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Abstract
Direct touch finger interaction on a smartphone or a tablet is now ubiquitous. However, the latency inherent in digital 
computation produces an average feedback delay of ~ 75 ms between the action of the hand and its visible effect on digital 
content. This delay has been shown to affect users’ performance, but it is unclear whether users adapt to this delay and 
whether it influences skill learning. Previous work studied adaptation to feedback delays but only for longer delays, with 
hidden hand or indirect devices. This paper addresses adaptation to touchscreen delay in two empirical studies involving 
the tracking of a target moving along an elliptical path. Participants were trained for the task either at the minimal delay the 
system allows (~ 9 ms) or at a longer delay equivalent to commercialized touch devices latencies (75 ms). After 10 training 
sessions over a minimum of 2 weeks (Experiment 1), participants adapt to the delay. They also display long-term retention 
7 weeks after the last training session. This adaptation generalizes to a similar tracking path (e.g., infinity symbol). We also 
observed generalization of learning from the longer delay to the minimal-delay condition (Experiment 2). The delay thus 
does not prevent the learning of tracking skill, which suggests that delay adaptation and tracking skill could be two separate 
components of learning.
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Introduction

While previous research has proved that humans are able 
to adapt to spatial distortions (e.g., von Helmholtz 1867; 
Krakauer and Mazzoni 2011), adaptation to temporal distor-
tions such as visual feedback delay is more controversial.

Adaptation to delayed visual feedback has mainly been 
investigated in experimental setups involving indirect inter-
actions, where participants manually control a device (but-
ton, mouse, joystick, pen, etc.) and get a feedback of their 
action on a screen. Under these conditions adaptation to 
visual feedback delay was observed in tapping tasks (Stetson 
et al. 2006; Sugano et al. 2012) or in reaching movements 
(Botzer and Karniel 2013). Partial adaptation was also found 
in indirect interception tasks (Cámara et al. 2018) or tracking 

tasks, after several training sessions (Foulkes and Miall 
2000; Miall and Jackson 2006). This last result suggests 
that adaptation to visual feedback delay is relatively slow 
compared to adaptation to spatial distortion (Shadmehr et al. 
2010). Furthermore, adaptation seems to be possible only if 
the tracking trajectory is predictable (Rohde et al. 2014) and 
might use an approximation for delay by assimilating it to 
the consequences of inertia in a mechanical system (Rohde 
and Ernst 2016; Leib et al. 2017). Other studies suggest that 
adaptation to visual feedback delay could be generalized to 
different versions of a same task (e.g., driving in different 
streets in a simulator, Cunningham et al. 2001b), but not 
across different tasks (e.g., from a target interception task 
to a task which involves passing through a moving gap, de 
la Malla et al. 2014).

Indirect interaction is ubiquitous in usual computer 
devices, and is useful in motor control and learning research 
to question visuomotor recalibration. It is yet to disappear on 
many devices such as smartphones or tablets, on which the 
finger is in direct touch with the screen displaying the con-
sequence of the action. These touchscreens have a latency 
of around 75 ms as a result of the computation time between 
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the touch and the feedback display on screen (Ng et al. 
2012). Digital objects thus move with a delay causing them 
to lag behind the finger. Since the hand is visible in this situ-
ation the mismatch is mainly between the sight of the finger 
and the visual feedback of its action on the digital object.

The effect of the delay on users’ actions achieved with 
direct touch interaction has been studied largely in relation 
to technical or ergonomic challenges in human–computer 
interaction (HCI) research. Even at very low magnitudes 
delay has proved to be a hindrance. Users can on average 
perceive delays as low as 6 ms (Ng et al. 2012) and their 
performances in pointing tasks are affected even for delays 
shorter than 25 ms (Cattan et al. 2015; Jota et al. 2013). 
However although people use touch devices for long peri-
ods of time, their ability to compensate for or to adapt to 
delays with direct touch interaction has never been studied. 
This could be due to the focus of HCI research on user per-
formance rather than on the sensorimotor mechanisms that 
underlie the performance. The investigation of the way users 
of touch technologies deal with feedback delay provides a 
new framework for improving our knowledge of visuomotor 
learning mechanisms. In particular it raises new questions: 
Are people able to develop compensation strategies to this 
new type of visuomotor alteration? Are these compensation 
strategies achieved on an online feedback correction basis 
or are they learnt with practice? Can these strategies be gen-
eralized to task variations? Does feedback delay affect the 
learning of a motor skill?

