
RICM2 - 2004/05
Langage et Programmation 2

Programmation fonctionnelle

Exercice 1: Maximum de deux entiers
Décrire une fonction qui détermine le maximum de deux entiers.

Spécification
max2 : deux entiers → un entier

Réalisation
max2(a,b)

si a>b alors a sinon b

Caml
let (max2 : int*int -> int) = function

(a,b) -> if a>b then a else b

Exercice 2: Factorielle
Décrire une fonction qui à un entier strictement positif n associe le produit

des n premiers entiers (noté habituellement n !).

Spécification
fac : un entier > 0 → un entier > 0

Relations de récurrence
fac(1)=1
fac(n)=fac(n-1)*n

Version 1

Réalisation
fac1(n)

si n=1 alors 1 sinon fac1(n-1)*n

Caml
let rec (fac1 : int -> int) = function

1



n -> if n=1 then 1 else n*fac1(n-1)

Version 2

Réalisation
fac2(n)

fac aux(n,1)

fac aux(n,a)
si n=1 alors a
sinon fac aux(n-1,n*a)

Caml
let rec (fac aux : int*int -> int) = function

(n,a) -> if n=1 then a else fac aux(n-1,n*a)

let (fac2 : int -> int) = function
n -> fac aux(n,1)

Passage de la version 1 à la version 2

P(n)=∀ a ∈ N, fac aux(n,a)=a*n !
Montrer ∀ n ∈ N, P(n)

n=0 :
fac aux(0,a)=a et a*0 !=a
donc fac aux(0,a)=a*0 ! (1)

n+1 :
On suppose P(n)
fac aux(n+1,a)=fac aux(a*(n+1))*n
donc fac aux(n+1,a)=fac aux(n,a*(n+1))
or ∀ a ∈ N, fac aux(n,a)=a*n !
donc fac aux(n+1,a)=(a*(n+1))*n !
donc fac aux(n+1,a)=a*((n+1)*n !)
donc fac aux(n+1,a)=a*(n+1) ! (2)

Par récurrence on déduit de (1) et (2) ∀ n ∈ N, P(n)

Exercice 3: PGCD

2



Décrire une fonction qui à deux entiers strictement positifs a et b associe le
PGCD de a et de b.

Spécification
pgcd : un entier > 0 , un entier > 0 → un entier > 0

Relations de récurrence
pgcd(a,a)=a
pgcd(a,b)=si a>b alors pgcd(a-b,b) sinon pgcd(a,b-a)

Réalisation
pgcd(a,b)

si a=b alors a
sinon

si a>b alors pgcd(a-b,b)
sinon pgcd(a,b-a)

Caml
let rec (pgcd : int*int -> int) = function

(a,b)-> if a=b then a
else

if (a>b) then pgcd(a-b,b)
else pgcd(a,b-a)

Exercice 4: Suite de Fibonacci
Décrire une fonction qui à un entier positif associe la suite de Fibonacci de

rang n.

La suite
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... jusqu’à l’infini.

Spécification
fib : un entier > 0 → un entier > 0

Relations de récurrence
fib(0)=0
fib(1)=1
fib(n)=fib(n-1)+fib(n-2), pour n>1

3



Version 1

Réalisation
fib(n)

si n=0 alors 0
sinon

si n=1 alors 1
sinon fib(n-1)+fib(n-2)

Caml
let rec (fib : int -> int) = function

n -> if n=0 then 0
else

if n=1 then 1
else fib(n-1)+fib(n-2)

Version 2

Réalisation
fib(n)

fib aux(n,0,1)

fib aux(n,a,b)
si n=0 alors a
sinon fib aux(n-1,b,a+b)

Caml
let rec (fib aux : int*int*int -> int) = function

(n,a,b) -> if n=0 then a
else fib aux(n-1,b,a+b)

let (fib : int -> int) = function
n -> fib aux(n,0,1)

4


