BEXHI: A Mechanical Structure for Prototyping Bendable and EXpandable Handheld Interfaces

Michael Ortega
Université Grenoble-Alpes, LIG, CNRS
michael.ortega@imag.fr

Alix Goguey
Université Grenoble-Alpes, LIG
alix.goguey@univ-grenoble-alpes.fr

Figure 1: Six example shapes of a BEXHI prototype: a tablet that can be expanded and bent in 2 dimensions.

ABSTRACT
In this paper, we present BEXHI, a new mechanical structure for prototyping expandable and bendable handheld devices. Many research projects have pushed bendable surfaces from prototypes to commercially viable devices. In the meantime, expandable devices have become a topic of interest letting one foresee that such devices are on the horizon. With BEXHI, we provide a structure to explore the combined capabilities of these devices. The structure consists of multiple interwoven units allowing non-porous expandable surfaces to bend. Through an instantiation, we illustrate and discuss that the BEXHI structure allows for the exploration of the combination of both bend and expansion interaction spaces.

Author Keywords
Shape Changing Interface; Organic User Interface; Bending gesture; Expansion.

INTRODUCTION
From mobile phones to tablets, we now use interactive surfaces on a daily basis empowering us to complete many of our tasks. The current evolution of our lifestyle will, arguably, have the tendency to reinforce our nomadic usage of devices. To improve the interaction bandwidth of our devices, researchers are seeking to break the expressiveness1 barrier. One way of doing so is to make our devices more ‘organic’, through Shape Changing Interfaces (SCI) [2]. Organic User Interfaces (OUI) [23] are SCIs in which the display is an input, that changes its shape through manual/automated deformations, enriching the interaction vocabulary.

There are many directions explored from screen(s) reconfiguration, such as Cubimorph [17] or Doppio [19], to bendable screens, such as Codex [8] or FoldMe [9]. The latter category even starts to be commercially viable, for instance with the Huawei Mate X and the Samsung Galaxy Fold. The technology is catching up with research concepts, and fully bendable screens are on the horizon. Concurrently, new features are studied, such as expansion. Expandable surfaces, such as Xpaaand [10] or EXHI-Bit [12], aim at dynamically changing their form factor by modifying the area of the screen real-estate. It is important to note that both the expansion and bending features are orthogonal (ie. they can be combined), and increase surfaces expressiveness. These surfaces are already studied through user elicitation studies based on videos, highlighting a need for physical tools [13].

In this paper we use these observations as a premise, and aim to provide the research community with a mechanical structure for exploring devices that combine expansion and bending. We propose BEXHI: an upgraded version of EXHI-Bit. We provide a thorough description of the BEXHI structure, as well as an instantiation of it (a bendable and expandable tablet). We also provide all the digital material needed to build and easily replicate such a device. Finally, we discuss the possibilities enabled by BEXHI through possible applications.

RELATED WORK
Deformable surfaces is a well known topic in the shape changing interfaces literature. It has been tackled through different angles, whether through the deformation of a surface casing (eg. [14]) or of its screen. This section is an overview of works focusing on deformable screens through bending and expansion only. Due to their nature, ie. bending along predefined axis, we do not consider folding.
Bendable screens, of which Gummi [18] is one of the firsts, can be deformed along an infinite amount of axes. In some cases, like HoloFlex [6], all the axes are parallel, along one edge. This type of device was studied by Ahmami et al. who investigated which kind of control should these bending gestures be used for [1]. In other researches, multiple bends can be performed simultaneously along any axis of the device [20]. Even though the screen itself is not bendable, FlexCase provides several examples of how these bending gestures could be used as inputs (eg. map navigation, gaming, ...) [15]. Similar to [1], Girouard et al. investigated one-handed bend gestures and emit recommendations on which gestures to prefer and use [3].

About expansion, a thorough survey can be found in [12], which also presents EXHI-Bit, the recent work we built on.

Due to the current lack of prototyping structures, combination of both bending and expansion has not been explicitly explored yet. As precursors, we can consider the 3 following works. PaperFold is a prototype device using detachable screens that cannot only be connected or broken apart to modify the screen footprint, but also dynamically folded along their bezels [5]. DisplayStacks are fully bendable screens whose screens can be stacked or slid over [4]. They are used to contextualize views on documents, as well as expand the view port in one dimension. Similarly, PaperTab [22] is a tablet composed of multiple bendable touchscreens. However, a mechanical structure for allowing both bending and expansion in a integrated way was still missing.