As a first step toward a better understanding of senso-
rimotor adaptation to feedback delay in direct interaction, 
we ran two empirical studies involving a tracking task. The 
first study evaluates participant’s abilities to adapt to the 
delay as well as generalization and long-term retention from 
this adaptation. We assessed the progress of two groups of 
participants, one group trained with the minimal delay per-
mitted by our system (~ 9 ms) and one group trained with 
a delay comparable to that of current commercial touch 
devices (75 ms). The training involved 10 sessions, per-
formed over more than 2 weeks. This dataset was first ana-
lyzed in a publication for an HCI conference (Cattan et al. 
2017). In the current paper, we provide further analyses to 
better address the progression over days and the generaliza-
tion of learning. These analyses also include an additional 
control group that performed only two sessions, 2 weeks 
apart. The results suggest that delayed visual feedback dur-
ing training induces two processes that progress differently 
over time, adaptation to delay and improvement of tracking 
skills. These results are consistent with the idea that skill 
learning and adaptation could be independent processes 
(Krakauer and Mazzoni 2011). In a second study, we provide 
further evidence of the possible separation between these 
two components of learning. This was done by assessing 
how a tracking skill learnt with a 75 ms delay generalizes 

to the same skill achieved with the minimal delay permitted 
by our system. The results are discussed with reference to 
previous work on skill learning and to fundamental issues 
raised by the use of touch technologies on people’s visuomo-
tor competences.

Setup and general information 
about the procedure

Because to the best of our knowledge no regular-sized touch 
display achieves the necessary low level of end-to-end delay 
we use a custom-built apparatus (Fig. 1).

The setup is composed of a 24″ screen placed on a desk 
and of 3 OptiTrack infra-red cameras that track a hemi-
spherical marker (4 mm diameter) attached to the nail of 
the participant’s index finger. 3D positions of the marker 
are streamed to the main PC. A program computes whether 
or not the finger is touching the screen and displays the 
corresponding visual feedback with the chosen delay. This 
requires a spatial calibration procedure that is run before 
the experiment consisting of: (1) the computation of a 3D 
geometrical description of the screen surface, which is actu-
ally not strictly plane but slightly curved. This was done by 
moving a marker to the four corners of the screen and then 
over the whole surface of the screen; (2) the determination 
of a threshold height below which the participant’s index is 
considered to be in contact with the screen. This threshold 
was computed for each participant by asking to move her 
index with the marker over the whole surface of the screen.

With the 120 Hz sampling rate of the cameras and 
low level synchronization with screen refresh, the setup 
achieves a delay of 25 ms. The delay has been accurately 
measured thanks to the method proposed by Bérard and 
Blanch (2013). In this method, a camera takes pictures 

Fig. 1  The setup. The laptop computer is used to control the cameras 
and sends finger tracking data to the main PC (bottom right), which 
renders the graphical feedback on the main screen placed on the desk
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of the moving finger while the screen records the touch 
positions. An analysis of the recording enables to com-
pute the time difference between the moment when the 
finger reaches a given point and the moment when the 
corresponding touch is registered by the system. Several 
measures have been done, and they all confirm the 25 ms 
duration.

This baseline delay is compensated for by a short window 
prediction. The prediction makes a linear extrapolation of 
the final two data points received at time t to predict the 
future finger position at t + 25 ms. The trajectories followed 
by the target and the finger being clearly curved, we could 
have expected more complex trajectory predictions involving 
more data points and nonlinear functions to be more accu-
rate. In Cattan et al. (2015), we investigated the influence 
of different types of prediction on the participants’ perfor-
mances. We stated that the first-order polynomial prediction 
is the best in spite of its simplicity, essentially because of 
two characteristics: (1) it is very reactive, as it only requires 
two data points to operate; (2) it involves the computation of 
the first-order derivative only, which limits the amplification 
of high-frequency variations due to sensor noise. In addi-
tion, with a 25 ms delay combined with a linear prediction 
compensation using only two samples, motion trajectories 
were preserved, while with parabolic and/or longer win-
dows, the predicted trajectories became jerky. Displaying 
the feedback at the predicted position partially counteracts 
the delay. Using this setup for target acquisition tasks with 
the prediction has been shown to be equivalent to using a 
device with 9 ms of latency. Further details of the setup, the 
prediction and its effect on users’ performance can be found 
in Cattan et al. (2015).

