RICM2 - 2004/05

Langage et Programmation 2

Programmation fonctionnelle

Exercice 1: Maximum de deux entiers
Décrire une fonction qui détermine le maximum de deux entiers.

Spécification
max?2 : deux entiers — un entier

Réalisation
max2(a,b)
si a>b alors a sinon b

Caml
let (max2 : int*int -> int) = function
(a,b) -> if a>b then a else b

Exercice 2: Factorielle
Décrire une fonction qui a un entier strictement positif n associe le produit
des n premiers entiers (noté habituellement n'!).

Spécification
fac : un entier > 0 — un entier > 0

Relations de récurrence
fac(1)=1
fac(n)=fac(n-1)*n

Version 1
Réalisation
facl(n)

si n=1 alors 1 sinon facl(n-1)*n

Caml
let rec (facl : int -> int) = function



n -> if n=1 then 1 else n*facl(n-1)
Version 2

Réalisation
fac2(n)
fac_aux(n,1)

fac_aux(n,a)
si n=1 alors a
sinon fac_aux(n-1,n*a)

Caml
let rec (fac_aux : int*int -> int) = function
(n,a) -> if n=1 then a else fac_aux(n-1,n*a)

let (fac2 : int -> int) = function
n -> fac_aux(n,1)

Passage de la version 1 a la version 2

P(n)=Y a € N, fac_.aux(n,a)=a*n!
Montrer V n € N, P(n)

n=0:
fac_aux(0,a)=a et a*0!=a
donc fac_aux(0,a)=a*0! (1)

n+1 :
On suppose P(n)
fac_aux(n+1,a)=fac_aux(a*(n+1))*n
donc fac_aux(n+1,a)=fac_aux(n,a*(n+1))
or Va e N, fac_aux(n,a)=a*n!
donc fac_aux(n+1,a)=(a*(n+1))*n!
donc fac_aux(n+1,a)=a*((n+1)*n!)
donc fac_aux(n+1,a)=a*(n+1)! (2)

Par récurrence on déduit de (1) et (2) Vn € N, P(n)

Exercice 3: PGCD



Décrire une fonction qui a deux entiers strictement positifs a et b associe le
PGCD de a et de b.

Spécification
pged : un entier > 0, un entier > 0 — un entier > 0

Relations de récurrence
pged(a,a)=a
pged(a,b)=si a>b alors pged(a-b,b) sinon pged(a,b-a)

Réalisation
pged(a,b)
si a=b alors a
sinon
si a>b alors pged(a-b,b)
sinon pged(a,b-a)

Caml
let rec (pged @ int*int -> int) = function
(a,b)-> if a=b then a
else
if (a>b) then pged(a-b,b)
else pged(a,b-a)

Exercice 4: Suite de Fibonacci
Décrire une fonction qui a un entier positif associe la suite de Fibonacci de
rang n.

La suite
0,1,1,2, 3,5, 8,13, 21, 34, 55, 89, 144, ... jusqu’a l'infini.

Spécification
fib : un entier > 0 — un entier > 0

Relations de récurrence
fib(0)=0
fib(1)=1
fib(n)=fib(n-1)+fib(n-2), pour n>1



Version 1

Réalisation
fib(n)
si n=0 alors 0
sinon
si n=1 alors 1
sinon fib(n-1)+fib(n-2)

Caml
let rec (fib : int -> int) = function
n -> if n=0 then 0
else
if n=1 then 1
else fib(n-1)+fib(n-2)

Version 2

Réalisation
fib(n)
fib_aux(n,0,1)

fib_aux(n,a,b)
si n=0 alors a
sinon fib_aux(n-1,b,a+b)

Caml
let rec (fib_aux : int*int*int -> int) = function
(n,a,b) -> if n=0 then a
else fib_aux(n-1,b,a+b)

let (fib : int -> int) = function
n -> fib_aux(n,0,1)



