RICML1 - 2004/05

Langage et Programmation 2

TP2 : Expressions arithmétiques

Il ’agit du premier TP sur plusieurs séances (3 ou sont 4 prévues) & rendre
a la fin.

L’objectif final est de parvenir & un programme qui permet d’évaluer des
expressions. L’écriture d’un tel programme se fait en quatre étapes :

1. La définition du type de la structure de données représentant les ex-
pressions

2. Un analyseur lexical
3. Un analyseur syntaxique
4. La fonction évaluation proprement dite

On ne traitera que des expressions bien formées.
On procédera incrémentalement, en plusieurs phases.

— expressions additives (vues en TD)

— expressions arithmétiques

— introduction d’expressions booléennes
introduction de let-expressions

Dans un premier temps on considérera donc les expressions additives puis
arithmétiques. Si, par exemple, on donne la chaine de caractéres "4 — 2 % 3
" le programme devra répondre 6. On supposera qu'une expression est au
moins composée d’un entier.

Phase 1 : expressions additives

A rendre avant lundi 7

Ce ne sera pas noté, mais il s’agit d’éviter d’incrémenter sur
une éventuelle mauvaise base.

L’analyseur lexical
Le travail de 'analyseur est de prendre une chaine de caractére et de la

transformer en liste de lexémes (tokens) pour qu’elle puisse étre traitée par

I'analyseur syntaxique. Pour réaliser ’analyseur lexical, vous aurez besoin

de :

— Une fonction intermédiaire qui transforme la chaine de caractéres en liste
de caractéres.

— Le schéma de Horner.

— La définition d’un type token qui définit chaque symbole des expressions
arithmétiques (TPlus|...).

L’expression "4 — 2 4+ 3 " sera alors tranformée en la liste

[TEnt 4 ; TMoins ; TEnt 2 ; TPlus ; TEnt 3]

Le type des expressions
Comme on I'a vu en TD, la structure de représentation des expressions
arithmétiques la plus appropriée est la structure d’arbre. L’expression
"4 — 2+ 3 " sera alors représentée par I’arbre
Plus(Moins(Int 4, Int 2),Int 3).

type expr =

| Int of int

| Plus of expr * expr

| Moins of expr * expr

L’analyseur syntaxique

L’analyseur syntaxique doit transformer la liste de tokens en un arbre de
type expr. Par exemple, la liste
[TEnt 4 ; TMoins ; TEnt 2 ; TPlus ; TEnt 3] doit étre transformée en
I'arbre Plus(Moins(Int 4, Int 2),Int 3).
Pour pouvoir contruire 'arbre, vous aurez besoin de la grammaire des ex-
pressions arithmétiques. On a vu en TD la grammaire pour les expressions
composées d’entiers, de '+’ et de '—'.

Grammaire

E = expression

T = terme

SA = suite d’additions

F = facteur

SM = suite de multiplications

E ::=T SA

SA ::=°+> SA | -2 SA | ¢
T ::=F SM
SM ::= %> SM | */> SM | ¢
F ::= entter | 7C’ E)’
L’évaluation
La fonction d’évaluation correspond a un parcours de 'arbre :
let rec eval e = match e with

| Int(n) —>mn
| Plus(el,e2) — eval el + eval €2
| Moins(el,e2) — eval el — eval e2

Phase 2 : expressions arithmétiques

Ne pas se sentir obligé d’attendre la seconde séance pour démarrer cette
phase...

L’analyseur lexical
Introduire des lexémes pour les opérateurs de multiplication, division et
pour les parenthéses.

Le type des expressions

L’expression "(4 — 2) x 3 " sera alors représentée par I'arbre
Mult(Moins(Int 4, Int 2),Int 3).

type expr =

| Int of int

| Plus of expr * expr

| Moins of expr * expr
| Mult of expr * expr

| Div of expr * expr

L’analyseur syntaxique

L’analyseur syntaxique doit transformer la liste de tokens en un arbre de
type ezpr. Par exemple, la liste
[T Parou ; TEnt 4 ; TMoins ; TEnt 2 ; TParferm ; TMult ; TEnt 3]
doit étre transformée en I'arbre Mult(Moins(Int 4, Int 2),Int 3).

Il faudra donc améliorer la grammaire précédente (en veillant a ce qu’elle
reste récursive a droite) pour qu’elle prenne en compte les parenthéses, la
multiplication et la division.

L’évaluation
La fonction d’évaluation correspond a un parcours de ’arbre.

Phase 3 : expressions booléennes

Reproduire la démarche ci-dessus pour des expressions purement booléeenes
(sur les deux constantes notées true et false).

Il faut donc compléter I'analyseur lexical en introduisant un constructeur
pour les identificateurs (suites de lettres, éventuellement suites de lettres et
de chiffres commencant par une lettre).

Les deux seuls identificateurs réellement utilisés a ce stade sont donc true
et false, mais d’autres apparaitront par la suite.

Phase 4 : expressions arithmétiques et booléennes

Introduire une expression booléenne pour le test d’égalité entre 2 expressions
arithmeétiques.

Introduire une construction si... alors... sinon dans les expressions arith-
métiques.

Grammaire

E = expression

C = conjonction

SC = suite de conjonctions
SD = suite de disjonctions

L = littéral

EC = expression comparable
CMP = comparaison

T = terme

SA — suite d’additions

F = facteur
SM = suite de multiplications

E ::= ’si’ E ’alors’ E ’sinon’ E | C SD
SD ::='V CSD | ¢

C ::=L SC

SC ::='NLSCI| ¢

L ::='-"L | EC CMP

CMP = ’=2 CMP | ¢

EC ::= T SA

SA ::= 24> SA | °-? SA | ¢

T ::=F SM

SM ::= %> SM | °/? SM | ¢

F ::= entdier | ’vrai’ | ’faux’ | *(C’ E ?)’
Phase 5

Introduire une construction let... in...

Il faut prévoir une notion d’identificateur dans les lexémes et une notion de
variable dans les expressions.

Les modifications & apporter dans la grammaire sont :

E ::=
’si’ E ’alors’ E ’sinon’ E
| ’soit’ <¢dent ’=’ E ’dans’ E
| C SD
F ::= entier | ’vrai’ | ’faux’ | 4dent | >(° E)’

Pour I’évaluation, il faut introduire une notion d’environnement.

Bonus

Introduire une construction fun. .. ->... (au niveau E) ainsi qu’une construc-
tion d’application d’une fonction a des arguments (au niveau facteur)

Super bonus

Introduire une construction let rec... in...