The protocol, experimental design and methods for the 
tracking task used in the experiments are detailed in Cattan 
et al. (2017) and summarized hereafter. Full consent was 
obtained from all the participants who were free to stop the 
experiment at any time. The participants’ anonymity was 
respected. The authors confirm that the procedure and pro-
cessing of data follow the principles of the Declaration of 
Helsinki.

Experiment 1: Touch delay adaptation, 
generalization and retention

The first experiment aimed to answer three questions:

1. Do people adapt to the touch delay with practice?
2. If there is adaptation does it generalize to a task varia-

tion?
3. Is there long-term retention of what was learned during 

adaptation?

Methods

Participants

15 men and 5 women (aged 23–37 and all right-handed) 
were divided into two groups of 10. The groups were bal-
anced according to the participants’ average performance 
in ten trials of the tracking test on the ellipse (described 
below) with a delay of 75 ms. Performance was measured as 
the spatial tracking error (see section “data processing and 
measurement” here after). The test group was trained with a 
delay of 75 ms. The control group was trained at the minimal 
delay (25 ms + prediction).

Procedure

The tracking task consisted of a pursuit around an ellipse 
(398 mm major axis, 149 mm minor axis, Fig. 2a, cyan 
curve). In a trial over three laps (~ 20 s in total), partici-
pants tracked the target white disc (17.8 mm radius) with a 
controllable red disc of the same size. The first lap allowed 
the participant to catch up with the target and get into the 
rhythm of the target motion. Tracking performances were 
measured on the two subsequent laps. Participants were 

A

B

Fig. 2  a Shapes and equations of the two tracking trajectories used in 
the experiments (t is the time in seconds). Coordinates are given in 
pixels with 1 pixel = 0.2767 mm. b Speed profiles for the two trajec-
tories and the three time sections in which we analyzed the generali-
zation data separately



 Experimental Brain Research

1 3

asked to “bring the center of the red disc as close as possible 
to the center of the target” and to try and “cover as much of 
the target as possible with the red disc”.

In accordance with the power law that links speed and 
curvature in human hand movements (Viviani and Terzuolo 
1982) the speed of the target varied around the ellipse (see 
Fig. 2b, cyan curve). At constant speed the delay would have 
been associated with a constant spatial offset in the direc-
tion of the motion, whereas variable speed clearly associates 
the delay with a temporal disturbance that should stimulate 
adaptation (Rohde and Ernst 2016). The ellipse path was 
displayed on the screen to aid adaptation to the feedback 
delay (predictability of the trajectory, Rohde et al. 2014).

After each trial, to encourage participants to reduce their 
error from trial to trial, a bar chart showing the tracking error 
averaged over the last two laps of the trial was displayed, so 
that the participants could see the evolution of their perfor-
mance across trials. Since adaptation might occur only after 
a significant period of time (Miall and Jackson 2006), ten 
half-hour training sessions were spread over at least 2 weeks. 
Participants performed 60 trials at each session.

Generalization of learning was investigated using a path 
having the shape of an infinity symbol (∞). This shape was 
chosen due to its properties when trisected. The right and 
left parts are spatially similar to those of the ellipse, but 
with different variations in curvature (Fig. 2a, red curve) 
and hence in speed, because of the power of law (Fig. 2b, 
red curve). The center part is spatially different from the 
ellipse but have similar variations in curvature and hence 
in speed. In this way the influence of trajectory location on 
generalization effects can be dissociated from that of veloc-
ity. Ten trials on the infinity shape were performed on day 
1 before the ellipse training (pre-test) and again after the 
training on day 10 (post-test) under the same delay condition 
as the training itself.

To study long-term retention, 12 participants (6 control–6 
test) were recorded again 7–9 weeks after their last training 
session on the ellipse. The task was to perform 30 trials of 
the tracking task on the ellipse in the same delay condition 
as during training. Not all the participants were able to come 
back for this long-term re-test but having six participants in 
each group still provides an insight into long-term retention.

Data processing and measurement

Performance on the tracking task was evaluated by the 
spatial tracking error calculated as the Euclidian distance 
between the center of the dragged object and the target 
center. This measure was chosen as it is the parameter par-
ticipants were explicitly asked to minimize, and as it was 
standardly used in previous studies about tracking skills 
(Viviani et al. 1987; Foulkes and Miall 2000; Miall and 
Jackson 2006; Leib et al. 2017).

