versa. This design decision, namely visual
transition decision, can be based on the relevance of close or far
POIs according to the user’s task.
To sum up two orthogonal design axes have to be considered to
determine how to represent the 3D distance of a POI: (1) which
visual feature to use (transparency, color or thickness) and (2)
how to make the visual feature evolve with the 3D distance (e.g.
visual transition). The couple (visual feature, visual transition)
defines the visual technique. We are currently conducting a
comparative experimental study to select the visual technique to
represent 3D distance. Our assumption is that participants will
prefer a visual feature that minimizes the visual overload on
screen (transparency) and a visual transition that, as in real life,
enhances the POI’s visibility when the user gets close to them.

3.2 Aggregation

Halo3D inherits the identified clutter problem of Halo [1] for the
case of a high density of POIs: it leads to many overlapping arcs
and a visual overload of the graphical user interface on screen. To
avoid this problem, a solution is to aggregate the POIs when the
number of overlaps reaches a fixed limit. The HaloDot technique
[7] implements this solution for the Halo 2D visualization when
applied to maps. The aggregation algorithm first considers a grid
overlaid on the map that divides the space into cells. It then
aggregates two off-screen POIs if they are located within the same
cell, reducing the number of overlapping arcs on screen. Finally,
HaloDot displays on the corresponding arc the number of POIs
that have been aggregated.

Let us consider a 2D map and two off-screen POIs close to the
screen’s edge and close to each other, such as the distance
between them is greater than the distance between a POI and the
border of the screen (Fig. 10-a). The two POIs will be aggregated
because they are located within the same cell, and a single arc will
be displayed (Fig. 10-b). To obtain two arcs, the user would have
to zoom in on screen. This would space out the two POIs so that
they would belong to different cells. The aggregation is therefore
based on the distance between the POIs in the physical world.
Let us now consider the same example applied to mobile AR. The
first difference is the camera’s point of view. With HaloDot the
view is an orthographic top-down one whereas in AR the point of
view is egocentric. When the user performs a downwards or
upwards movement, the distance between the POIs projected onto
the screen’s plane does not change. Only the distances between
the projected POIs and the border of the screen are modified.
Thus, the POIs would always be in the same cell. The aggregation
would be constant as long as the user does not physically move
towards the POIs. Indeed moving closer to POIs will then space
out their locations. Applying the HaloDot algorithm would thus
lead to an unsuitable behavior for mobile AR: POIs close to the
screen’s edge and close to each other would be aggregated even if
their respective circles do not overlap on screen (Fig. 10-b).

The purpose of the proposed Halo3D aggregation is to reduce the
overload of the graphical user interface when there are many
overlapping arcs. It is a visual issue only. The Halo3D
aggregation algorithm therefore examines the intersection of the
circles rather than the distance between the corresponding POIs:
let S be the set of circles at a given time. For each circle h,
compute the set of circles that intersect h. If the set contains more
than two circles, the algorithm aggregates all the corresponding
POIs, and removes their halos from the initial set S of circles.

 (a)

 (b)

 (c)

 (d)

Figure 10: (a) Initial configuration with two POIs close to

each other and close to the edge of the screen such as d2<d1

(b) Result with the HaloDot algorithm: the POIs have been

aggregated (c) Result with the Halo3D aggregation algorithm:

the POIs have not been aggregated because the resulting

circles do not overlap (d) Aggregation of two POIs only when

their respective circles overlap.

Finally, the technique displays the number of POIs that have been
aggregated (Fig. 10-c et 10-d). The aggregation algorithm is
recursive to ensure no overlap on screen. It iterates as long as
there are overlapping arcs. The order between the POIs is
therefore not relevant. A test with 8 POIs clustered in several
groups illustrates the algorithm efficiency that progressively
aggregates the POIs (Fig 11) to avoid overlapping arcs.

 (a) (b) (c)

Figure 11: (a) 8 POIs on screen. (b) The user moves from

left to right: 3 POIs are now aggregated. (c) All the POIs are

aggregated.

To define the circle of aggregated POIs, the algorithm calculates

the centroid of the POIs. The halo circle of this centroid is

displayed. The calculated 3D distance is the physical distance

between this centroid and the user. However, this distance alone is

not enough to represent a set of POIs. It would be relevant to also

consider the closest and farthest POIs of the set: the interior

border (resp. exterior) of the halo circle could be used to represent

the 3D distance of the closest POI (resp. farthest one). In between,

the halo circle would represent the 3D distance of the centroid.

4 CONCLUSION AND FUTURE WORK

We proposed Halo3D, a new visualization technique for mobile
augmented reality. Halo3D provides 3D navigation cues on the
location of off-screen points of interest, and works on a 3D
egocentric view. We also proposed a new aggregation algorithm
adapted to AR, in order to avoid overlapping halos on screen.
Beyond augmented reality applications, the design principles
described in this paper could also be applied to virtual reality
applications. For instance the distance between the user and points
of interest placed around him as well as the spatial knowledge of
an environment are often needed in VR games.