BEXHI
For creating BEXHI, integrating bending into EXHI-Bit, both the interweaving mechanism and the covering system were redesigned. These aspects are presented in the following, after a short description of EXHI-Bit. Figure 5 resumes the difference between an EXHI-Bit unit and a BEXHI one.

Starting point: EXHI-Bit
EXHI-Bit is an aggregation of identical elementary units. Each unit is mechanically connected up to 4 other units, and can slide away from the others. A unit is a sandwich of plexiglas layers, topped by a paper tile. Two of these layers, called interweaving layers (Figure 2left), ensure connection with the neighbours (see Figure 5 in [12]). The paper tile ensures the non-porosity [16] of the complete surface. An external projector and a tracking system are used to display digital content.

Considering bending interaction, an EXHI-Bit surface has not enough flexibility. Plexiglas is too brittle, and the paper tiles do not stick the surface when bent.

Figure 2: Plexiglas Interweaving layers: EXHI-Bit (left) vs BEXHI (right). BEXHI fingers are printed, in TPU 95A, making them flexible.

BEXHI Interweaving Mechanism
Starting from the layering principle of EXHI-Bit units, we propose to keep the main core of a unit rigid, and to support bending through the fingers of the interweaving layers only.

We first tested to laser cut bending-cut patterns on each finger, but after testing and due to the short nature of the fingers, plexiglas was still too brittle to support marked bending movements. Moreover, when bent, such fingers do not slide smoothly into the neighbor units. We then looked for another material, and in order to keep the sliding properties between the units, we opted to change the material for the fingers only. We kept using plexiglas for the central part. In BEXHI, the fingers are 3D printed with flexible plastic (TPU 95A), and locked in force into the central part using notches that maintain them in place (Figure 2). Two neighbouring units can be easily bent beyond 90 degrees, and the TPU 95A plastic is strong enough to endure bending stress.

BEXHI Covering Mechanism
EXHI-Bit paper tiles are not adapted to bendable surfaces, especially when bending up, ie. screen center moving towards the user. First, as shown in Figure 3a, the un-pasted parts of the tiles lift away from the surface, breaking the surface continuity. Next, due to the extra length implied by a curved junction between two tiles, the size of the interstice can be larger than the size of one unit. To keep the non-porosity property, the tiles should then be larger than two units, creating interferences with their neighbouring tiles.

Two questions have then to be answered: (1) How to make the tiles stick to the surface while it is bent, and (2) how to make larger tiles while avoiding collisions?

Keeping tiles pasted on the surface
We first tried fabric. However, as in [12], we were left with rigidity issues: it wrinkled when bending down (screen center going away from the user) and tessellated when bending up. We then came back to paper, which already have good intrinsic bending properties, and opted to improve the fixing principles by using a magnets. Tiles in silicon or flexible plastic could work as well, however depending on the tracking system used, reflexion properties of these material might cause interferences.

We first added a thin metallic layer atop each unit, under the paper tile (Figure 5). Next, we placed magnets under the corner opposite to the one fixing the tiles to their unit (Figures 5 and 4). The metallic layer allows tiles, augmented with

2https://ultimaker.com/en/resources/49917-tpu-95a
When we manipulated a BEXHI structure for the first time, we observed that when manipulating the tablet instance (next section), and more particularly expansion, one had to fight against the sliding property of the bezels (made in plexiglas). Border units have one more magnet along the bezel to help maintaining the tiles on the surface edge, and only one tile has three magnets: the corner tile that covers three neighbour units. As shown in Figure 1, the tiles adopt the surface curvature and do not lift away even with an extreme bending.

