
RICM1 - 2004/05
Langage et Programmation 2

TP2 : Expressions arithmétiques

Il s'agit du premier TP sur plusieurs séances (3 ou sont 4 prévues) à rendre
à la �n.
L'objectif �nal est de parvenir à un programme qui permet d'évaluer des
expressions. L'écriture d'un tel programme se fait en quatre étapes :

1. La dé�nition du type de la structure de données représentant les ex-
pressions

2. Un analyseur lexical
3. Un analyseur syntaxique
4. La fonction évaluation proprement dite

On ne traitera que des expressions bien formées.

On procèdera incrémentalement, en plusieurs phases.

� expressions additives (vues en TD)
� expressions arithmétiques
� introduction d'expressions booléennes
� introduction de let-expressions

Dans un premier temps on considèrera donc les expressions additives puis
arithmétiques. Si, par exemple, on donne la chaîne de caractères "4 − 2 ∗ 3
", le programme devra répondre 6. On supposera qu'une expression est au
moins composée d'un entier.

Phase 1 : expressions additives

À rendre avant lundi 7

Ce ne sera pas noté, mais il s'agit d'éviter d'incrémenter sur
une éventuelle mauvaise base.

L'analyseur lexical
Le travail de l'analyseur est de prendre une chaîne de caractère et de la

1

transformer en liste de lexèmes (tokens) pour qu'elle puisse être traitée par
l'analyseur syntaxique. Pour réaliser l'analyseur lexical, vous aurez besoin
de :
� Une fonction intermédiaire qui transforme la chaîne de caractères en liste
de caractères.

� Le schéma de Horner.
� La dé�nition d'un type token qui dé�nit chaque symbole des expressions
arithmétiques (TPlus|...).

L'expression "4− 2 + 3 " sera alors tranformée en la liste
[TEnt 4 ; TMoins ; TEnt 2 ; TP lus ; TEnt 3]

Le type des expressions
Comme on l'a vu en TD, la structure de représentation des expressions

arithmétiques la plus appropriée est la structure d'arbre. L'expression
"4− 2 + 3 " sera alors représentée par l'arbre
Plus(Moins(Int 4, Int 2),Int 3).

type expr =
| Int of int
| Plus of expr ∗ expr
| Moins of expr ∗ expr

L'analyseur syntaxique
L'analyseur syntaxique doit transformer la liste de tokens en un arbre de

type expr. Par exemple, la liste
[TEnt 4 ; TMoins ; TEnt 2 ; TP lus ; TEnt 3] doit être transformée en
l'arbre Plus(Moins(Int 4, Int 2),Int 3).
Pour pouvoir contruire l'arbre, vous aurez besoin de la grammaire des ex-
pressions arithmétiques. On a vu en TD la grammaire pour les expressions
composées d'entiers, de ′+′ et de ′−′.

Grammaire

E = expression
T = terme
SA = suite d'additions
F = facteur
SM = suite de multiplications

2

E ::= T SA

SA ::= '+' SA | '-' SA | ε
T ::= F SM

SM ::= '*' SM | '/' SM | ε
F ::= entier | '(' E ')'

L'évaluation
La fonction d'évaluation correspond à un parcours de l'arbre :

let rec eval e = match e with
| Int(n) − > n
| Plus(e1, e2) → eval e1 + eval e2
| Moins(e1, e2) → eval e1 − eval e2

Phase 2 : expressions arithmétiques

Ne pas se sentir obligé d'attendre la seconde séance pour démarrer cette
phase...

L'analyseur lexical
Introduire des lexèmes pour les opérateurs de multiplication, division et

pour les parenthèses.

Le type des expressions
L'expression "(4− 2) ∗ 3 " sera alors représentée par l'arbre

Mult(Moins(Int 4, Int 2),Int 3).

type expr =
| Int of int
| Plus of expr ∗ expr
| Moins of expr ∗ expr
| Mult of expr ∗ expr
| Div of expr ∗ expr

L'analyseur syntaxique
L'analyseur syntaxique doit transformer la liste de tokens en un arbre de

type expr. Par exemple, la liste
[TParou ; TEnt 4 ; TMoins ; TEnt 2 ; TParferm ; TMult ; TEnt 3]
doit être transformée en l'arbre Mult(Moins(Int 4, Int 2),Int 3).

3

Il faudra donc améliorer la grammaire précédente (en veillant à ce qu'elle
reste récursive à droite) pour qu'elle prenne en compte les parenthèses, la
multiplication et la division.

L'évaluation
La fonction d'évaluation correspond à un parcours de l'arbre.

Phase 3 : expressions booléennes

Reproduire la démarche ci-dessus pour des expressions purement booléeenes
(sur les deux constantes notées true et false).

Il faut donc compléter l'analyseur lexical en introduisant un constructeur
pour les identi�cateurs (suites de lettres, éventuellement suites de lettres et
de chi�res commençant par une lettre).

Les deux seuls identi�cateurs réellement utilisés à ce stade sont donc true

et false, mais d'autres apparaîtront par la suite.

Phase 4 : expressions arithmétiques et booléennes

Introduire une expression booléenne pour le test d'égalité entre 2 expressions
arithmétiques.

Introduire une construction si. . . alors. . . sinon dans les expressions arith-
métiques.

Grammaire

E = expression
C = conjonction
SC = suite de conjonctions
SD = suite de disjonctions
L = littéral
EC = expression comparable
CMP = comparaison
T = terme
SA = suite d'additions

4

F = facteur
SM = suite de multiplications

E ::= 'si' E 'alors' E 'sinon' E | C SD

SD ::= ′∨′ C SD | ε
C ::= L SC

SC ::= ′∧′ L SC | ε
L ::= ′¬′ L | EC CMP

CMP = '=' CMP | ε
EC ::= T SA

SA ::= '+' SA | '-' SA | ε
T ::= F SM

SM ::= '*' SM | '/' SM | ε
F ::= entier | 'vrai' | 'faux' | '(' E ')'

Phase 5

Introduire une construction let. . . in. . .

Il faut prévoir une notion d'identi�cateur dans les lexèmes et une notion de
variable dans les expressions.

Les modi�cations à apporter dans la grammaire sont :

E ::=

'si' E 'alors' E 'sinon' E

| 'soit' ident '=' E 'dans' E

| C SD

F ::= entier | 'vrai' | 'faux' | ident | '(' E ')'

Pour l'évaluation, il faut introduire une notion d'environnement.

Bonus

Introduire une construction fun. . . ->. . . (au niveau E) ainsi qu'une construc-
tion d'application d'une fonction à des arguments (au niveau facteur)

Super bonus

Introduire une construction let rec. . . in. . .

5