For each trial, the tracking error was the average of the 
error measured at each 120 Hz data sample of the last two 
laps. This resulted in a total of 12,360 data points: (60 
trials × 10 sessions × 20 participants) + (30 trials × 1 long-
term-session × 12 participants). The trials with a tracking 
error of over 1.5 times the interquartile range above the 
upper quartile or below the lower, for a given participant 
and session, were withdrawn. This corresponds to 317 tri-
als, leaving 12,043 points for the analysis.

Analysis of the adaptation process

The delay was expected to significantly increase tracking 
errors in the early stages of training (i.e., larger errors for 
the test group than for the control group). If adaptation 
to the delay occurs, the performance for the test group 
should progressively catch up with the performance for the 
control group. To assess these hypotheses, we evaluated 
the global evolution of the performance across sessions, 
as well as the dynamic of the progression within each ses-
sion, and memory decay and retention between sessions.

To describe the evolution of the tracking error across 
trials within each session, we tested exponential fitting 
but the model with three degrees of freedom was under-
constrained giving misleading parameters. Assuming a 
linear progression within the sessions was a more reliable 
approximation. Linear mixed models (LMM) were thus 
built from the 12,043 data points (R software, v 3.3.2, 
R Development Core Team 2016; lme function; Pinheiro 
et al. 2007), with the tracking error as dependent vari-
able and the trial (numerical factor), the session and the 
group as fixed effects. The participant was considered as 
a random factor.

The best LMM was selected using likelihood-ratio 
tests and a backward deletion approach (Mundry and 
Nunn 2009). Autocorrelograms were plotted to check the 
absence of autocorrelation in residuals within a session. 
Post hoc tests were performed to compare:

• intercepts and slopes between groups with the glht 
function (multcomp package for R, Hothorn et  al. 
2008), with default parameters for multiple compari-
sons adjustment;

• the end point of the model in a session (final state of a 
session, i.e., at trial 60) with the intercept of the next 
session (initial state of the next session). This was done 
for each session and group. Bonferroni correction was 
used to compensate for multiple comparisons. These 
comparisons allow detecting discontinuities between 
sessions, which can be attributed to offline learning or 
memory decay.
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Analysis of the generalization effect

Generalization of learning was analyzed separately by com-
paring performances on the infinity shape before and after 
learning on the ellipse. Only the last five trials of the pre-test 
and the post-test were considered to remove strong outli-
ers resulting from an abrupt change in condition. Since we 
wanted a single indicator of performance for the pre-test and 
the post-test, these last five trials were averaged. Data were 
also analyzed separately for the three sections of the infinity 
shape (Fig. 2b):

The effect of session, section of the tracking path and 
group on tracking error were assessed using mixed ANOVA, 
with session and section as within-subject factors and group 
as between-subjects factor. For the control group, this com-
parison assessed the generalization of the tracking skill 
alone while in the test group it assessed the generalization 
of both the tracking skill and the adaptation to the delay. 
Our rationale is that a stronger generalization for the test 
group compared to the control group would show that not 
only is the tracking skill generalized but so is the adaptation 
to the delay.

All the effects were considered significant for p < 0.05.
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Analysis of the long-term effect

To evaluate the retention effect after 7–9 weeks, we consid-
ered the average tracking error on the last 10 trials of the 
“long-term” session (i.e., after a short re-familiarization of 
20 trials). This performance was compared to the averaged 
performance on the 10th session using an ANOVA, with ses-
sion as within-subject factor and group as between-subjects 
factor.

Results

Adaptation effects

The selected LMM includes effects of group, trial and ses-
sion on the tracking error as well as a triple interaction 
between the factors (nested models test without the interac-
tion, p < 0.025) showing:

• a negative impact of the delay on participants’ perfor-
mance;

• an improvement through practice across trials and over 
sessions;

• a different evolution of the tracking error across trials for 
different sessions depending on the group.