One identified limitation of Halo3D is related to the display of
POIs located in front or on the back of the user. As future work
we plan to study how to enhance the visual representation of the
3D distances between the user and POIs in order to allow the
users to distinguish the POIs in front from the ones on the back.

The experimental study we are currently conducting compares the
designed visual techniques to display the distances (as the crow
flies) between the user and the POIs. The first collected feedback
of 4 participants suggests that they prefer the transparency as a
visual feature to indicate how far from the user the POIs are
located. One explanation given by a participant is that the visual
features “transparency” and “thickness” provide different levels of
visual intrusion on screen according to the distance between the
user and a POI. For example, the halo could be nearly invisible
(transparency) or very thin (thickness) if the user gets close to the
POI. On the contrary when using the color, the circle is always
visible on the screen. Only the color changes. This first feedback
verifies our hypothesis that the users prefer a visual feature that
minimizes the visual intrusion on screen. Completing the study
will allow us to confirm or reject our hypothesis that users prefer a
visual transition that increases the POI’s visibility when the user
gets close to it, as in the real world.

After the on-going experimental study in order to define the
design parameters of Halo3D, we plan to compare Halo3D to
other off-screen visual techniques like 2D/3D arrows, Aroundplot
or an Overview+Detail visualization system (2D radar views or
mini map) [3]. Previous studies have already evaluated different
visualization techniques of off-screen POIs in the context of
augmented reality [2, 11,12].
In particular we plan an experimental study to compare Halo3D to
an arrow-based technique that we will conduct with maintenance
operators. Halo3D is currently implemented in a Schneider
Electric mobile AR application (Fig. 3). To reproduce an
industrial environment, large posters representing the four sides of
an electrical cabinet will be printed. The aim is to simulate a
realistic and heavy loaded environment with several colors and
shapes. The study will focus on user’s navigation performance
and will compare Halo3D to the current Schneider Electric’s
navigation technique, a 2D arrow-based visualization technique
without aggregation. This study is planned with machine
operators in several countries (in particular Japan and France).

REFERENCES

[1] Patrick Baudisch and Ruth Rosenholtz. Halo: a technique for

visualizing off-screen objects. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI '03),

pages 481-488. ACM, New York, NY, USA, 2003.

[2] Stefano Burigat and Luca Chittaro. Visualizing references to off-

screen content on mobile devices: A comparison of Arrows, Wedge,

and Overview+Detail. In Interact. Comput, volume 23, pages 156-

166. March 2011.

[3] Stefano Burigat and Luca Chittaro. On the effectiveness of

Overview+Detail visualization on mobile devices. In Personal

Ubiquitous Comput, volume 17, pages 371-385. February 2013.

[4] Luca Chittaro and Stefano Burigat. 3D location-pointing as a

navigation aid in Virtual Environments. In Proceedings of the

working conference on Advanced visual interfaces (AVI '04), pages

267-274. ACM, New York, NY, USA. 2004.

[5] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. A

review of overview+detail, zooming, and focus+context interfaces.

In ACM Comput. Surv, volume 41, 31 pages. January 2009.

[6] Rudolph P. Darken. Wayfinding in large-scale virtual worlds. In I.

Katz, R. Mack, and L. Marks, editors, Conference Companion on

Human Factors in Computing Systems (CHI '95), pages 45-46.

ACM, New York, NY, USA. 1995.

[7] Tiago Gonçalves, Ana Paula Afonso, Maria Beatriz Carmo, Paulo

Pombinho. HaloDot: Visualization of the Relevance of Off-Screen

Objects. In Proceedings of SIACG, pages 117–120. 2011.

[8] Sean G. Gustafson and Pourang P. Irani. Comparing visualizations

for tracking off-screen moving targets. In CHI '07 Extended

Abstracts on Human Factors in Computing Systems (CHI EA '07),

pages 2399-2404. ACM, New York, NY, USA. 2007.

[9] Sean G. Gustafson, Patrick Baudisch, Carl Gutwin, and Pourang P.

Irani. Wedge: clutter-free visualization of off-screen locations. In

Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (CHI '08), pages 787-796. ACM, New York,

NY, USA. 2008.

[10] Kasper Hornbaek. Navigation Patterns and Usability of

Overview+Detail and Zoomable User Interfaces for Maps, Technical

Report No.2001–11 HCIL, University of Maryland. 2001.

[11] Jo Hyungeun, Sungjae Hwang, Hyunwoo Park, Jung-hee Ryu.

Around plot: Focus context interface for off-screen objects in 3D

environments. In Computers & Graphics, volume 35, pages 841-85.

2011.

[12] Torben Schinke, Niels Henze, and Susanne Boll. Visualization of

off-screen objects in mobile augmented reality. In Proceedings of the

12th international conference on Human computer interaction with

mobile devices and services (MobileHCI '10), pages 313-316. ACM,

New York, NY, USA. 2010.

[13] Matthias Trapp, Lars Schneider, Norman Holz, Jürgen Dollner.

Strategies for visualizing points-of-interest of 3D virtual

environments on mobile devices. In Proceedings of the sixth

international symposium on LBS & TeleCartography. 2009.