Avoiding tiles collision
As mentioned above, due to the combination of bending and expansion, the interstice between two units can be larger than the size of one unit. Compared to EXHI-Bit specifications, BEXHI tiles have to be larger than twice the size of the unit to: (1) completely hide the interstice, and (2) always touch the neighbour unit’s top and avoid lifting away. However, increasing the size of the tiles creates collisions between tiles of one unit and their second next neighbours (two units further). The design of the tile has to be adapted as it cannot keep its square shape. Figure 4 shows the new tiles design. This design avoids tiles collisions by enlarging the tiles at magnet position, ie. bottom right corner, and reducing the tiles at the opposite edge. Finally, by keeping the overlapping configuration of EXHI-Bit, these modifications do not have to be adapted for the vertical dimension.

Manipulation
When we manipulated a BEXHI structure for the first time, we observed that when manipulating the tablet instance (next section), and more particularly expansion, one had to fight against the sliding property of the bezels (made in plexiglas). Moreover, local expansion or bending, ie. on a sub-part of a BEXHI structure only, is quite difficult to perform without handles. We iterated and added a new layer at the bottom of each BEXHI unit, fixed by the main screw. As shown in Figures 3c and 5, this is a printed element (yellow in the figures), whose shape allows the user to grip a single unit in any direction.

After an empirical evaluation, we observed that users were confident in handling and manipulating the tablet instance.

Finally, the structure is not particularly tied to a rectangle form factor. More exotic form factors like the ones presented in [12] could be supported. However, bending can introduce some suppleness.

![Figure 4: Top view of BEXHI tiles. Left: Top-left part of a tile is pasted on the metallic layer of a unit. middle: the magnet of a tile is always up to a metallic layer. right: When the surface is closed, the new design avoid collision between two separated tiles.](image1)

![Figure 5: Layers for a BEXHI unit. Green highlights contributions. 1: Paper tile with a magnet at the corner. 2: Metallic layer on which magnets keep stick. 3,7: Plexiglas layer that sandwiches the interweaving parts. 4,6: Interweaving parts. 5: Plastic disk that improves sliding and avoids interlocking. 8: Printed grip for manipulation. 9: Screw, that only screws in layer 3, making a rotation axis for layers 4 to 8.](image2)
with $A_{\text{min}} = A(0,0) = 252 \text{cm}^2$ and $A_{\text{max}} = A(1.6,1.6) = 594 \text{cm}^2$ in our prototype.

Zero-crossing
While bending along the x-axis, a maximum of 3 zero-crossings can be performed. However, in practice and in order to allow room for manipulation, up to 2 zero-crossings are feasible. Along the y-axis there are a maximum of 2. Again, such a shape is difficult to reach, especially with fingers on the tablet left and right sides. Only 1 zero-crossing should then be considered for interaction along the y-axis.

Stretchability
Strachability is computed as follow:
\[
S(g_x, g_y) = 100 \cdot \frac{|A(g_x, g_y) - A_{\text{min}}|}{A_{\text{min}}}
\]
with $S_x = S(1.6,0) = 56\%$ (being the maximum expansion along the x axis), $S_y = S(0,1.6) = 50\%$ (y axis) and $S_{\text{max}} = S(1.6,1.6) = 135\%$ (both axes) in our prototype.

Display
As in EXHI-Bit [12], we display digital content by projecting on the tablet. We track the contour of the surface with an Optitrack system, and project our digital content using an external projector. There are other possible solutions arguably less expensive, such as Flexpad (cheaper depth sensor to track a flexible surface) [20], or more accurate, such as Narita et al. work [11]. The EXHI-Bit solution is a good compromise between precision and algorithmic complexity, allowing fast prototyping of new applications.

POSSIBLE APPLICATIONS
In the following, we provide few examples, based on our BEXHI instantiation, of how both bending and expansion can be used in complementary and/or concurrent ways.

Manipulating a slider
In many works, such as ReFlex [21] or TouchMark [24], bending a side of a screen up or down allows to change a linear value. However, the control is either relative and discrete (e.g., bending up/down to go to the next/previous page) or has a fixed precision due to the bending capabilities of the screen. Using expansion allows for an adaptable granularity of the bending precision: the expansion can increase or decrease the surface area which in turn changes the minimum amount of bending that can be performed. For instance, one can implement a slider whose value is changed with a unit precision when there is no expansion, allowing for a fast and rough value setting, like the ballistic phase of a pointing movement, and change the value with a 0.1 precision when the tablet is expanded (see the accompanying video).