Multiple comparisons suggest that intercepts of the test 
group are significantly greater than intercepts of the control 
group in sessions 1–4 and 6 (Fig. 3). The magnitude of the 
difference decreases from 0.76 mm in session 1 (test–con-
trol: z = 4.2, p < 0.001) to 0.35 mm in session 10 (z = 2.0, 
p > 0.4). With training, the performance of the test group 

Fig. 3  Tracking error averaged across participants for each trial, each 
session, for the control group and the test group. Colored surfaces 
indicate 95% confident intervals. Linear fits are shown for each ses-
sion and group. Note that for clarity, the vertical axis does not start 

at 0. Comparisons of intercepts and slopes of the linear mixed model 
between the two groups for each session are indicated at the bottom 
of the graph. Asterisks indicate the significance level of the p value: 
0 < *** < 0.001 < ** < 0.01 < * < 0.05 < NS < 1
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approaches the performance of the control group. The com-
parison of slopes between the two groups across sessions 
gives more variable results. The slope of the test group is 
always steeper than that of the control group but the differ-
ence is significant only in sessions 1, 4, 5, 6 and 10 (z > 3.0, 
p < 0.04).

Figure 3 indicates that the test group tends to begin each 
session with an error greater than that observed at the end of 
the previous session. However, discontinuity tests between 
sessions were of no significance.

Generalization effects

Generalization effects on the infinity shape are detailed in 
Fig. 4. The control group performs better than the test group 
(effect of group: F(1,18) = 25, p < 0.001). The performance 
is also better in post-rather than pre-test (effect of session: 
F(1,18) = 123, p < 0.001). Between the pre- and post-tests 
the improvement of the test group is greater than that of 
the control group (group × session: F(1,18) = 6.9, p < 0.02) 
which varies with the section of the trajectory (group × ses-
sion × section: F(2,36) = 5.1, p < 0.02). The generalization 
effect appears similar in the three sections for the control 
group but not for the test group. This is supported by two 
post hoc ANOVAs, with Bonferroni corrections. They show 
a strong interaction between session and section for the test 
group (F(2,18) = 12, p < 0.001) but not for the control group 
(F(2,18) = 4.5, p = 0.052).

To ensure that the improvement in performances on the 
infinity shape was not only related to a test–retest effect, 
we ran a post hoc control experiment with a third cohort 
of participants. In a first session, participants performed 

the tracking on the infinity shape without delay, as in 
the control group. 9 participants (4 females, age 22–38, 
right-handed) were selected to have average error per-
formances comparable with those of the control group 
in the first session (4.3 mm (mean) ± 0.51 (se)). These 
participants came back 12.5 (± 1.6) days later to perform 
again the tracking on the infinity shape. They significantly 
reduced their tracking error (to 3.9 mm ± 0.36, t(8) = 4.2, 
p < 0.01). However, this ~ 0.4 ± 0.33 mm reduction was 
about three times smaller than the reduction observed ini-
tially in the control group (~ 1.2 ± 0.6 mm). A post hoc 
ANOVA was limited to the control group and this new 
group shows a significant (group × session) interaction 
effect (F(1,17) = 13.7, p < 0.005). This suggests that the 
improvement of performances observed for the control and 
the test group could not be entirely explain by a test–retest 
effect but rather by the training experience on the ellipse 
trajectory.

Retention effects

Participants tested 7–9 weeks after the last training ses-
sion seem to show fast re-learning (see “Long-term” ses-
sion, Fig. 3, last panel on the right) and good retention. 
Performances averaged over the last ten trials of the long-
term session are lower than the average error at session 
10 (F(1,10) = 6.39, p = 0.03) but with a small effect size 
(+ 0.2 mm) compared to the global decrease in the tracking 
error between sessions 1 and 10 (− 1.39 mm); and without 
any influence of the group (F(1,10) = 0.46, p > 0.5) nor inter-
action group × session (F(1,10) = 0.16, p > 0.69).
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Discussion

In answer to the three main questions posed by the study 
the results of Experiment 1 show that:

1. Participants adapt to touch delay but the adaptation takes 
time. The test group performed significantly worse than 
the control group in the first session. In the 10th session, 
differences between the two groups are not statistically 
significant. Both groups improved their performances 
over time but the amount of improvement depended on 
the group. We assume that the control group essentially 
learnt the tracking task while the learning in the test 
group concerned a combination of tracking task learning 
and delay adaptation.

2. After 10 sessions of training with the ellipse trajectory, 
both groups show a generalization effect on the infinity 
shape that still depends on the section of the shape for 
the test group only.

3. When re-tested 7–9 weeks after the last training session, 
participants from both groups show long-term retention 
effect.

