
RICM2 - 2004/05
Langage et Programmation 2

Programmation fonctionnelle et λ-calcul

Manipulations de fonctions

Les fonctions d’ordre supérieur :
Dans les langages fonctionnels, les fonctions peuvent être utilisées dans la
définition d’autres fonctions. On appelle donc fonction d’ordre supérieur, une
fonction qui prend comme arguments une ou plusieurs autres fonctions. Le
résultat d’une fonction d’ordre supérieur est aussi une fonction.
Par exemple, la fonction qui prend en argument deux fonctions et qui retourne
la somme de celles-ci s’écrit de la façon suivante en CaML :

let somme fonctions = fun f →fun g → (fun x → f x + g x)
let somme fonctions f g = (fun x → f x + g x)

Exercice 1
Donner la définition en CaML de la fonction qui rend la composée de deux
fonctions.

Exercice 2
Donner la définition en CaML de la fonction qui calcule la drivée d’une fonc-
tion.

Programmation fonctionnelle et lambda cal-
cul :
Les langages fonctionnels sont des langages dans lesquels la notion de fonc-
tion est centrale. La sémantique des langages fonctionnels, comme CaML,
est directement basée sur les concepts du λ-calcul. Le λ-calcul (inventé par
A. Church en1930) fournit une notation pour transformer une expression en
une fonction :

f = λx.u
On dit que la variable x est liée et que l’expression u est la portée de cette
liaison. Un exemple de fonction simple en λ-calcul :

f = λx.x + 1
Cette fonction peut s’écrire, en CaML, des deux façons suivantes :

let f =fun x → x + 1 ou let f x = x + 1

1



Le typage de cette fonction est exprimé de la manire suivante :
val f : int → int = <fun>

Construction des termes du λ-calcul :

1. une variable x est un λ-terme.

2. abstraction : si x est une variable, et u un λ-terme, alors λx.u est un
λ-terme.

3. application : si u et v sont des λ-termes, alors (uv) est λ-terme.

Propriétés du λ-calcul : Convention de simplification d’écriture :

1. Associativité à gauche : (((uv)(wt)s) s’abrège en uv(wt)s

2. Abstraction associative à droite : λx.(λy.(λz.u)) s’abrège en λx.λy.λz.u

3. Regroupement des λ : λx1.(λx2.(. . . (λxn.u)) s’abrège en λx1x2 . . . xn.u

α-conversion : renommer toutes les occurrences d’une variable liée dans la
portée de sa liaison.

Ex : λy.((xz)(λx.xy)) , x renommé en s : λy.((xz)(λs.sy))
On s’autorise l’utilisation des fonctions prédéfinies usuelles sur les entiers.
β-réduction : donner une sémantique aux λ-termes qui les interprètent
comme une application.

On note le résultat : (λx.u)v → u[v/x]
Ex : (λx.x + 1)(a + b) → (a + b) + 1

Les entiers de Church :
On veut représenter les entiers naturels dans le λ-calcul. Il existe plusieurs
codages, mais le plus simple et le plus connu reste celui qui utilise les entiers
de Church. Les entiers de Church peuvent être définis comme des opérateurs
sur les fonctions. Par exemple, 3 est l’opérateur λf.λx.f(f(fx)). L’entier de
Church est donc la fonctionnelle qui prend une fonction f et un argument x,
et qui retourne f composée n fois appliquée à x.
Exercice 3
Écrire, en λ-calcul et en CaML, les fonctions de définition des entiers de
Church (zéro, un, deux, puis successeur). Donner le typage de chaque fonc-
tion. Réduire (successeur 2).

Exercice 4
Écrire, en λ-calcul et en CaML, les fonctions qui définissent les opérations
(somme, produit et exponentielle) appliquées aux entiers de Church. Donner
le typage de chaque fonction.

2



Exercice 5
Écrire, en CaML, les deux fonctions de conversions entre entiers de Church
et entiers naturels.

Logique :
On veut représenter les valeurs de logique grâce au λ-calcul.
Exercice 6
Donner, en λ-calcul et CaML, la représentation des valeurs vrai et faux par
des fonctions. Donner le typage de chaque fonction.

Exercice 7
Donner en λ-calcul et CaML l’implémentation des opérations associées à la
logique (and, or et not). Donner le typage de chaque fonction.

3