Pan and zoom on a map
In the previous example, expansion is used as a modifier for bending (e.g., giving bending gestures slightly different meaning). However, one could imagine using both type of gesture without some kind of hierarchy, and allowing both to be used concurrently. For instance, one can use the following gestures for panning a map: expanding the top (resp. bottom) bezel only to pan upwards (resp. downwards) and bending the right (resp. left) bezel to pan rightwards (resp. leftwards).

These gestures (and their combinations) can all be performed with both hands always gripping the side bezels. Achieving the same functionalities with expansion only or bend only is arguably more difficult without changing the grip, even more so if you add a zoom control. In our example zoom in/out could be achieved by bending down/up the surface. This simple example illustrates the increase in expressiveness even when keeping hands movement minimal.

Watching a movie
The complementarity of bending and expansion features can also be illustrated in a ‘watching a movie’ scenario. While watching a movie on a BEXHI tablet, the viewer can expand the screen to watch more comfortably, but also bend it slightly and place it vertically on a table enabling the screen to self stands (see the accompanying video).

Those simple examples aim at highlighting the interaction possibilities, but elude that many design choices are needed. For instance, while manipulating the slider, should the movement and change of value be mapped absolutely or relatively? Should the bend up increase or decrease the value? Should the bending movements be symmetric (bending both screen sides at the same time)? We argue that many exciting research about interaction techniques could come out from BEXHI.

CONCLUSION, LIMITATIONS AND FUTURE WORKS
We presented BEXHI, a new mechanical structure solution for prototyping bendable and expandable devices. While viable technologies are catching up with research concepts of deformable surfaces and screens, we aimed at pushing further the barrier by providing the research community with a new tool to explore and design new exciting interactive systems. As illustrated by the tablet instantiation and the three possible applications, BEXHI enables the exploration of new interactions combining two dimensions that have been explored separately. Our hope with BEXHI, is that this work will further stimulate OUI research and fill the need identified in [13].

Next steps include investigating actuation. As for other works on bendable or expandable screens, adding a bending capacity imposes on the screen an inevitable bent under its own weight if not gripped properly. This side-effect also renders the expansion gesture hard to achieve if, again, the grip is not carefully placed. We argue that these limitation could be alleviated with actuation, using material solutions like HotFlex [7], where 3D printer material is augmented with heat actuators to dynamically adapt the stiffness of printed objects. Our printed fingers could be improved to ease the tablet manipulation.

Investigations will also be made on the display aspect. While prototyping interactions using projection is an efficient, easy and fast to implement solution, it is not adapted to real-world mobility contexts of use (e.g. interaction while walking). We’ll investigate the replacement of the paper tiles with OLED screens.

ACKNOWLEDGMENTS
This work is supported by the French National Research Agency: ANATOMY2020 project (ANR-16-CE38-0011).
REFERENCES

http://dx.doi.org/10.1145/2556288.2557306

http://dx.doi.org/10.1007/s00779-010-0111-y

http://dx.doi.org/10.1145/2702133.2702153

http://dx.doi.org/10.1145/2208766.2208466

http://dx.doi.org/10.1145/2677199.2688572

http://dx.doi.org/10.1145/2984511.2984524

http://dx.doi.org/10.1145/2858036.2858191

http://dx.doi.org/10.1145/1518701.1518996

http://dx.doi.org/10.1145/2148131.2148142

http://dx.doi.org/10.1145/1978942.1979344

http://dx.doi.org/10.1109/TVCG.2016.2592910

http://dx.doi.org/10.1145/3098279.3098553

http://dx.doi.org/10.1145/2556288.2557018

http://dx.doi.org/10.1145/2839462.2839499

http://dx.doi.org/10.1145/2858936.2858314

http://dx.doi.org/10.1145/2479654.2479738

http://dx.doi.org/10.1109/ICRA.2016.7487508

http://dx.doi.org/10.1145/985692.985726

http://dx.doi.org/10.1145/2858036.2858256

http://dx.doi.org/10.1145/2478654.2478688

http://dx.doi.org/10.1145/2839462.2839494

http://dx.doi.org/10.1145/2479829.2479841

http://dx.doi.org/10.1145/1349026.1349033

http://dl.acm.org/citation.cfm?id=1839214.1839256