Analyses by session also suggest that the test group 
shows greater progress within a session than the control 
group: the absolute slope within each session is systemati-
cally greater for the test group than the control group, even 
if the difference between groups is not always reliable. 
Although no significant discontinuity is found between 
sessions, Fig. 3 indicates that the test group tends to begin 
each session with greater error than at the end of the pre-
vious session. Motor memory is known to decay with the 
passage of time but it can be re-activated (Criscimagna-
Hemminger and Shadmehr 2008). The delay may increase 
this decay and the delay adaptation might require some 
trials to be carried out again.

Altogether Experiment 1 suggests that learning in the 
test group may involve two processes at the same time:

• a slow process of learning the tracking skill (this also 
holds for the control group) with good retention

• a fast process of adaptation to the delay, with weak 
retention but fast re-learning in each session.

Experiment 2 was designed to further investigate 
this hypothesis and to better understand the interaction 
between the two processes. The rationale was that if the 
delay does not interfere with the learning of tracking skills, 
then, learning the tracking task in a long-delay condition 
should generalize to performing the same task in minimal-
delay condition.

Experiment 2: Generalization of learning 
from delayed to non-delayed feedback

Methods

Design and procedure

The design of Experiment 2 is similar to that of Experi-
ment 1 but limited to a single session. 26 new participants 
(age range 21–40, 11 females, right-handed) had to perform 
the tracking task around the ellipse trajectory using direct 
touch interaction, the hand being visible. Participants were 
divided into two balanced groups based on their tracking 
abilities evaluated during the first ten trials of the experi-
ment (see Fig. 5, “Pre”). The data of two participants (one 
female) were discarded, as their performances on these first 
trials were larger than two standard deviations from the aver-
age performance of all the participants. In total, the control 
group (four females) performed 80 trials in the minimal-
delay condition. The test group (four females) performed 
10 trials in the minimal-delay condition (baseline), then 60 
trials in the long-delay condition (training) and finally 10 tri-
als in the minimal-delay condition (generalization of learned 
tracking skills).

Data analyses

The comparison between the first and the last block of the 
test group enabled us to assess the generalization of learning 
from long-delay condition to minimal-delay condition. The 
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comparison with the control group evaluated the quality of 
the generalization. A complete generalization would indi-
cate that the tracking skills are learned separately from the 
delay without interference. No generalization would suggest 
that learning tracking skills with a given delay is a specific 
global process that does not generalize to the other delay 
condition. Partial generalization would be compatible with 
the two alternatives: as the product of interference between 
two independent processes or as the product of a similarity 
between two specific global processes.

To obtain a pre-training and post-training indicator of 
minimal-delay performance the error of the 10 trials in 
the pre-test and post-test (see Fig. 5, left and right panels 
respectively) were averaged for each participant. The effects 
of block and group on tracking error were assessed using 
a mixed ANOVA, with block as within-subject factor and 
group as between-subjects factor.

Using the same method as in Experiment 1, the training 
phase was analyzed with linear mixed models, with post hoc 
comparisons between groups when required.

Results

The tracking error for the first and last block together with 
the training trials performance can be seen in Fig. 5. As a 
consequence of group balancing, the performances of the 
two groups are comparable in the pre-training block. Dif-
ferences between groups then appear in the training phase. 
The selected LMM includes the effects of group and trial 
but not the group × trial interaction (p > 0.26). It shows a 
negative impact of the delay on participants’ performance, 
with the intercept in the test group being greater than in the 
control group (test–control: z = 2.3, p < 0.05), and a signifi-
cant improvement across trials (slope significantly different 
from 0, z = − 4.3, p < 0.0001). A supplementary ANOVA 
was run to compare the five first and five last trials of the 
training phase according to the group (mixed group × phase 
ANOVA). It confirms the general progression during the 
training phase (F(1,22) = 24.4, p < 0.0001) and the worst 
performances of the test group (F(1, 22) = 5.9, p < 0.05). 
However, it also suggests a larger progression in the test 
group as compared with the control one (F(1,22) = 5.2, 
p < 0.05).

After training, both groups displayed a clear progres-
sion in the post-training block as compared with the pre-
training one (effect of block: F(1,22) = 23.7, p < 0.001), 
that is yet comparable for the two groups (block × group: 
F(1,18) = 0.03, p > 0.86). Therefore, there is no indication of 
any global effect of the group in the pre- and post-training 
blocks (F(1,18) = 0.04, p > 0.85).

The performance of the two groups in the post-training 
block thus appears similar regardless of the training condi-
tion. This suggests that the progression observed in the test 

group in the course of the training phase might involve an 
adaptation to the delay as well as a delay-independent learn-
ing of tracking skills (i.e., the ability to track a target moving 
with predictable trajectory and velocity).

General discussion

Experiment 1 shows that participants were able to adapt to 
delayed feedback in direct touch interaction on a tracking 
task. This adaptation took time but enabled generalization to 
a tracking task with a different trajectory and a good reten-
tion 7–9 weeks after the last training session. Experiment 2 
suggests that learning to perform a tracking task with delay 
may not prevent the learning of the tracking skill per se.

The evolution of learning across sessions in Experiment 
1 and the results of Experiment 2, suggest that two sepa-
rated learning processes might be involved: one for the track-
ing skill and one for adaptation to the delayed feedback. 
These results will now be discussed with reference to previ-
ous studies on skill learning, and on the interplay between 
visuomotor competences acquired in digital and physical 
interactions.

Tracking skills learning without delay

In this section, we consider only the behavior of the control 
group in Experiment 1, which enables us to understand how 
tracking skills are acquired when delay is negligible.

Although the task was repeated over days, the generali-
zation effects toward the infinity shape in the last training 
session suggest that participants in the control group did not 
only learn a specific motor skill to track on the ellipse at the 
appropriate rate but rather that they have developed more 
general tracking skills. This is also suggested by the fact that 
generalization does not appear to depend on the section of 
the infinity shape (e.g., trajectory location or velocity simi-
larity with the ellipse).

In their experiment, Miall and Jackson (2006) did not 
observe much improvement in tracking performance for the 
control group over 5 days. In our study 5 days were sufficient 
to decrease the tracking error by over 25% (from an average 
of 3.28 mm in session 1 to 2.39 mm in session 5). In com-
parison with Miall and Jackson we found that at least two 
factors might have accelerated learning:

1. The performance feedback provided to the participant 
after each trial;

2. The fact that direct touch interaction could reactivate 
everyday skills and benefit from them (Bérard and 
Rochet-Capellan 2015) while indirect tracking with a 
joystick as in Miall and Jackson might not.
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Further investigation is needed to determine whether 
direct interaction accelerates skill learning compared to 
indirect interaction.

The comparison of the control groups between the first 
session in Experiment 1 and the unique session in Experi-
ment 2 suggests that participants in Experiment 2 performed 
worse than those of Experiment 1 (Fig. 3 vs. Fig. 5, the dif-
ference was ~ 0.5 mm in average between the two groups). 
This could be related to two major differences in the pro-
cedures of the two experiments. (1) In Experiment 1, par-
ticipants performed an additional balancing task with delay 
before being trained that may have improved their initial 
performance in tracking the ellipse without delay. (2) They 
also knew that they would perform the task over several 
days, which may have induced a greater implication in the 
task than the single session in Experiment 2. Supplementary 
work is required to address directly the effect of long-term 
implication on initial performance.

Dealing with feedback delay on a tracking task

Previous studies have demonstrated that feedback delay 
alters performances for manual tracking tasks in indi-
rect interaction, as participants have to adapt to the delay 
(Foulkes and Miall 2000; Miall and Jackson 2006; Sarlegna 
et al. 2010). This is supported here for direct touch by the 
results of the two experiments as in both experiments, the 
delay reduces performance.

To the best of our knowledge, only Miall and Jackson 
(2006) have investigated the adaptation to feedback delay 
on a tracking task over more than 3 days. This was done 
using indirect joystick interaction. The authors reported clear 
evidence of adaptation with a decrease in the mean error 
scores and the performance of the test group (300 ms delay) 
gradually approaching that of the control group (no delay). 
Experiment 1 shows that slow progression across training 
sessions is also characteristic of delay adaptation in direct 
touch interaction for shorter delay.

It would be interesting in the future to ascertain whether 
this adaptation comes from instrumental or perceptual learn-
ing. Kennedy et al. (2009) have suggested that adaptation to 
a sensorimotor temporal misalignment is closely related to 
perceptual learning. In their study after effects persist for a 
time following adaptation without visual feedback. In our 
case feedback was always visible so no conclusion can be 
drawn.

Tracking skills learning and delay adaptation: two 
learning processes?

While the tracking skill improved progressively through 
practice, as observed in the control groups, the management 
of the delay might follow a different evolution (with a slight 

tendency to decay and faster re-learning, as suggested by 
Experiment 1). This could suggest that a different learn-
ing process may operate under this condition parallel to the 
learning of the tracking skills. This would be consistent with 
the findings of Smith et al. (2006) who studied adaptation to 
a force field imposed by a robot manipulandum. The authors 
showed that their experimental data fit on a multi-rate model 
of two learning processes: a slow one with good retention 
and a fast one with poor retention. While Smith et al. do 
not argue that the two processes are distinct, Krakauer and 
Mazzoni (2011) clearly separate the adaptation that involves 
the cerebellum and the skill learning that is associated with 
a motor cortical organization.

The separation of the two processes is consistent with the 
results of Experiment 2 where participants who learn the 
tracking task while adapting to the delay then perform the 
tracking task without delay in a similar way than participants 
who learn the tracking task without delay. This suggests that 
the former group may develop a control policy that is, at 
least to some extent, independent of the delay. In parallel, 
they may try to recalibrate this control policy to adapt to 
the inconsistent feedback. If this is the case observations 
of Experiment 1 (where there is a tendency to retention or 
offline gain for tracking skills and a tendency to decay for 
delay adaptation) would coincide with those of Telgen et al. 
(2014). They argue that automatization of a new control 
policy should show offline gains while recalibration of an 
existing control policy should show offline forgetting.

The test group’s stronger generalization in Experiment 
1 indicates that as well as tracking skills participants were 
able to generalize their ability to deal with the delay. This 
generalization is consistent with the work of Cunningham 
et al. (2001a) who showed that feedback delay adaptation 
can be transferred across task variations. Unlike the con-
trol group the test group’s generalization differed accord-
ing to the infinity section. This might be due to an influ-
ence of velocity or trajectory location on the generalization 
but another explanation can be that in the center and right 
section the participant’s right hand was hiding the delayed 
object. This becomes less influential in the post-test after 
adaptation when control strategies rely less on visual feed-
back. To clarify the origins of this phenomenon further 
investigation is necessary.

Interaction of motor learning in the digital world 
with actions in the physical world

Human–computer interactions are increasingly “Reality-
based”. The gestures we make to interact with physical 
objects lead to the development of new gestural interac-
tions with digital objects (Norman 2010), such as direct 
touch interactions (Wigdor and Wixon 2011). This raises 
an important challenge for movement sciences. How does 
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the user brain transfer sensorimotor skills from physical 
to digital objects and vice versa (e.g., Bérard and Rochet-
Capellan 2015)?

In the current study, a tendency to memory decay for par-
ticipants dealing with delay would be consistent with the 
Bayesian hypothesis according to which people associate a 
prior assumption about the states of the world with evidence 
about the current state (Turnham et al. 2011). When people 
are learning from childhood in a physical world that does 
not suffer from delay, their prior assumption when moving 
an object does not include any delay. People may use this 
prior assumption to perform touchscreen tasks. However, 
when the feedback of the touched object does not match 
their expectation, they may recalibrate their motor com-
mands to compensate for the delay. When people stop using 
their touch devices, they go back to the physical world and 
unlearn the recalibration.

According to Kitago et al. (2013), unlearning is “an active 
process where adapted behavior gradually reverts to baseline 
habits”, which, in the physical world does not include any 
delay. Retention, however, indicates that the recalibration 
process may be re-activated very quickly. Results from Miall 
and Jackson (2006) study also indicate that this recalibration 
can be generalized between two levels of delay. On a track-
ing task, participants who adapted to a 300 ms delay per-
formed much better on a post-test at 400 ms than participants 
who were trained with no delay. This ability to recalibrate 
fast and for different levels of delay could explain why users 
of new technologies can shift so easily from one device to 
another (the same task achieved on a smartphone, a tablet 
or a larger touch surface).

Wei et al. (2014) have shown that the use of comput-
ers can re-shape our sensorimotor behaviors: users of a 
mouse generalized more visuomotor learning than people 
who never use the mouse. When performing a task on a 
touchscreen, it seems that people use a control policy that 
does not include any delay disturbance. This certainly comes 
from previous knowledge of the physical world. The perfor-
mances on the digital task, with delay are affected by this 
prior knowledge and it takes time to counteract the delay. By 
separating the processes of learning skill and adapting to the 
delay, learning skill is not really affected by the presence of 
delay. A task learned in a digital world impacted by delay 
can be generalized to a condition with or without negligi-
ble delay. Further studies on generalization are required to 
determine if this result is specific to our study and tracking 
task or if it also applies to other tasks.
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